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We introduce a computational method to optimize the in vitro
evolution of proteins. Simulating evolution with a simple model
that statistically describes the fitness landscape, we find that
beneficial mutations tend to occur at amino acid positions that are
tolerant to substitutions, in the limit of small libraries and low
mutation rates. We transform this observation into a design
strategy by applying mean-field theory to a structure-based com-
putational model to calculate each residue’s structural tolerance.
Thermostabilizing and activity-increasing mutations accumulated
during the experimental directed evolution of subtilisin E and T4
lysozyme are strongly directed to sites identified by using this
computational approach. This method can be used to predict
positions where mutations are likely to lead to improvement of
specific protein properties.

in vitro directed evolution u computational protein design u combinatorial
optimization u mean-field theory u protein tolerance

As techniques to alter the properties of proteins, directed
evolution and computational design have matured sepa-

rately. The aim of directed evolution is to accumulate stepwise
improvements by iterations of random mutagenesis and screen-
ing (1, 2). As a fundamentally different approach, the objective
of computational protein design (3) is to solve the inverse folding
problem by using a force field paradigm that describes the
interactions between amino acids and by then computing the
globally optimal amino acid sequence (4, 5). Directed evolution
has the benefit of improving any enzyme property that can be
captured by a screen; however, the search is restricted by the
number of mutants that can be experimentally screened at each
generation ('103–106). Conversely, computational design can
effectively search a much larger number of sequences (.1026) (4)
but is limited as to the size of the protein and is currently
restricted to calculating the stabilization energy. This report
introduces an approach to protein engineering in which com-
putational design is used as a guide to focus an evolutionary
search, thus combining the benefits of both design strategies.

An effective and widely used directed evolution strategy is to
produce a library of mutants from a parent sequence through
random point mutagenesis by using error-prone PCR (1, 2). The
usual practice of mutagenizing the whole gene has several
problems. The probability that any single random mutation
improves a property is small, and the probability of improvement
decreases rapidly when multiple simultaneous mutations are
made. Therefore, the limited number of mutants that can be
screened imposes a low upper limit on the mutation rate (6).
Furthermore, the negligible probability that two or three mu-
tations occur in a single codon and the significant biases of
error-prone PCR severely restrict the possible amino acid sub-
stitutions. These effects can be overcome by intensely mu-
tagenizing a limited number of positions (7–9). The challenge,
however, is to identify the residues where such experiments are
likely to be beneficial, as beneficial mutations often appear far
from sites that would be predicted heuristically (e.g., catalytic
sites) (1, 2). In this report, we first use a simple fitness model to
demonstrate that positive mutations preferentially occur at

residue positions that contribute independently to the fitness.
Next, we use a detailed structural model to transform this
observation into a design strategy.

Materials and Methods
Force Field and Rotamer Library. The energy term consists of two
contributions: rotamerybackbone e(ir) and rotameryrotamer
e(ir,js):

E 5 O
i 5 1

N

e~ir! 1 O
i 5 1

N 2 1 O
j . i

N

e~ir, js!, [1]

where N is the number of residues and ir is rotamer r at position
i. Because the backbone remains fixed, its internal energy
contribution is not relevant to the optimization procedure. Note
that fitness is the negative of energy: F 5 2E. Potential functions
and parameters for van der Waals interactions, hydrogen bond-
ing, and electrostatics are described in previous work (10, 11).
We use the DREIDING force field parameters for the atomic
radii and internal coordinate parameters (12). The van der Waals
energies are modeled by using a 6 2 12 Leonard–Jones potential
with an additional 0.9 scale factor applied to the atomic radii to
soften the lack of flexibility implied by the fixed backbone and
the rotamer descriptions. A ceiling of 500 kcalymol was set for
the rotameryrotamer energies to avoid unhindered van der
Waals contributions and to expedite mean-field convergence.
All rotamerybackbone and rotameryrotamer energies are com-
puted and stored before the mean-field calculation, requiring
165 (113) minutes for subtilisin E (T4 lysozyme) on 10 Silicon
Graphics (Mountain View, CA) R10000 processors running at
195 MHz.

The rotamer library is backbone-dependent as described by
Dunbrack and Karplus (13, 14). The following modifications
were included, as previously described (15). The x3 angles that
were undetermined from the database statistics were assigned
the values: Arg, 260°, 60°, and 180°; Gln, 2120°, 260°, 0°, 60°,
120°, and 180°; Glu, 0°, 60°, and 120°; Lys, 260°, 60°, and 180°.
The x4 angles that were undetermined from the database
statistics were assigned the following values: Arg, 2120°, 260°,
60°, 120°, and 180°; Lys, 260°, 60°, and 180°. Rotamers with
combination of x3 and x4 resulting in sequential g1yg2 or g2yg1

angles were eliminated.
Rotamers that interact with the backbone with energies

greater than 5 kcalymol (subtilisin E) and 20 kcalymol (T4
lysozyme) are eliminated from the calculation. The amino acids
at residues 1–4 and 269–274 of subtilisin E are fixed in their
wild-type conformations. For subtilisin E, an average of 121
rotamers per residue are considered, corresponding to 3.2 3 104

one-body energies, 5.1 3 108 two-body energies, and a rotamer
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space of 10497 combinations. For T4 lysozyme, an average of 176
rotamers per residue are considered, corresponding to 2.9 3 104

one-body energies, 4.1 3 108 two-body energies, and a rotamer
space of 10384 combinations.

Mean-Field Theory. The mean-field solution of Eq. 1 is

emf~ir! 5 e~ir! 1 O
j 5 1

N O
s 5 1

Kj

e~ir, js!p~js!, [2]

where emf(ir) is the mean-field energy felt by rotamer r at position
i and Kj is the total number of rotamers at residue j (16–18). We
can calculate the probability vector p(js) at some temperature T
using the self-consistent equations

p~js! 5
e 2 bemf~js!

O
s9 5 1

Kj

e 2 bemf~js9!

, [3]

where b 5 1ykBT, where kB is Boltzmann’s constant. The
probabilities are initially set to 1yKj and the mean-field energies
are calculated from Eq. 2 for each residue. The algorithm iterates
between Eqs. 2 and 3 until self-consistency is achieved. Conver-
gence is significantly improved if the probability vector p is
updated with a memory of the previous step as described by Lee
(16). An initially high temperature (50,000 K) is set, and the
convergence algorithm is repeated as the temperature is lowered
in increments of 100 K until the final temperature (600 K for
subtilisin E and 300 K for T4 lysozyme) is reached. The final
temperature corresponds with an estimated energy above which
the structural stability is compromised. The sequence entropy at
this temperature effectively counts the number of sequences that
are stable in the fixed backbone. The mean-field solution of
subtilisin E (T4 lysozyme) required 8,900 (6,402) minutes on a
single Silicon Graphics R10000 Processor running at 195 MHz
and 2.1 gigabytes of physical memory.

Results and Discussion
Simulations on a Generic Fitness Landscape. The sequence space
consists of all amino acid combinations for a fixed sequence
length, connected through mutational moves (19). Each se-
quence has a corresponding fitness, representing the combina-
tion of properties (e.g., activity and stability) undergoing selec-
tion. The combination of sequence space and a fitness
description constitutes the fitness landscape, the structure of
which determines the difficulty of an evolutionary search (20,
21). Very rugged landscapes contain many local optima, creating
a very difficult optimization problem. The underlying cause of
ruggedness is coupling between residues. Coupled residues must
be optimized simultaneously, whereas uncoupled ones could be
optimized independently and combined. Coupling is experimen-
tally observed as nonadditivity, in which the free energy con-
tribution of multiple mutations does not equal the sum of the
individual contributions from each mutation (22). Residues that
are weakly coupled are tolerant to amino acid substitution (23,
24). The simplest description of the fitness landscape that
captures the effect of coupling is to add a two-body term to an
uncoupled fitness contribution (24),

F 5 O
i

N

f~ia! 1
b
2 O

i

N O
j Þ i

N

f~ia, ja!lij, [4]

where N is the number of residues, ia is the amino acid identity
at residue i, f(ia) is the contribution of ia to the fitness, and b
determines the relative strength of coupled versus uncoupled

interactions. If residues i and j are coupled, lij 5 1; otherwise,
lij 5 0. Fitness approximations with one- and two-body terms
have been used previously to model thermostability (4, 5, 24–26)
and catalytic activity (27).

To investigate how coupling inf luences an evolutionary
search, a hypothetical fitness landscape was generated by the
random assignment of fitness contributions f(ia) from a Gaussian
distribution and random placement of coupling interactions lij
between residues. The directed evolution algorithm of mutagen-
esis and screening was then simulated at different fitness heights
on the landscape. Mutations were made on the DNA level and
then transcribed to the amino acid level. A mutation rate of three
nucleotide substitutions (corresponding to an average of one
amino acid substitution) per gene was applied to a N 5 50-aa
residue sequence. During each generation, 3,000 mutants were
screened, and the coupling of the positions where mutations
occurred on the most improved mutant was recorded.

We find that the probability of a positive mutation occurring at
a highly coupled residue decreases significantly as the fitness of the
parent increases (Fig. 1). The bias toward mutating uncoupled
positions late in evolution is a result of the finite sampling size of
the screening step. A highly coupled group of residues requires
several simultaneous mutations to demonstrate improvement.
When a mutation is made at a coupled residue, it is necessary to
improve all of the coupled terms in addition to the uncoupled term,
the probability of which rapidly decreases as the sequence becomes
more highly optimized. This result is independent of the specific
form of Eq. 4 and can be demonstrated by using any model that
incorporates a variable degree of coupling between residues [such
as Kauffman’s NK-model (21), lattice proteins (26, 28), or RNA
secondary structure models (29)].

Calculating the Tolerance of Protein Structures. As a strategy for
directed evolution, concentrating mutagenesis on the regions of
weak coupling reduces the search space to the positions that are
most likely to show improvement. We can extend this result from

Fig. 1. The probability distribution p(c) that a positive mutation occurs at a
residue with c coupled interactions. The distribution is shown at two fitness
values as the sequence ascends the fitness landscape, F 5 0.0 (E) and F 5 17.0
(Œ). Data shown are for N 5 50, b 5 10.0, and 50 coupling interactions. The
coupling is symmetric so two residues are affected for each interaction.
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the simple model to make experimentally relevant predictions by
using a detailed protein design model that calculates the stabi-
lizing energy of a sequence folded onto a fixed backbone (4, 5)
to determine the coupling of each residue. The protein back-
bones of subtilisin E (274 amino acids) and T4 lysozyme (164
amino acids) were retrieved from high-resolution crystal struc-
tures (30, 31), and the interactions between residues were
calculated by coarse-graining the flexibility of each amino acid
into rotamers and constructing a force field to calculate the
rotamerybackbone and rotameryrotamer stabilizing energies
(see Materials and Methods). An initial elimination of rotamers
makes the problem computationally tractable; however, the
combinatorial complexity remains enormous. The sequence
space considered is hyperastronomically large: 10343-aa combi-
nations for subtilisin E and 10214-aa combinations for T4 ly-
sozyme. Searching the entire space for the global optimum is
intractable both computationally and experimentally.

To circumvent the combinatorial difficulties, we apply statis-
tical mechanics to determine the coupling of each position, using
structural tolerance toward amino acid substitutions as a mea-
sure of the coupling. Structural tolerance is crucial for the
success of directed evolution. Maintaining structure is required
for the acquisition or fine-tuning of any other property, leading
to the suggestion that properties such as stability and activity are
correlated (32). The effect of structural tolerance is to increase
the probability that a mutation is not destabilizing. Therefore, a
structurally tolerant protein has a larger number of allowed
mutations that can potentially improve a property, making it
more likely that there is a connected path in sequence space of
single mutations that leads to regions of higher fitness. By
reducing the evolutionary search to regions of sequence space
that are consistent with the structure, functional space can be
more thoroughly explored.

Structural tolerance can be quantitated by counting the num-
ber of sequences (states) V compatible with a stabilization
energy, defined as the sequence entropy, S(E) 5 kB ln V (24). As
the energy is lowered, the number of compatible sequences
decreases, thus decreasing the entropy. The site entropy is
determined by the variability of the amino acid identity among
the sequences consistent with an energy and is calculated from
the probability p(ia) that an amino acid identity ia exists at site i,

si~E! 5 2kB O
a 5 1

A

p~ia!ln p~ia!, [5]

where A is total number of amino acids and kB is chosen to be
1. The amino acid probabilities are calculated as the sum of the
amino acid’s rotamer probabilities, as determined by mean-field
theory (details of this computation are given in Materials and
Methods). If the probabilities in Eq. 5 were based solely on the
rotamers of the wild-type amino acid identity, then the site
entropy would be a direct measure of the side chain flexibility.
However, we are tabulating the probabilities of the existence of
all amino acids at all positions and condensing this information
into the site entropy. Therefore, the site entropy is a measure of
the number of amino acid substitutions that can be made at each
residue without disrupting the structure. A residue intolerant to
mutations has a low entropy, whereas a tolerant residue has high
entropy. A tabulation of the entropy at each position produces
the entropy profile of subtilisin E shown in Fig. 2 and the
distribution of site entropies of subtilisin E and T4 lysozyme
shown in Fig. 3.

Correlation with Directed Evolution Experiments. To test our pre-
diction that beneficial mutations are made by directed evolution
at structurally tolerant positions, we compared our calculations
with mutations found from previous evolution experiments on

subtilisin E (6, 33, 34) and T4 lysozyme (35) (see Materials and
Methods). Seven of the nine mutations that improved the
thermostability of subtilisin E occur at positions computed to be
highly tolerant (Fig. 3A, red bars). The stabilizing mutations
discovered by the evolution of T4 lysozyme also preferentially
occur at the high-entropy positions (Fig. 3B). Thus, for both
enzymes, the entropy predictions would aid an evolutionary
search to improve thermostability, indicating that the compu-
tational method is valid independent of the specific protein or
experimental protocol.

In directed evolution, improvement of properties other than
stability is often desired. If the desired property is correlated
with stability, then the structure-based entropy predictions will
be more accurate. For instance, it has been suggested that
improving thermostability is a good approach for enhancing
activity at high temperatures (6, 36). When libraries of subtilisin
E mutants were screened for improved thermostability while
retaining activity, some mutations improved both properties. In
addition, activity and stability are highly correlated in the screen
used for T4 lysozyme; thus, activity-improving mutations also
occur at highly tolerant positions. There is a weaker correlation
with improving the activity of subtilisin E in organic solvent (Fig.
3A, blue bars), implying that retention of structure is less
important. However, the mutations are still strongly biased
toward the high entropy positions.

The site entropy profile is mapped onto the subtilisin E
structure in Fig. 4. There is a trend toward the most variable sites
being on the surface and the more conserved being in the core
of the protein. However, the correlation between the entropy
and solvent accessibility is poor (R2 5 0.55 for subtilisin E and
0.54 for T4 lysozyme; data in Fig. 2). The computed site
entropies are derived from the fundamental physical features
that lead to tolerance, whereas solvent accessibility is a second-
ary measure. The site entropy captures details of structural
tolerance beyond solvent accessibility, including side chain pack-
ing, the coupling of backbone and side chain conformations,
electrostatic interactions required by the backbone conforma-
tion, and a residue’s local environment, and is therefore a better
measure of tolerance.

A comparison is made in Table 1 between the site entropies
and solvent accessibilities of the positions where positive muta-
tions were found. Site entropy predicts that certain positions with
low solvent accessibility can have a high tolerance. Several
specific residues have a high site entropy but a low solvent
accessibility, which demonstrate the physical principles under-
lying our method. For example, residue 107 in subtilisin E has an
above-average site entropy (1.62) but a very low solvent acces-
sibility (1%). Residue 107 is on an a-helix, and the wild-type
isoleucine side chain is oriented toward the center of the protein
and is completely buried. However, the packing of the side chains
of the surrounding residues is such that several other amino acids
can be substituted without affecting the stabilization energy.
After the mean-field calculation, the amino acids that are
acceptable at this position (and their probabilities) are: Ile
(0.42), Cys (0.23), Val (0.12), Met (0.09), Glu (0.09), Asp (0.03),
Thr (0.01), Ser (0.01), and Ala (0.01). The result of the evolution
experiment was an Ile3Val substitution, which increased the
activity in organic solvent. A similar example exists in the T4
lysozyme data set. Residue 151 is on an a-helix near the surface
and is partially blocked from the solvent by surrounding atoms.
It has an above-average site entropy (1.53) and below-average
solvent accessibility (17%). The mean-field calculation reveals
that the amino acids possible at this position are: Met (0.37), Leu
(0.34), Cys (0.11), Glu (0.09), Gln (0.05), Asp (0.03), Ser (0.01),
and Thr (0.01). The evolution experiment generated a Thr3Ser
substitution. Typically, the positions with high entropies (greater
that one standard deviation above the mean) and below-average
solvent accessibilities (,24% exposed) are close to the surface,
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and their side chains are partially buried. In the mean-field
computation, we calculate the energies resulting from all amino
acid substitutions, rather than using a measure based on the
single wild-type amino acid identity, as in the solvent accessibility
calculation. This leads to a more accurate assessment of the
tolerance of a residue for amino acid substitutions.

We also compared the calculated entropies with the diversity
accumulated during natural evolution, calculated from a se-
quence alignment (data not shown). The sequence alignment
entropy was determined from the sequences of subtilisins SSII,
S41, S39, BPN9, E, Carlsberg, and thermitase (37). The amino
acid probabilities pi(ia) are calculated as the fraction of aligned
sequences where amino acid a exists at position i. We find that
the calculated entropies correlate poorly with the natural amino
acid variability (R2 5 0.27). Because the natural sequence
variability among subtilisins is great, the correlation worsens as
more sequences are compared.

That the site entropy can predict the positions where muta-
tions occur in in vitro, but not in natural evolution, is interesting.
This disparity is due to a combination of two effects, both related
to the limited number of mutants that can be screened. First, the
theory that we present relies on the assumption that the number
of mutants screened is relatively small. The analog of this in
nature is unclear; however, it is expected that many more
mutants have been attempted in nature than can be currently
analyzed in the laboratory. Second, long periods of neutral
evolution have eroded the information in the sequence align-
ment. Multiple mutations can be made to achieve a punctuated

fitness improvement over long time periods via the accumulation
of neutral mutations, which eventually discover beneficial com-
binations (29). However, the probability of finding a good
multiple mutant during in vitro evolution is small because of the
sampling limitation of the experiment (analogous to a time
limitation).

It is important to emphasize that our algorithm describes the
positions where mutations will be discovered with the intention
of optimizing directed evolution as a search algorithm. The
probability that beneficial mutants are found increases when the
high-entropy positions are targeted and low-entropy sites are
neglected. Noncombinatorial experiments, such as rational de-
sign strategies, will not correlate with the entropy prediction.
The requirement for a combinatorial component to the exper-
iment is demonstrated by the example probabilities given above
for residue 107 in subtilisin E and residue 151 in T4 lysozyme. In
both examples, the amino acid substitution found by the evolu-
tion experiment does not correspond with the highest probability
case determined by the computation. Once the algorithm de-
termines the positions where substitutions do not disrupt the
structure, evolutionary experiments can determine the specific
mutations that generate the greatest fitness improvements.

Computationally Focused Mutagenesis. The information from the
structural entropy calculations can be incorporated in several
experimental methods. First, site saturation mutagenesis can be
applied at positions that are predicted to be the most tolerant. The
positive mutants can then be recombined by using DNA shuffling

Fig. 2. The predicted sequence entropy profile (black line) and solvent accessibility (red line) for subtilisin E. If all amino acids are equally likely, then si 5 ln
A ' 3.0. The solvent accessibility is the percent side chain surface area exposed, as calculated by the Lee and Richards method with a solvent radius of 1.4 Å (41).
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(42) to compound the fitness improvement. As a second method,
a portion of the gene that is determined to have an above-average
total tolerance (such as residues 240 to 255 in subtilisin E) can be
targeted by using regional combinatorial mutagenesis. The choice
of experimental approach is determined by the accuracy of the
entropy profile. If the correlation between the screened property
and stability is high, then site saturation mutagenesis is appropriate.
However, if the correlation is weaker, a combinatorial search of a

region that is predicted to be able to withstand the additional
diversity is better.

The experiment can also combine mutagenesis with recom-
bination, a method conceptually similar to family shuffling, in
which homologous genes are recombined (38, 39). In family
shuffling, the sequences have previously survived natural selec-
tion; thus, the inherent diversity is less likely to have a deleterious

Fig. 3. The probability distribution of site entropies p(si) for subtilisin E and
T4 lysozyme. The bar indicates the mean and standard deviation of the
distribution. The fraction of frozen residues are 0.078 and 0.039, as indicated
by the arrows. The site entropies of positions where experimental directed
evolution found positive mutations are indicated by the lines. (A) Mutations
found from the in vitro evolution of subtilisin. (Top) Mutations made when
the screen was to improve thermostability while retaining activity (6). From
left to right, the positions (entropies) are 181 (0.36), 166 (0.96), 118 (2.37), 76
(2.45), 14 (2.50), 218 (2.54), 9 (2.55), 194 (2.59), and 161 (2.69). (Bottom)
Mutations made when the screen was to improve activity toward s-AAPF-pNa
in the organic solvent dimethyl formamide (33, 34). From left to right, the
positions (entropies) are 181 (0.36), 107 (1.62), 182 (1.81), 206 (1.94), 156 (2.19),
131 (2.43), 188 (2.50), 218 (2.54), 255 (2.54). Note that residues 181 and 218 are
common to both data sets (different amino acid substitutions were made at
residue 181, whereas the same substitution was made at 218). In both studies,
the mutations were found by screening 2,000–5,000 mutants generated with
an average mutation rate of 2–3 nucleotide substitutions. (B) Mutations found
during the evolution of T4 lysozyme (35). The red bars indicate mutations that
improved stability, blue bars indicate mutations that improved activity, and
purple bars indicate mutations that improved both properties. From left to
right, the positions (entropies) are 153 (0.55), 26 (1.03), 151 (1.53), 22 (1.66), 41
(1.91), 16 (2.02), 147 (2.10), 119 (2.11), 163 (2.49), 116 (2.50), 93 (2.52), 113
(2.54), 40 (2.54), and 14 (2.59).

Fig. 4. The structure of subtilisin E showing the entropy at each position. The
yellow residues are the most variable sites (2.16 , s , 3.00, greater than one
standard deviation above the mean), the red residues are moderately variable
(1.31 , s , 2.16, between the mean and one standard deviation), and the gray
residues have below average variability (s , 1.31). Site saturation experiments
should be directed at yellow positions, whereas the contiguous yellow–red
regions lend themselves to cassette mutagenesis. Figure generated by using
MOLMOL (40).

Table 1. Comparison of site entropies and solvent accessibility

Residue Site entropy % exposed*

Subtilisin E 9 2.55 56
14 2.50 34
76 2.45 46

107 1.62 1
118 2.37 79
131 2.43 37
156 2.19 53
161 2.69 92
166 0.96 8
181 0.36 23
182 1.81 52
188 2.50 88
194 2.59 71
206 1.94 40
218 2.54 50
255 2.54 41

T4 lysozyme 14 2.59 47
16 2.02 53
22 1.66 19
26 1.03 2
40 2.54 80
41 1.91 34
93 2.52 81

113 2.54 69
116 2.50 51
119 2.11 54
147 2.10 50
151 1.53 17
153 0.55 0
163 2.49 63

*The percent surface area of the side chain accessible by solvent. The surface
areas were calculated using the Lee and Richards definition of solvent
accessible surface area using 1.4 Å as the radius of water (41). The average
solvent accessibility is 24% and the standard deviation is 26%.
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effect on the structure and function. In our approach, the
calculated entropy profile predicts the positions that are essential
to maintain the structure, allowing the tolerant sites to be
mutated en masse to produce a family of artificially divergent
sequences. Recombining these sequences could generate a mu-
tant library with large sets of mutations that are calculated to
retain structural integrity.

Conclusions
Because positive mutations are found at high-entropy sites, we
propose that mutagenesis should be preferentially applied to
these regions. An alternative approach is to make specific
mutations at a highly coupled set of residues, a strategy that has
been successful in improving the stability of small proteins (4, 5).
However, we are interested in improving properties such as
activity, where the exact fitness contributions cannot be accu-

rately computed. Experimentally incorporating a sufficiently
high mutation rate to reliably discover highly coupled mutants
requires a screening effort larger than is practically feasible. Our
algorithm provides a methodology by which enzymes can be
computationally prescreened, thus reducing the required exper-
imental effort. By computationally calculating the entropy of
each residue and by using this information to guide an experi-
mental evolutionary search, the most powerful aspects of each
technique are combined as an approach to protein design.
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