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The Orphan Disease Networks

Minlu Zhang,1,3,5 Cheng Zhu,1,5 Alexis Jacomy,4 Long J. Lu,1,2,3 and Anil G. Jegga1,2,3,*

The low prevalence rate of orphan diseases (OD) requires special combined efforts to improve diagnosis, prevention, and discovery of

novel therapeutic strategies. To identify and investigate relationships based on shared genes or shared functional features, we have con-

ducted a bioinformatic-based global analysis of all orphan diseases with known disease-causing mutant genes. Starting with a bipartite

network of known OD and OD-causing mutant genes and using the human protein interactome, we first construct and topologically

analyze three networks: the orphan disease network, the orphan disease-causing mutant gene network, and the orphan disease-causing

mutant gene interactome. Our results demonstrate that in contrast to the common disease-causing mutant genes that are predomi-

nantly nonessential, a majority of orphan disease-causing mutant genes are essential. In confirmation of this finding, we found that

OD-causing mutant genes are topologically important in the protein interactome and are ubiquitously expressed. Additionally, func-

tional enrichment analysis of those genes in which mutations cause ODs shows that a majority result in premature death or are lethal

in the orthologous mouse gene knockout models. To address the limitations of traditional gene-based disease networks, we also

construct and analyze OD networks on the basis of shared enriched features (biological processes, cellular components, pathways,

phenotypes, and literature citations). Analyzing these functionally-linked OD networks, we identified several additional OD-OD rela-

tions that are both phenotypically similar and phenotypically diverse. Surprisingly, we observed that the wiring of the gene-based

and other feature-based OD networks are largely different; this suggests that the relationship between ODs cannot be fully captured

by the gene-based network alone.
Introduction

The US Rare Disease Act of 2002 defined a rare or orphan

disease (OD) as a disease that affects fewer than 200,000

inhabitants, equivalent to approximately 6.5 patients per

10,000 inhabitants.1 There are an estimated 8000 ODs,

many of which are known to be of genetic origin, affect

children at a very early age, and be life-threatening and/or

chronically debilitating.2,3 Orphan diseases exist in all

disease classes and range from exceptionally rare to more

prevalent. Because there are so many ODs and because

each has such a low prevalence, it is difficult to develop

a public health policy specific to each disease. It is possible,

however, to have a global rather than a piecemeal

approach in the areas of OD and orphan drug research

and development, information, and training.4 In the

decade before the US Orphan Drug Act in 1983, only ten

drugs for rare diseases had received FDA marketing

approval, compared with more than 300 orphan drugs

that were subsequently approved.5 Most of these orphan

drugs, however, are for rare cancers or metabolic diseases,

and very few are for ODs of other classes. Furthermore,

most of these are symptomatic therapies rather than

curative or able to modify fundamental pathophysiology.

Additionally, the prices of such approved drugs are in

many cases high and hence are a burden for health insurers

or patients.6

A recent study reports that ODs featured in a high

number of scientific publications are more likely to obtain
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a therapeutic product than those with a low number of

publications.7 Previous studies indicate that many human

diseases are interrelated or grouped together due to pertur-

bation of the same gene. Disease networks, disease-causing

mutant gene networks, and drug target networks8–10

are increasingly explored as a complement to networks

centered on protein or gene interactions. However, the

quality of these networks is heavily dependent on the

quantity and quality of information that supports their

creation11 and is also constrained by the number of known

disease-causingmutant genes. One way to overcome this is

to use functional linkages based on features other than

genes alone. Linghu et al.12 used such functional linkages

to identify associations between genes involved in differ-

ent diseases and to identify relationships that might be

associated functionally related sets of genes rather than

with the same genes.

Elucidating the mechanisms and interconnectivity of

most of the 1700 ODs with known disease-causing mutant

genes is important not only for ODs and orphan drug

development but also for the understanding of normal

biological pathways and common diseases. For example,

some of the most effective treatments for coronary artery

disease, a very common disease, were first established

during the study of familial hypercholesterolemia, an

orphan disease. In the current study, using ODs and their

known disease-causingmutant genes,13–15 we built a bipar-

tite graph of the human orphan diseasome to investigate

the ODs and OD-causing mutant genes (ODMG) in the
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context of shared gene networks, protein interactions,

functional linkages, and literature-based connectivity.
Figure 1. Workflow for Generating the OD Networks on the
Basis of Shared Genes or Enriched Functional Features
(A) The details of the ODN, ODMGN, and ODMGI that are gener-
ated with the orphan disease and OD-causing mutant gene bipar-
tite network and the human protein interactome.
(B) Outlines of the method and results of the functionally
connected ODs.
Material and Methods

Data Resources and Analysis
The orphan diseases and mutant gene information was down-

loaded from Orphanet13 with the Uniprot Knowledgebase15 inter-

face. We then parsed these 2092 orphan disease terms into 1772

distinct orphan diseases by merging some of the disease subtypes

of a single disease based on their given disorder names as described

previously.9 To compare the ODMGs with common disease genes,

we extracted the current curated list of all known disorder-gene

associations from theMorbidMap of the OnlineMendelian Inher-

itance in Man (OMIM).14 The human protein interactome used in

this study was compiled from several resources16–21 with both

redundant interactions and self-loops removed. We defined essen-

tial genes (n ¼ 2481) as previously described9 by retrieving a list of

humanorthologs ofmouse genes that resulted in lethal phenotype

in embryonic andpostnatal stagesuponknockout (cataloged in the

Mouse Genome database22). The list of ubiquitously expressed

human genes was compiled from Ramskold et al.23 and Tu et al.24

The mitochondrial genes were downloaded from the MitoCarta

database,25 an inventory of mammalian mitochondrial genes. To

identify enriched features (Biological Process,CellularComponent,

Mammalian Phenotype, and pathways), we used the ToppGene

Suite.26 The feature-based OD networks were constructed with

the shared enriched feature (p cut-off 0.05; Bonferroni correction)

as an edge. Literature-based orphan disease networks (ODNs)

were generated with the shared cited literature in the correspond-

ing OMIM14 disease records of the ODs from the Orphanet. The

mappings of OD to OMIM were obtained from the Orphanet.

Two ODs are connected if they have a same article cited in their

respective OMIM disease records (Figure 1).

Analysis of the Orphan Disease Network

and OD-Causing Mutant Gene Network
We defined hubs as all nodes that are in the top 20% of the degree

distribution (i.e., ODs or OD-causing mutant genes that have the

20% highest number of neighbors), whereas bottlenecks are

defined as the nodes that are in the top 20% in terms of between-

ness.27 Betweenness measures the total number of nonredundant

shortest paths going through a certain node or edge in a network,

and, combined with the degree, it is used to assess the relevance of

the location of nodes in a network.28 The degree and betweenness

centrality values are calculated with TopNet-like Yale Network

Analyzer (tYNA).29We used three well-known centralitymeasures,

namely betweenness centrality, closeness centrality, and eigen-

vector centrality (available as part of the Gephi package30) to

analyze the ODN and orphan disease-causing mutant gene

network (ODMGN). In brief, eigenvector centrality is a measure

of node importance in a network based on a node’s connections,

and closeness centrality is the average distance from a given start-

ing node to all other nodes in the network.We define a subnetwork

or a connected component as a portion of a network that consists

of nodes that are only reachable from nodes in the same network.

For all the networks constructed in this study, we determined the

number of connected components and their respective sizes by

using Gephi.30 Community or modularity, on the other, hand

represents the tightness of coupling among a specific group of

nodes in comparison to other nodes in the entire network. The
756 The American Journal of Human Genetics 88, 755–766, June 10,
community detection algorithm (Louvain Method31) in Gephi

was used to identify the modules in each of the networks gener-

ated in the study.

Visualization of Orphan Disease Networks
All the networks and related analyses in the current study were

performed with Gephi,30 and the results are made available as

a browseable web-based resource (Orphan Diseasome). Users can

interactively query the different networks for genes or ODs of

interest.
Results

Generating and Analyzing Networks of Orphan

Diseases and Mutant Genes

We start our analysis with a curated list of 1772 ODs that

have at least one implicated gene mutation (2124 OD-

causing mutant genes or ODMGs) (Table S1, available

online). A gene and OD are considered connected if a

known mutation in that gene is implicated as a causal

mutation for the OD. Of the 1772 ODs analyzed, 1223

(~69%) have only one known gene implicated, whereas

the remaining 549 have more than one disease-causing
2011



Figure 2. Network of OD Based on Shared Genes
(A) The loosely connected 184 components (subnetworks) of the ODN.
(B) One of the largest subnetworks of the ODN and the 76 modules within it. Modularity indicates the tightness of coupling among
a specific group of nodes in comparison to others in the entire network. For simplicity and clarity, only some of the nodes are labeled.
The size of the nodes is proportional to the number of other ODs that are connected to it.
mutant gene. On the basis of the mutant genes currently

known to cause OD, this finding indicates that the

majority of ODs are monogenic. There are only 39 ODs

that have 10 or more known disease-causing mutant

genes. Of the 2124 OD-causing mutant genes, 1393 are

implicated in only one OD, whereas the remaining 731

genes are causative for two or more ODs. For example,

mutations of LMNA are implicated in 17 ODs, whereas

the OD nonsyndromic genetic deafness has the most

number (43) of known disease-causing mutant genes. The

average degree of 1772 ODs is 1.94 (number of disease-

causing mutant genes per OD), whereas it is 1.62 (number

of ODs per gene) for 2124 ODMGs.

The global bipartite network of ODs and ODMGs

comprises 3896 nodes (1772 ODs plus 2124 ODMGs)

and 3437 edges (gene mutations connecting ODs with

ODMGs). There are a total of 786 connected components

or subnetworks (nodes that are only reachable from nodes

in the same network), ranging in size from 734 genes and

530 ODs to just one gene and one OD. A large number

(602; ~77%) of these subnetworks comprise only one OD

and one gene. The number of communities or modules

(the tightness of coupling among a specific group of nodes

in comparison to other nodes in the network) is 1254

(Louvain modularity31 ¼ 0.81). From this OD-gene
The Ame
bipartite network, we first built and analyzed two types

of networks: (1) the ODN and (2) the ODMGN. Second,

we selected a subset of all ODs with four or more disease-

causing mutant genes and performed functional enrich-

ment analysis to identify enriched biological processes,

cellular components, pathways, and mammalian pheno-

type terms. We then generated a functional feature-based

orphan disease network by using shared enriched features

(Figure 1). Thus, in this network two ODs are connected

(by a shared functional feature) even if they do not share

an OD-causing mutant gene. Lastly, using the cited litera-

ture in the OD records, we constructed a document-based

OD network to analyze and compared it with the tradi-

tional gene-based OD network.

The gene-based ODN contains 1170 nodes and 2259

edges (Figure 1). In this network, each node represents an

OD, and an edge represents at least one shared ODMG.

There are 184 connected components (maximally con-

nected subgraphs) in the ODN with the largest connected

component (or subnetwork) of 530 nodes and 1396 edges

(Figure 2 and Table S2). On the other hand, the ODMGN

contains 1521 nodes and 6855 edges. In this network,

each node represents an OD-causing mutant gene, and

an edge represents at least one OD shared between two

genes (Figure 1). In case of the ODMGN, there are 183
rican Journal of Human Genetics 88, 755–766, June 10, 2011 757
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connected components, and the largest connected compo-

nent has 734 nodes and 4817 edges (Figure 3 and Table S2).

There are 274 closely connected modules or communities

(modularity score 0.85) in the ODN, whereas there are

277 communities (modularity score 0.87) in the ODMGN,

suggesting important pathophysiological relatedness

between different orphan diseases and OD-causing mutant

genes (see Table S2 for a complete list of subnetworks and

communities in the orphan disease and orphan disease-

causing mutant gene networks).

To estimate the significance of connectivity in the ODN

and ODMGN, we randomly shuffled the relations between

orphan diseases and orphan disease-causing mutant genes

in the bipartite graph, whereas keeping the number of

links or edges per node (OD or ODMG) unchanged. The

average sizes of the largest connected component in

the randomized ODN and ODMGN were 954 5 18 and

1305 5 19, respectively. Both of these were significantly

larger than those of actual ODN (530) and ODMGN

(734) with both p values being less than 1.0 3 10�5 (one-

sample t test), respectively. Thus, clustering of ODs and

ODMGs deviates significantly from a random distribution

and is consistent with a previous study on the human

disease network9 that attributed such clustering to impor-

tant pathophysiological relatedness between different

diseases and disease genes.

Orphan Disease-Causing Mutant Gene Interactome

Genes, whose mutations cause disease, tend to be nones-

sential and show no tendency to encode hub proteins.9

To check whether genes whose mutations cause ODs are

similar to or different from common disease-causing

mutant genes, we next built the OD-causing mutant

gene interactome by using an assembled human protein

interactome. The human protein interactome used in our

study contains protein-protein interactions (PPI) from

large-scale yeast two-hybrid experiments,16,17 computa-

tional predictions,18 and curation of the literature,19–21

with both redundant interactions and self-loops removed.

The assembled PPI network consists of 12,260 proteins and

70,576 interactions. Although 1811 out of 2124 ODMGs

encode proteins that are part of human PPI network,

1488 of them interact with another protein encoded by

an ODMG and 559 interactions overlap between the

ODMGN and the orphan disease-causing mutant gene in-

teractome (ODMGI) (Table S3). Additionally, this network

of 1488 proteins of ODMGs has 3662 interactions, much

more than the expected number of 1539 interactions.

The expected number is calculated by dividing the number

of all PPIs in the PPI network (70,576) by the number of all

possible PPIs between all protein pairs (75,147,670) and

then multiplying by all possible PPIs between ODMG pairs
Figure 3. Largest Subnetwork of ODMGN Based on Shared OD
This network represents the largest connected component of the O
edges (representing at least one shared OD between two OD-causing
colors). The size of the node is proportional to the number of other

The Ame
(1,638,955). The 559 PPIs (representing 590 OD-causing

mutant genes for 266 ODs) that not only interact physi-

cally but also share an OD are organized as 145 connected

clusters of size 3 and larger (at least two interacting

ODMGs and an OD) of proteins implicated with the

same or a related disorder (Figure 4 and Table S3). The find-

ings and conclusions drawn from the ODMGI analyses are

presented in the following three sections.

OD-Causing Mutant Genes Have High Connectivity or Serve as

Bridges between ODMG Communities

We found that proteins encoded by OD-causing mutant

genes in the human PPI network tend to have a higher-

than-average degree (the number of edges of a node) and

betweenness centrality (the number of shortest paths

between all pairs of nodes that go through a node) when

compared to all other proteins in the network. On one

hand, about 28% (507 out of 1811) of ODMGs are hubs

in the PPI network, which is a higher percentage than

the 20% cutoff definition for all hubs (Table S4). On the

other hand, the average degree of proteins encoded by

1811 ODMGs in the PPI network (15.40) is also signifi-

cantly higher than that of other proteins in the network

(10.84) (p < 1.0 3 10�5; Wilcoxon rank sum test). Simi-

larly, the percentage and the average betweenness values

for ODMGs are both higher than those of all proteins in

the network (Table S4). This is in contrast to previous

studies (based on all diseases in the OMIM database) that

reported a weak correlation between hubs and disease

genes9 and that themajority of disease genes are nonessen-

tial and show no tendency to encode hub proteins.9

We next checked whether the opposite is true, that is,

whether ODMGs that are highly connected in the human

PPI network are responsible for multiple ODs. We found

that ODMGs encoding protein hubs (or bottlenecks) in

the PPI network tend to be implicated in more ODs than

nonhubs (or nonbottlenecks). The average number of

implicated ODs (the OD degree) for the 1811 ODMGs is

1.65, and there are significant differences between the

average OD degree of hubs (1.85) and nonhubs (1.58) (p ¼
0.0167 by one-sided Wilcoxon rank sum test). Similar

results are observed in comparisons of bottlenecks andnon-

bottlenecks (1.87 versus 1.56; p ¼ 4.32 3 10�4) (Table S5).

Protein Products of ODMGs Are More Likely to Physically Interact

with Those of Other ODMGs

For all 1811 ODMGs for which encoded protein products

are in the PPI network, the average number of interacting

partners also known to be OD-causing mutant genes is

4.04 (Table S6), and the average ratio between the

ODMG-interactant degree and the PPI degree is 0.358,

which is significantly higher than the expected ratio of

0.148 (1,810 out of 12,259) (p < 1.0 3 10�5; one-sample

t test). This suggests that protein products of ODMGs
DMGN and has 734 nodes (OD-causing mutant genes) and 4817
mutant genes) divided into various modules (indicated by various
OD-causing mutant genes it is connected to.

rican Journal of Human Genetics 88, 755–766, June 10, 2011 759



Figure 4. Interacting Genes Associated with Same or Related
OD
(A) The 559 protein-protein interactions (representing 590 orphan
disease-causing mutant genes for 266 orphan diseases) that not
only interact physically but share an OD also and are organized
as 145 connected clusters (of size 3 and larger).
(B) One of the connected clusters. The red-colored nodes are ODs,
whereas the green ones represent ODMGs. An edge between an
OD and ODMG represents known orphan disease-gene relation-
ships, whereas an edge between two genes represents a protein-
protein interaction.
tend to physically interact with other protein products

of ODMGs. Although PPIs alone might not be capable

of detecting every novel OD protein, the relatively high

proportion of other OD proteins localized within the

immediate ODMG-protein interactome space is promising.

Indeed, previous studies have shown that the systematic

use of PPI data improves positional candidate gene predic-

tion by 10-fold.32

Hubs in the ODMGN Do Not Tend to Be Hubs/Bottlenecks in the

Human PPI Network

To address the question of whether an ODMG encoded

protein is a hub both in the OD and PPI network, we

next compared the ODMGN (an edge is a shared OD)

with ODMGI (an edge is PPI). Of the 1521 genes in the

ODMGN, 1302 have known protein interactions. Among

these 1302 ODMGs, 375 are hubs (the top 20% of nodes

with the highest degree values) in the human interactome,
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whereas the remaining 927 nodes are nonhubs; 388 are

bottlenecks (the top 20% of nodes with highest between-

ness centrality values), whereas the remaining 914 are

nonbottlenecks. The degree and betweenness centrality

values are calculated by tYNA.29 We found that hubs in

the ODMGN do not tend to be hubs or bottlenecks in

the human PPI network (or ODMGI). The average number

of OD-causing mutant genes that share the same ODs (the

ODMG degree) with other ODMGs in the ODMGN and are

hubs (8.28) is not significantly different from the number

that are nonhubs (9.00) in the PPI network (p ¼ 0.404;

one-sided Wilcoxon rank sum test). Furthermore, the

average ODMG degree in the ODMGN for bottlenecks in

the PPI network (8.48) is not significantly different from

that of nonbottlenecks (8.92) (p ¼ 0.544; one-sided

Wilcoxon rank sumtest) (Table S7). Therewere 220ODMGs

for which the encoded proteins do not have any known

protein interactions. These ODMGs in the ODMGN

have a higher average degree (10.34) compared to ODMGs

in the PPI network (8.79), although not statistically

significant (p ¼ 0.173) (Table S7). This implies that hub

ODMGs in ODMGN tend to be important irrespective

of their status in the PPI network. However, it should be

noted that the knowledge of the interactome remains

incomplete and that many conclusions about global

measures (e.g., network topology) should be viewed with

some skepticism.33

Orphan Disease-Causing Mutant Genes Encode

Proteins that Tend to Be Essential

To confirm our findings that OD genes tend to encode

hub or bottleneck proteins, and therefore most of them

could be essential genes, we performed a direct comparison

with essential genes as described earlier.9 About 36% (765/

2124) of the ODMGs are essential genes whose ortholog

gene knockout in mice is lethal; this is much higher than

the 22% (398/1777) of essential genes in the disease

network reported by Goh et al.9 Additionally, we have

also observed that 376 ODMGs (~18%) cause premature

deaths in mouse ortholog gene knockout models. Thus,

altogether 907 genes (~43%) from the 2124 ODMGs result

in either premature death and/or lethality in mouse gene

knockout models (Table S8). We believe that this is even

more significant and specific to ODs because Goh et al.’s

diseasome9 comprised several ODs, and the reported 22%

is probably due to the presence of some of the ODs and

genes in their dataset. To test whether this is indeed true,

we separated all ODMGs from the entire set of OMIM

disease genes (MorbidMapof theOMIM14 database), result-

ing in two classes of disease genes: 2124 ODMGs and 1901

non-ODMGs (NODMG) or commondisease genes (Figure 5

and Table S9). Although ODMGs, as defined earlier, are

genes that when mutated caused an orphan disease,

NODMGs are genes whosemutant forms are not associated

with any orphan disease (based on current orphan

disease and gene relationships in the Orphanet database).

Compared to NODMGs, ODMGs are significantly enriched
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Figure 5. Venn Diagrams Showing the Relationships between ODMG and NODMG with Different Categories of Genes
(A) The overlap between OMIM disease genes and ODMG.
(B) The intersection of ODMG and NODMG with essential genes, whereas (C and D) show the intersections with mitochondrial genes
and genes whose knockout in mouse causes premature death.
The table in (E) shows that, compared to NODMGs, ODMGs are enriched for essentiality, mitochondrial genes, and genes associated
with premature death in the mouse knockouts.
for lethality andmitochondrion, aswell as premature death

(p< 1.03 10�5; Fisher’s exact test) (Figure 4). A total of 765

(~36% of 2124) of ODMGs are essential, whereas only 10%

(192/1901) of NODMGs are essential. Interestingly, when

we checked the extent to which essential genes overlapped

with the entire set of disease genes fromOMIMMorbidMap

(as in Goh et al.9 but with updated disease and essential

gene lists), there were 920 (24%) essential disease genes,

which is similar to the 22% reported by Goh et al.9 This

confirms the original findings of Goh et al.,9 whose study

was based on all disease genes, still hold good despite the

increase in the database sizes of human disease genes

(from 1776 to 3864) and the essential genes (from 1267 to

2481). It also strengthens our conclusion that the enrich-

ment of essential genes is something specific to ODMGs

because the percentage of essential ODMGs is higher

when compared to either NODGMs or all disease genes

from OMIM. Additionally, these results suggest the robust-

ness of our conclusions as well as previous conclusions,9

and we do not expect them to change significantly even if

the resource databases are updated with additional genes

and annotations. To confirm our findings further, we also

repeated this analysis by focusing only on those genes

(from each category) that are in the human PPI, and we

found similar results (see Table S9 for additional details).

Of the 2124 ODMGs, 1811 (~85%) were also present in

the human protein interactome (i.e., they have at least

one interacting protein), whereas only 619 (~33%) of

1901NODMGshad at least one known interacting protein.
The Ame
There was no significant difference in degree and between-

ness of ODMGs when compared to NODMGs. Although

this is surprising, one of the reasons could be the relatively

low representation (~33%) of NODMGs in the protein

interactome when compared to the representation of

ODMGs (~85%). We also intersected the ODMGs and

NODMGs with the ubiquitously expressed human genes

(UEHG)23,24 and found that ODMGs are significantly

enriched with UEHGs when compared to NODMGs (p <

1.0 3 10�5; Fisher’s exact test). Of the 2124 ODMGs, 863

(~41%) are UEHGs, whereas only about 13% (247/1901)

of NODMGs are UEHGs. Together, about 62% (1314/2124)

of ODMGs are essential, ubiquitously expressed, or both,

whereas in the case of NODMGs, this figure is only ~18%

(348/1901) (see Table S9 for details).

Function-Based Orphan Disease Networks

In the current study, to obtain a statistically significant and

representative functional signature from the 1772 ODs, we

first extracted all those ODs with four or more mutant

genes from our original data set. Starting with this filtered

subbipartite network of 196 ODs and 1087 genes (1283

total nodes and 1395 total edges), we built OD-OD

networks based on shared genes and shared functions.

The enriched functions (p < 0.05) for each of the 196

ODs were determined with the ToppFun application.26

The shared functions we considered for enrichment anal-

ysis included biological processes (BP) and cellular compo-

nents (CC) from Gene Ontology, KEGG pathways, and
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mammalian phenotype (MP) (Figure 1). Using the en-

riched features for each of the orphan diseases (see Table

S10 for a complete list of functional enrichment results

of the 196 ODs), we rebuilt the orphan disease networks.

However, this time the edge between two ODs represents

an enriched shared function (BP, CC, Pathway, or MP)

and not necessarily a shared gene. After generating these

function-based OD networks, we compared them with

the gene-based orphan disease networks to find the over-

lapping nodes and edges. The results were surprising.

The gene-based OD network (153 OD nodes and 191

edges; an edge indicates shared ODMG) is largely different

from various function-based OD networks, including a BP-

based OD network (176 OD nodes and 2244 edges; edges

are shared BP terms), a CC-based OD network (153 OD

nodes and 1135 edges; edges are shared CC terms), a MP-

based OD network (155 OD nodes and 745 edges; edges

are shared MP terms), and a pathway-based OD network

(159 OD nodes and 511 edges; edges are shared pathways)

(Figure 1 and Table S10). Although the node agreement

between the gene-based ODN and function-based ODNs

was higher and corresponding Jaccard indices ranged

from 0.647 to 0.732, the edge agreement was much lower,

and Jaccard indices ranged from 0.0592 to 0.162 (p< 1.03

10�5 compared with p for random expectations, one-

sample t test; we assessed random expectations by calcu-

lating the overlap between the gene-based network and

randomized function-based networks with shuffled edges

and unchanged node degrees). To address the effect of

data incompleteness, we added up to 20% random edges

into the gene-based and term-based networks to approxi-

mate uncovered associations and compared the overlap

of edges with what would be expected as a result of chance,

and the results are consistent (Table S10).

Literature-Based ODNs

To test the effectiveness of literature-based networks versus

traditional gene-centric approaches in identifying OD-OD

relationships, we regenerated the ODN with the edge as

a shared published article instead of a shared gene. To

avoid potential false positives, we used the corresponding

OMIM records of ODs, which summarize results from

publications about gene-disease relationships, instead of

mining literature. Specifically, we used the cited literature

(the links to PubMed records for the references cited in

an OMIM entry) in the OMIM records. For 1461 ODs there

is a corresponding OMIM record (obtained from Orpha-

net). Of the 1475 mapped OMIM records, 1370 had at least

one cited article (indicated by presence of at least one

PubMed ID). We used this subset of 1370 ODs to compare

the gene-based OD network with the literature-based OD

network.

The gene-based OD network contained 811 ODs as

nodes and 1277 edges, indicating commonODMGs shared

by a pair of ODs. The literature-based OD network

contained 747 ODs as nodes and 927 edges, representing

shared literature (PubMed IDs) for a pair of ODs. To esti-
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mate the significance of connectivity, we randomly shuf-

fled the relationships between ODs and PubMed IDs

in the bipartite graph while keeping the number of

links per OD or PubMed ID unchanged. The average size

of the largest components in the randomized ODN is

823 5 12, significantly larger than that of the actual

PubMed-based ODN (432) with a p < 1.0 3 10�5 by one-

sample Student’s t test. This indicates pathophysiological

clustering of ODs that deviates from a random distribution

as was seen in case of ODN and ODMGNs also.

Although a large number of common nodes exist

between the gene- and literature-based networks (517

ODs, 0.5 by Jaccard index), common edges are fewer (255

common edges, 0.13 by Jaccard index; p < 1.0 3 10�5

than would be expected as a result of chance, one-sample

t test; random expectations were assessed by calculating

the overlap between the gene-based network and random-

ized PubMed-based networks with shuffled edges and

unchanged node degrees). In addition, among the 517

common ODs, less than one fourth of the hubs (31 out

of 166 and 143 hubs in the gene-based and the PubMed-

based networks, respectively) are conserved. To address

the effect of data incompleteness, we randomly added up

to 20% edges into the gene-based and PubMed-based

networks to approximate uncovered associations and

compared the overlap of edges with what would have

been expected as a result of chance, and the results are

consistent (Table S11). These results indicate that the

wirings of these two networks are largely different, which

suggests that many ODs with no shared mutant genes

might still be related. We also observed that the measures

of topological importance differ significantly between the

two networks with hardly any overlap. For instance,

comparing the top 100 OD nodes (ranks are based on three

centrality measures—betweenness centrality, closeness

centrality, and eigenvector centrality) in gene-based and

literature-based networks shows very little overlap (Table

S11). Furthermore, the literature-based OD network was

able to identify additional relationships for those diseases

sharing no known disease genes but having potential func-

tional links between their corresponding disease gene sets.

Among the 927 potentially related OD pairs with literature

support, 255 (~28%) pairs also share known disease genes

and are identified by both methods. However, a large

number (672 edges; ~72%) share no known disease genes,

and their relationships are identified solely on the basis of

literature-connectivity (Figure 6 and Table S11). For

instance, Tay-Sachs disease (mutant HEXA and GM2A)

and Sandhoff syndrome (mutant HEXB) do not share any

disease genes and hence are not connected in shared-

gene-based studies.8,9 However, Tay-Sachs disease and

Sandhoff disease are connected in the literature-based

OD network, which is not surprising because these two

disorders arise because of the failure of the same metabolic

pathway. Some other examples include Rubinstein-

Taybi syndrome (CREBP and EP300 mutants) and ICF syn-

drome (mutant DNMT3B), which are both syndromes of
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Figure 6. Orphan Disease Network Based on Literature Connectivity
(A) The 577 orphan diseases (672 edges) that are connected by a shared published article. Although these diseases do not share any
common OD-causing mutant genes, they are still connected by virtue of a shared published article.
(B) A few of the literature-connected orphan diseases.
chromatin modeling; ornithine transcarbamylase defi-

ciency, arginosuccinic aciduria, and citrullinemia, which

are all urea cycle disorders; Prader-Willi syndrome and

Angelman syndrome, which are both genomic-imprinting

disorders; and lathosterolosis, Smith-Lemli-Opitz syn-

drome, and Greenberg dysplasia, which are all inborn

errors of cholesterol synthesis (see Table S11 for a complete

list of subnetworks and communities in the literature-

based ODN).
Discussion

Although opportunities now exist to accelerate progress

toward understanding the basis of many more orphan

diseases and for developing innovative medical ap-

proaches, relatively few efforts have successfully addressed

scientific or technical questions across a spectrum of

orphandiseases.34 Therefore, finding commongenes, path-

ways, and targets is critical if we are going to make more
The Ame
than baby steps in orphan disease research. Constructing

networks that underlie biological processes and pathways

associated with orphan diseases facilitates identification

of the functional units that respond to genetic perturba-

tions and potentially affect disease risk or therapeutic

response and can systematically move the field in a

favorable direction. We believe that the decomposition of

orphandisease networks canhelp us to understand the rela-

tionship between orphan diseases and their geneticmecha-

nisms. Studies of biological networks can identify common

pathways or processes for multiple orphan diseases that are

biologically related and comprehensive understanding

such molecular basis could provide opportunities for inter-

ventions that are beneficial for an array of related orphan

diseases. This capability could open the door for the

discovery of single therapies that canbenefitmultiple disor-

ders and also, potentially, more common diseases.34

Previous studies focusing on all diseases (from OMIM)

reported that there was a weak correlation between hubs

and disease genes9 and that the majority of disease genes
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are nonessential and show no tendency to encode hub

proteins.9 Our results, in contrast, have shown that genes

whose mutations cause orphan diseases tend to encode

proteins that are hubs, are ubiquitously expressed, and

are essential. Although we acknowledge that the partition

of disease genes into such groups (ODMG and NODMG) is

a simplification, this partition helped in gaining insights

into the relationship between the orphan disease charac-

teristics (rare, lethal, and syndromic in nature) and the

underlying causal mutant gene. First, by an evolutionary

argument, the partition could explain the rarity of orphan

diseases in a population because mutations in hubs might

not be compatible with survival and are less likely to be

maintained in a population. Second, the partition could

explain the severity and lethality associated with most of

the ODs because mutations in hubs could have wider

repercussions and larger consequences on entire system

than those in nonhubs. Additionally, functional enrich-

ment analysis of ODMGs showed that a majority result

in premature deaths or are lethal in the orthologous mouse

gene knockout models. Third, because hubs through their

multiple interacting proteins connect heterogeneous

cellular processes, the partitionmight explain the complex

phenotypic or syndromic nature of ODs that have an

impact on multiple physiological systems. The ubiquitous

nature of ODMGs might also explain this. At the same

time, the paradox of ubiquitous expression and tissue-

specific phenotypes seen in some of the orphan diseases

(e.g., IMPDH and retinitis pigmentosa) is difficult to

explain. Some of this has been explained by the existence

of novel tissue-specific isoforms and relatively high levels

of UEHGs in a particular tissue.35 Together, our results

provide further evidence that the genetic and network

properties of human genes are related and that some of

the disease characteristics can be explained by the topolog-

ical features of an individual or group of nodes in the

network.

Biological networks are known to be modular, and their

decomposition into modules or communities provides

deep insight into living systems and human diseases.36

We found high connectivity among different orphan

diseases or OD-causing mutant genes that can be used

not only to infer the common mechanism and targeted

pathways but also to find candidates for drug repositioning

or drug repurposing (i.e., to extrapolate or suggest novel

applications for already approved drugs), especially when

one or more than one orphan disease in the community

has an approved drug.

Becausemost of the previous studies elucidating relation-

ships between diseases are genecentric, they are limited in

their discovery of new and unknown disease relation-

ships.37 To address this, three recent studies12,37,38 recom-

mend using functional linkage maps. However, each of

these approaches focuses on a limited number of features,

such as gene expression and PPI data, biological processes,

or pathways to connect diseases. Although the node agree-

ment between the gene-based and function-based ODNs
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was relatively higher, the edge agreement was much lower

and indicates that their wiring is significantly different.

This suggests that the relationship between the ODs

cannot be fully captured by the gene-based networks alone.

Thus, by considering functional connectivity between

causative genes involved in different orphan diseases,

relationships between orphan diseases that are based on

underlying molecular mechanisms can be revealed. Such

associations can potentially be used to generate novel

hypotheses on the molecular mechanisms of diseases, and

can in turn guide the development of relevant therapy12

or potential drug repositioning candidates.

A literature-based discovery methodology39 was shown

to be effective in identifying disease genes. Indeed, litera-

ture-based relations between orphan diseases could

provide functional modularity and immediate insight

into the underlying molecular mechanisms and thus

generate novel hypotheses for therapeutic strategies (e.g.,

drug repositioning). In this study, we found about 670

related and diverse OD-OD relationships that are identified

only by literature connectivity but not by shared genes. To

overcome or limit the number of false positives typically

associated with text-mining exercises, we focused in the

current study only on cited literature in OD records.

However, there are some potential limitations to this

approach. For instance, we have seen examples of litera-

ture that list some of the ODs in a context other than those

relating them mechanistically or functionally.

Apart from leading to new insights into the biological

underpinnings of various ODs, we believe that our global

analysis of orphan diseasome will encourage the develop-

ment of new and innovative research on these rare condi-

tions that have been hitherto understudied. The global

analysis of all ODs can help in analyzing comorbidities

and the underlying molecular basis apart from establish-

ing potential networking opportunities. The functional

feature-based OD networks, apart from partially addressing

the limitations of the conventional gene-based connec-

tivity maps of diseases, can have direct implications to

drug discovery process. Physical protein-protein interac-

tome-based ODMGI maps can be used to generate lists of

genes potentially enriched for new candidate ODMGs.

We have also used several different types of biological

data to build functional interaction networks of ODs that

are an advantage over gene-based disease networks. These

functional interaction networks of ODs can provide

a generic framework for integrating disparate data types

into a common predictive network. Additionally, the

shared functional features between different ODs can be

mined for predicting specific OD genetic modifiers or

drug targets. Indeed, integration of various interactome

and functional relationship networks have been used

previously to predict cancer and other types of disease

susceptibility candidate andmodifier genes.40,41 An impor-

tant tool in the quest of orphan drug discovery is the ODN

that represents a genome-wide roadmap for future studies

on orphan diseasome and druggome. As such, it can be
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used to assess interactions between orphan diseases and

the disease-causing mutant genes through the orphan dis-

easome web site that we have made available online and

that offers global perspective and a rapid visual reference

of the genetic links between orphan diseases and mutant

genes. For instance, overlaying the network of ODs and/or

genes with orphan drugs or common disease drugs can be

used as a discovery platform for identifying potential drug

repositioning candidates.
Supplemental Data

Supplemental Data include 11 tables and can be found with this

article online at http://www.cell.com/AJHG/.
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Gene Ontology, http://www.geneontology.org

Gephi, http://gephi.org

HPRD, http://www.hprd.org

Mammalian Phenotype, http://www.informatics.jax.org/

phenotypes.shtml

MitoCartadatabase,http://www.broadinstitute.org/pubs/MitoCarta

OMIM, http://www.ncbi.nlm.nih.gov/Omim

Orphan Diseasome, http://research.cchmc.org/od

Orphanet, http://www.orpha.net
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ToppGene Suite, http://toppgene.cchmc.org

tYNA, http://tyna.gersteinlab.org/tyna
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