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A Revised Root for the Human Y Chromosomal
Phylogenetic Tree: The Origin of Patrilineal
Diversity in Africa

Fulvio Cruciani,1,* Beniamino Trombetta,1 Andrea Massaia,1 Giovanni Destro-Bisol,2,3 Daniele Sellitto,4

and Rosaria Scozzari1,*

To shed light on the structure of the basal backbone of the human Y chromosome phylogeny, we sequenced about 200 kb of the

male-specific region of the human Y chromosome (MSY) from each of seven Y chromosomes belonging to clades A1, A2, A3, and BT.

We detected 146 biallelic variant sites through this analysis. We used these variants to construct a patrilineal tree, without taking

into account any previously reported information regarding the phylogenetic relationships among the seven Y chromosomes here

analyzed. There are several key changes at the basal nodes as compared with the most recent reference Y chromosome tree. A different

position of the root was determined, with important implications for the origin of human Y chromosome diversity. An estimate of

142 KY was obtained for the coalescence time of the revised MSY tree, which is earlier than that obtained in previous studies and easier

to reconcile with plausible scenarios of modern human origin. The number of deep branchings leading to African-specific clades has

doubled, further strengthening the MSY-based evidence for a modern human origin in the African continent. An analysis of 2204

African DNA samples showed that the deepest clades of the revised MSYphylogeny are currently found in central and northwest Africa,

opening new perspectives on early human presence in the continent.
The male-specific region of the human Y chromosome

(MSY) is characterized by the lowest level of sequence

diversity in the human genome (compared to autosomal

and X-linked regions), which is probably a consequence

of its recent origin and low mutation rate (compared to

mtDNA). These features have slowed down identification

of polymorphisms in the MSY compared with other

genomic regions. In the last decade, however, the number

of phylogenetically characterized MSY SNPs has rapidly

increased from a dozen to several hundreds. Improved

mutation-discovery methods have substantially contrib-

uted to this progress, and the Y chromosome has become

a powerful resource not only for reconstructing past

human demographic events but also for studying relevant

aspects of genome evolution, such as intra- and interchro-

mosomal gene conversion,1–5 structural variation,6–8 and

MSY-coding-gene evolution.9

The first well-resolved phylogenetic tree of the MSY

included 116 binary haplogroups identified by 167

SNPs.10 From then on, the MSY tree has been progressively

refined through the discovery and mapping of a large

number of SNPs,11,12 the most recently published MSY

phylogeny incorporating 599 mutations in 311 distinct

binary haplogroups.13

Although the level of resolution of theMSY tree has been

significantly increased in the last decade, its basal back-

bone has remained substantially unchanged. The first

branching in the MSY tree has been reported to be the

one that separates the African-specific clade A (called clade

I in 10) from clade BT (clade II-X in 10), whereas the second
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branching determines the subdivision of BT in clades B,

mostly African, and CT, which comprises the majority

of African and all non-African chromosomes.13,14 This

branching pattern, along with the geographical distribu-

tion of the major clades A, B, and CT, has been interpreted

as supporting an African origin for anatomically modern

humans,10 with Khoisan from south Africa and Ethiopians

from east Africa sharing the deepest lineages of the

phylogeny.15,16

The robustness of a branch in a phylogenetic tree relies

both on the number of characters supporting the branch

and the rate of their recurrent evolution on the tree.14 In

the currently accepted phylogeny of the human Y chromo-

some, clade A appears to be defined by only two markers,

M91 and P97,10,13 the former being a length polymor-

phism at a homopolymer-associated tract, which shows

at least one signal of mutational instability.10 Thus, it is

conceivable that major haplogroups within clade A (hap-

logroups A1, A2, and A3) do not represent a monophyletic

group of lineages. This point is relevant for the correct

placement of the root in the tree, and this, in turn, is

crucial for making inferences about early paternal genetic

structure among modern humans.

To test the robustness of the backbone and the root of

current Y chromosome phylogeny, we searched for SNPs

that might be informative in this respect. To this aim, a

resequencing analysis of a 205.9 kb MSY portion (183.5 kb

in theX-degenerate and22.4 kb in theX-transposed region)

was performed for each of seven chromosomes that are

representative of clade A (four chromosomes belonging to
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Figure 1. Revised Human Y Chromosome Phylogeny
The tree is based on the 146 mutations detected in the present
study. Mutations are shown along the branches (indels in italics).
Branch lengths are proportional to the rho estimates of the time to
the MRCA (TMRCA; estimates to the left). The nodes are shown in
yellow. The sequenced chromosomes are indicated at the bottom
(see also Table S1). Haplogroup nomenclature follows Karafet
et al.13 However, the revised tree required the introduction of
new names for higher-order haplogroups (A1a-T and A2-T; see
main text).
haplogroups A1a, A1b, A2, and A3), clade B, and clade CT

(two chromosomes belonging to haplogroups C and R)

(Table S1 available online).

GenomicDNAextracted frombloodor salivawasused for

the analysis. The study was approved by the ‘‘Policlinico

Umberto I, SapienzaUniversità di Roma’’ ethical committee

(document no. 1016/10), and informed consent was
The Ame
obtained from all participants. MSY regions known to be

involved in gene conversion events1–5 were excluded

from the analysis. Sequencing templates were obtained

through PCR. After DNA amplification, the PCR products

were purified with the QIAquick PCR Purification Kit

(QIAGEN). Cycle sequencing was performed with the use

of the BigDyeTerminatorCycle SequencingKitwithAmpli-

taq DNA polymerase (Applied Biosystems). Sequencing

products were purified by ethanol precipitation and run

on an ABI Prism 3730XL DNA sequencer (Applied Biosys-

tems). Sequencing chromatograms were aligned and

analyzed for mutations with the use of Sequencher 4.8

(Gene Codes). Length variations at both microsatellites

and homopolymeric tracts were not considered for further

analysis.

We detected a total of 146 biallelic MSY variants,

including eight indel polymorphisms 1–12 bases long and

138 single-nucleotide substitutions (Table S2). Similar to

previous reports,17,18 transitions were about twice as

frequent as transversions (93 versus 45). The observed

nucleotide diversity was high (p ¼ 2.1 3 10�4 5 0.3 3

10�4) as compared to the values reported for regions not

involved in gene conversion in previousMSY resequencing

studies (p in the range of 0.9 3 10�4 to 1.5 3 10�4).5,9,19

We used the 146 identified DNA variants and the MEGA

5 software to infer a maximum parsimony (MP) phylogeny

of the human MSY. Previously reported phylogenetic rela-

tionships among the seven Y chromosomes resequenced

in the present study were not taken into account. We

obtained a strict-consensus MP tree, which was rooted

with respect to either orthologous chimp MSY sequence

(131 sites on the X-degenerated MSY) or paralogous

human X chromosome sequence (15 sites on the X-trans-

posed MSY), as reported in the UCSC Genome Browser

(March 2006 chimp assembly and February 2009 human

assembly, respectively). The resulting MSY tree is shown

in Figure 1. The deepest branching separates A1b from

a monophyletic clade whose members (A1a, A2, A3, B, C,

and R) all share seven mutually reinforcing derived

mutations (five transitions and two transversions, all at

non-CpG sites). To retain the information from the refer-

ence MSY tree13 as much as possible, we named this clade

A1a-T (Figure 1). Within A1a-T, the transversion V221

separates A1a from a monophyletic clade (called A2-T)

consisting of three branches: A2, A3, and BT, the latter

being supported by ten mutations (Figure 1).

To estimate the age of ancestral nodes in the tree, we

used the rho statistic,20,21 considering a germline MSY

mutation rate of 1.03 10�9 single-nucleotide substitutions

(SNS) per base per year.22 Indel variants were excluded from

this calculation.We obtained a time estimate for the root of

the MSY tree of 141.55 15.6 KY, with an age in mutations

(rho) of 29.15 3.2 and values of 107.65 12.2 KY, 104.95

13.1 KY, 74.5 5 12.5 KY, and 38.8 5 9.7 KY for the coales-

cence age of A1a-T, A2-T, BT, and CT, respectively (Figure 1

and Table S3). We compared the rho estimates with the

maximum likelihood (ML) estimates obtained with PAML
rican Journal of Human Genetics 88, 814–818, June 10, 2011 815



Figure 2. Comparison of Human Y Chromosome Phylogenies
Backbones of the MSY phylogeny as reported in the present study (to the left) and by Karafet et al.13 (to the right). Only mutations that
identify ‘‘conflicting’’ clades between phylogenies are shown (in red).
4.4. The differences between the rho and ML estimators of

the TMRCA were minor (<8%; Table S3) for the root and

major clades (A1a-T and A2-T).

How does the present MSY tree compare with the

backbone of the recently published ‘‘reference’’ MSY

phylogeny?13 The phylogenetic relationships we observed

among chromosomes belonging to haplogroups B, C, and

R are reminiscent of those reported in the tree by Karafet

et al.13 These chromosomes belong to a clade (haplogroup

BT) in which chromosomes C and R share a common

ancestor (Figure 2). However, when the deepest branches

of the two phylogenies are considered, important differ-

ences emerge. Chromosomes A1a and A1b appear to be

separated at the root of the present tree, rather than being

connected as in the reference phylogeny (Figure 2). More-

over, haplogroups A2 and A3 form a trifurcating clade

together with BT in the present phylogeny, implying that

‘‘haplogroup’’ A can no longer be recognized as a mono-

phyletic group of lineages.

Three key mutations define haplogroups A (M91 and

P97) and A1 (P108) (Figure 2) in the phylogeny by Karafet

et al.13 Regarding the poly-T marker M91, the chimp-

sequence-based inferred polarity of the mutation is

formally correct (T9 is the ancestral allele). However, as

shown by a comparative analysis of human and chimp

sequences, homopolymeric stretches are prone to recur-

rent mutation,23 suggesting some caution when the ances-

tral or derived state of a length polymorphism is inferred

by interspecies comparison. By comparing a human

sequence of 500 kb MSY flanking the M91 site to the

orthologous sequence in the chimp, we have observed

that less than one-third of the 9-Ts homopolymeric

stretches have retained the same length in the two species

(15/56 human versus chimp, 15/53 chimp versus human,

see Table S4), which is consistent with the hypothesis that

this marker might be evolutionarily unstable. Concerning

SNPs P97 and P108, the inspection of the chimp reference

sequence (March 2006 chimp assembly, UCSC Genome

Browser) would indicate that the derived allele of these

markers should be placed at the root of the BT and A2-T

clades, respectively, rather than A and A1. We confirmed
816 The American Journal of Human Genetics 88, 814–818, June 10,
this to be the case by resequencing the relevant ortholo-

gous regions in three unrelated chimps. Thus, P108 now

supports the second branching in the tree, being phyloge-

netically equivalent to V221, whereas P97 and, possibly,

M91 should be considered to be phylogenetically equiva-

lent to the markers that define haplogroup BT.

Haplogroup A1b was first reported by Karafet et al.13 as

being defined by marker P114. However, no information

is available on the geographic distribution of this hap-

logroup, recognized as one of the two deepest clades in

the present phylogeny. To fill this gap in our knowledge

and shed light on the phylogeography of the deepest

branches (haplogroups A1b, A1a, and A2-T) of the revised

tree, we considered our sample of 2204 African subjects

(Figure S1 and Table S5). Chromosomes that were not

previously assigned to a specific Y haplogroup24–28 were

analyzed by DHPLC for the mutation defining haplogroup

A2-T (V221; Figure 1 and Table S2). All but eight chromo-

somes were shown to carry the derived allele at V221 and

were therefore classified as A2-T. The eight chromosomes

carrying the ancestral allele at V221 were further analyzed

for markers defining haplogroups A1a (V4, V14, V25, and

M31) and A1b (V164, V166, V196, and P114). Four

subjects (two Berbers from northwest Africa, one Tuareg

and one Fulbe from Niger) were confirmed as belonging

to clade A1a.24,29 It is worth noting that this clade was

previously detected in west Africa, although at low

frequencies.10,30–32 Three chromosomes from the Bakola

pygmy group from southern Cameroon (central Africa)

were found to carry the derived allele at V164, V166,

V196, and P114 and were classified as A1b. Interestingly,

one chromosome from an Algerian Berber group (north-

west Africa) was found to carry the derived allele at V164,

V166, and V196 but carried the ancestral one at P114,

implying a bipartite structure for A1b, where P114 defines

an internal node.

Three features of our data are of particular interest. First,

the branching order at the deepest points of the tree is

different from that previously recognized. The root of the

tree now falls between A1b and A1a-T, and the number

of deep branchings leading to African-specific clades has
2011



doubled (Figure 2), providing further strong support for

the MSY-based evidence of a modern human origin in

the African continent.

Second, the MSY tree is deeper than previously believed.

The present figure of about 140 KY for the inferred most

recent common ancestor (MRCA) of the MSY phylogeny

is older than previous estimates (about 100 KY or

below)33–35 and easier to reconcile with plausible scenarios

of modern human origin.36 Clearly, calculation of the

precise age of the tree largely depends on the accuracy of

the assumed mutation rate. In any case, an antiquity of

the root greater than that previously estimated is evident

from the present tree structure. It is worth noting that

A1b, long neglected in previous large-scale resequencing

studies of the MSY, contributes to the older TMRCA

and high nucleotide diversity values that we observe,

highlighting the importance of targeted studies on rare

haplogroups.

Third, contrary to previous phylogeny-based conclu-

sions,15,16 the deepest clades of the revisedMSYphylogeny

are currently found in central and northwest Africa. MSY

lineages from these regions coalesce at an older time

(142 KY) than do those from east and south Africa

(105 KY), opening new perspectives concerning early

modern human evolution. A scenario of a Y chromosome

‘‘Adam’’ living in central-northwest Africa about 140 KY

ago would provide a good fit to the present data. However,

we also note that, because of the still largely incomplete

geographic coverage of the African MSY diversity and

unknown consequences of past population processes such

as growth, extinction, andmigration, anyphylogeny-based

inference on the geographical origin of human MSY diver-

sity in Africa should be made with caution. Additional

Y chromosome data and future discoveries in other disci-

plines are required in order to provide crucial information

in support of the proposed scenario. Interestingly, there is

an accumulation of a growing body of evidence that indi-

cates that African regions that have been long neglected

in studies on the origin of Homo sapiens may have been

important early sites of modern human occupation,

possibly connected to other areas of the continent by routes

that are hidden today (see 37 and references therein).

In conclusion, we present here a Y chromosome phylo-

genetic tree deeply revised in its root and earliest branches.

Our data do not uphold previous models of Y chromo-

somal emergence15,16 and demand a reevaluation of

some fundamental ideas concerning the early history of

the human genetic diversity we find today.38–40 Our

phylogeny shows a root in central-northwest Africa.

Although this point requires further attention, we think

that it offers a new prospect from which to view the initial

development of our species in Africa.
Supplemental Data

Supplemental Data include one figure and five tables and can be

found with this article online at http://www.cell.com/AJHG/.
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