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Genetic Variants at 13q12.12 Are Associated
with High Myopia in the Han Chinese Population

Yi Shi,1,13 Jia Qu,2,13 Dingding Zhang,1,13 Peiquan Zhao,3,13 Qingjiong Zhang,4,13 Pancy Oi Sin Tam,5

Liangdan Sun,6 Xianbo Zuo,6 Xiangtian Zhou,2 Xueshan Xiao,4 Jianbin Hu,7 Yuanfeng Li,1 Li Cai,1

Xiaoqi Liu,1 Fang Lu,1 Shihuang Liao,7 Bin Chen,7 Fei He,1 Bo Gong,1 He Lin,1 Shi Ma,1 Jing Cheng,1

Jie Zhang,8 Yiye Chen,3 Fuxin Zhao,2 Xian Yang,9 Yuhong Chen,10 Charles Yang,11

Dennis Shun Chiu Lam,5 Xi Li,1 Fanjun Shi,2 Zhengzheng Wu,7 Ying Lin,1 Jiyun Yang,1 Shiqiang Li,4

Yunqing Ren,6 Anquan Xue,2 Yingchuan Fan,7 Dean Li,12 Chi Pui Pang,5 Xuejun Zhang,6

and Zhenglin Yang1,*

High myopia, which is extremely prevalent in the Chinese population, is one of the leading causes of blindness in the world. Genetic

factors play a critical role in the development of the condition. To identify the genetic variants associated with high myopia in the Han

Chinese, we conducted a genome-wide association study (GWAS) of 493,947 SNPs in 1088 individuals (419 cases and 669 controls) from

a Han Chinese cohort and followed up on signals that were associated with p < 1.0 3 10�4 in three independent cohorts (combined,

2803 cases and 5642 controls). We identified a significant association between high myopia and a variant at 13q12.12 (rs9318086,

combined p ¼ 1.91 3 10�16, heterozygous odds ratio ¼ 1.32, and homozygous odds ratio ¼ 1.64). Furthermore, five additional

SNPs (rs9510902, rs3794338, rs1886970, rs7325450, and rs7331047) in the same linkage disequilibrium (LD) block with rs9318086

also proved to be significantly associated with high myopia in the Han Chinese population; p values ranged from 5.46 3 10�11 to

6.16 3 10�16. This associated locus contains three genes—MIPEP, C1QTNF9B-AS1, and C1QTNF9B. MIPEP and C1QTNF9B were found

to be expressed in the retina and retinal pigment epithelium (RPE) and are more likely than C1QTNF9B-AS1 to be associated with high

myopia given the evidence of retinal signaling that controls eye growth. Our results suggest that the variants at 13q12.12 are associated

with high myopia.
People with myopia see near objects more clearly than

objects far away because the images are focused on the

vitreous inside the eye rather than on the retina. Myopia

is the most common ocular disorder worldwide, and there

is a high prevalence in populations of Asian (40%–70%)1–3

and European (20%–42%) descent.4,5 Myopia can be classi-

fied as low, medium, or high. High myopia, with a preva-

lence of 1%–2% in the general population,1–5 is commonly

defined on the basis of a spherical equivalent refractive

error equal to �6.00 diopter sphere (DS) or less. High

myopia has long been known to pose a high risk for the

development of sight-threatening eye diseases, including

glaucoma, macular hemorrhage, choroidal neovasculariza-

tion, and retinal detachment.6

Previous studies have indicated the involvement of

genetic and environmental factors.7,8 Myopia can be

inherited as a complex trait or in amonogenic form. Seven-

teen loci responsible for these complex traits ormonogenic

forms have been mapped by linkage analysis (MIM

160700).9,10 In recent genome-wide association studies
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(GWASs), Nakanish et al.11 and Li et al.12 identified risk vari-

ants for high myopia at 11q24.1 in a Japanese population

and in catenin (cadherin-associated protein), delta 2

(CTNND2, MIM 604275) in Singapore Chinese and Japa-

nese populations. At the same time, Solouki et al.13 and

Hysi et al.14 performed GWASs in populations of European

descent and identified loci at 15q14 and 15q25 responsible

for common myopia and refractive error, respectively.

Here, in order to identify the genetic variants associated

with high myopia in the Han Chinese, we performed

a GWAS in a Shanghai Han Chinese dataset of 419 unre-

lated individuals with high myopia and 669 unrelated

normal controls (Table 1; see also Figure S1, available

online). These participants came from the Shanghai and

Anhui region and were recruited at the Xinhua Hospital

Ophthalmic Clinic, Shanghai Jiao Tong University and at

the clinics of the hospital affiliated with Anhui Medical

University in China. The diagnosis for high myopia in

this study required the spherical equivalent to be less

than or equal to �6.0 DS in at least one eye and the axial
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length of the eye globe to be greater than or equal to

26.0 mm (Figure S2). Individuals were excluded from

the study if they had undergone ocular procedures that

might alter refractionor if theyhadother symptomsbesides

high myopia (e.g.,in addition to eye problems, individuals

with Stickler syndrome suffer from distinctive facial abnor-

malities, hearing loss, and joint phenotypes). Individuals

with Retinopathy of Prematurity (ROP) were also excluded

from the study if an individual was prematurely born ac-

cording to the criteria of the International Classification

of Retinopathy of Prematurity (ICROP). For the controls,

the criteria were a spherical equivalent from �0.5 to þ1.0

DS and no evidence of disease in either eye. The institu-

tional review board of Xinhua Hospital, Shanghai Jiao

Tong University and the institutional review board of

Anhui Medical University, Anhui, China both approved

this project. Informed consentwas obtained fromall partic-

ipants of this cohort. The cases and controls of GWAS were

randomly placed into two groups for genotyping. Group 1

consisted of 100 cases and 100 controls that were geno-

typed by deCODE genetics, Iceland. Group 2 consisted

of 319 cases and 569 controls that were genotyped by

the Key Laboratory of Dermatology at Anhui Medical

University in China with Illumina Infinium HD Human

610-Quad BeadChips according to the manufacturer’s

instructions. SNPs with call rates <90% were eliminated

from the analysis. SNPs were also excluded if they had

a minor allele frequency (MAF) < 1% or if there was signif-

icant deviation from Hardy-Weinberg Equilibrium (HWE)

in the controls (p<10�7).15,16 SNPson theXandYchromo-

somes and mitochondrial as well as the copy number

variant (CNV) probes were removed from further analysis.

To eliminate uninformative SNPs, we excluded nonhetero-

zygous SNPs. These exclusions were largely due to low call

rates of <90%. We examined potential genetic relatedness

on the basis of pairwise identity by state for all the success-

fully genotyped samples by using PLINK 1.06 software.17

Although the cases and controls were Han Chinese from

the eastern part of China, population stratification might

still have existed because the controls and the cases were

from different regions. The remaining samples were there-

fore further assessed for population stratification with the

software package EIGENSTRAT.18

We tested the association of 493,947 successfully geno-

typed SNPs in 419 cases and 669 controls. Principal

component analysis (PCA, Figure S3) and genomic control

(lgc ¼ 1.07 for all 493,947 SNPs) indicated minimal infla-

tion due to population stratification for the GWAS results.

We carried out the Cochran-Armitage trend test to assess

the genotype–phenotype association. We compared the

distribution of the observed p values to the distribution

expected under the null hypothesis. The quantile-quantile

(Q-Q) plots of the logarithms of the p values showed a devi-

ation from the expected distribution, suggesting the pres-

ence of significant genetic effects (Figure 1A).

None of the SNPs were significantly associated after cor-

rection for multiple testing, i.e., nominal p < 2.5 3 10�7.
2011



Figure 1. Genome-Wide-Association Results from the Initial GWAS
(A) Quantile-quantile plots of the observed p values (–log10P) for association.
(B) The genome-wide distribution of –log10 p values from the unadjusted Cochran-Armitage trend test is shown across the chromo-
somes. Values that take into account genetic matching and correction for the inflation factor of 1.07 are shown for 493,947 SNPs
that were of sufficient quality, after quality-control filtering, in 419 unrelated Han Chinese patients with high myopia and in 699 unre-
lated Han Chinese controls. Each chromosome is depicted in a different color. –log10(UNADJ) refers to �log10 p value of the Cochran-
Armitage trend test unadjusted by multiple testing. The dotted line indicates the genome-wide threshold for further follow-up studies
(p < 1.0 3 10�4).
However, 34 SNPs in 22 chromosomal regions were associ-

ated after adjustment for genomic control, gender, and

age with a nominal p value < 1.0 3 10�4 (Figure 1B;

Table S1). We tested these 34 SNPs in the first follow-up

dataset (Wenzhou cohort), which was composed of 843

Han Chinese individuals with high myopia and 2525

controls (Table 1; Table S1) and obtained genotyping results

for 34 SNPs that passed the genotyping quality control

(Figure S1). Participants in the Wenzhou cohort were from

the Wenzhou region of Zhejiang Province and were re-

cruited at the School of Optometry and Ophthalmology

and Eye Hospital Ophthalmic Clinic, Wenzhou Medical

College, Zhejiang Province, China. The diagnosis criteria

for the cases and controls were the same as those in the

GWAS cohort. The institutional review board of Wenzhou

Medical College approved this project. Informed consent

was obtained from all participants of the Wenzhou cohort.

Among these 34 SNPs, only one SNP, rs9318086 at

13q12.12, was significantly associated with high myopia

after adjustment for gender and age (heterozygous odds

ratio [ORhet] ¼ 1.40, homozygous odds ratio [ORhom] ¼
1.68, allelic p ¼ 2.28 3 10�6, p ¼ 7.75 3 10�5 after Bonfer-

roni adjustment; Table 2 and Table S1).

We then decided to look more closely at nine SNPs

within 200 kb of rs9318086. Each of these was associated

with a nominal p value of less than 0.05 in the initial

GWAS, and five of these had a p value of less than
The Ame
3.63 10�4 (The highest p value among the five SNPs; Table

S2). These five SNPs are all within a linkage disequilibrium

(LD) block spanning 47 kb from rs9507174 to rs9551019,

as depicted in the Han Chinese data in the HapMap data-

base (HapMap Public Release #24 on Genome Browser).

One of these SNPs, rs1886970, is located about 8 kb down-

stream from rs9318086 and had a p value of 1.03 3 10�4

after correction for genomic control, gender, and age

in the initial GWAS. rs9318086 and rs1886970 are in

intron 10 and intron 14, respectively, of the mitochondrial

intermediate peptide gene (MIPEP, MIM 602241). These

two SNPs are in complete LD with each other in the Han

Chinese Beijing of the HapMap database (r2 ¼ 1.0,

HapMap Public Release #24 on Genome Browser) and are

in the same LD block with each other in our GWAS results

(r2 ¼ 0.991). We then genotyped rs1886970 in the

Wenzhou following-up dataset by using the SNaPshot

method (Table S3), and it was significantly associated with

high myopia after correction for gender and age with an

ORhet ¼ 1.35, ORhom ¼ 1.63, and p¼ 1.333 10�5 (Table 2).

Therefore, this locus, including SNPs rs9318086 and

rs1886970, is likely to be associated with high myopia.

To confirm this finding, we then genotyped these two

SNPs (rs9318086 and rs1886970) in two additional

follow-up datasets (Chengdu cohort and Guangdong-

Hong Kong cohort; Figure S1). The Chengdu cohort was

composed of 549 unrelated sporadic patients with high
rican Journal of Human Genetics 88, 805–813, June 10, 2011 807



Table 2. Association between Phenotype of High Myopia and Genetic Variants at 13q12.12 in the Han Chinese populations

SNP Position
Risk
Allele Dataseta

Number
(Control/
Case)

RAFb

(Control/
Case)

p_HWE
(Control/
Case) p Valuec

Odds ratio (95% CI)d

Homozygote Heterozygote

rs9510902 23328312 A GWAS (SH) 0/419 0/0.520 0/0.344 NA NA NA

FD1(WZ) 2525/843 0.452/0.512 0.723/0.419 1.92 3 10�5 1.62 (1.29, 2.02) 1.36 (1.13, 1.65)

FD2(CD) 1890/549 0.454/0.520 0.455/0.546 1.06 3 10�4 1.71 (1.31, 2.23) 1.20 (0.95, 1.52)

FD3(GD-HK) 1227/1411 0.464/0.510 0.515/0.643 8.26 3 10�4 1.44 (1.16, 1.78) 1.21 (1.01, 1.46)

Combined 5642/3222 0.455/0.514 0.908/0.627 6.32 3 10�14 1.60 (1.41, 1.80) 1.25 (1.12, 1.38)

rs9318086 23330467 A GWAS (SH) 669/419 0.447/0.514 0.249/0.504 8.14 3 10�5 1.68 (1.19, 2.36) 1.33 (0.99, 1.78)

FD1(WZ) 2525/843 0.433/0.499 0.256/0.654 2.28 3 10�6 1.68 (1.35, 2.10) 1.40 (1.16, 1.69)

FD2(CD) 1890/549 0.435/0.513 0.963/0.532 5.09 3 10�6 1.86 (1.43, 2.44) 1.30 (1.03, 1.63)

FD3(GD-HK) 1227/1411 0.453/0.495 0.640/0.955 0.00217 1.40 (1.12, 1.74) 1.22 (1.02, 1.46)

Combined 6311/3222 0.439/0.502 0.178/0.806 1.91 3 10�16 1.64 (1.46, 1.85) 1.32 (1.19, 1.46)

rs3794338 23331291 T GWAS (SH) 0/419 0/0.419 0/0.176 NA NA NA

FD1(WZ) 2525/843 0.348/0.389 0.319/0.133 0.00227 1.45 (1.15, 1.84) 1.13 (0.95, 1.34)

FD2(CD) 1890/549 0.348/0.418 0.593/0.852 2.10 3 10�5 1.79 (1.35, 2.39) 1.35 (1.10, 1.67)

FD3(GD-HK) 1227/1411 0.363/0.395 0.288/0.066 0.0152 1.33 (1.05, 1.67) 1.11 (0.94, 1.31)

Combined 5642/3222 0.351/0.401 0.137/0.010 5.46 3 10�11 1.54 (1.35, 1.76) 1.18 (1.07, 1.30)

rs1886970 23338498 G GWAS (SH) 669/419 0.451/0.514 0.339/0.504 1.05 3 10�4 1.64 (1.16, 2.30) 1.29 (0.96, 1.73)

FD1(WZ) 2525/843 0.440/0.501 0.806/0.469 1.33 3 10�5 1.63 (1.30, 2.04) 1.35 (1.12, 1.64)

FD2(CD) 1890/549 0.438/0.512 0.766/0.711 1.67 3 10�5 1.81 (1.38, 2.37) 1.28 (1.02, 1.62)

FD3(GD-HK) 1227/1411 0.457/0.495 0.733/0.960 0.00512 1.36 (1.09, 1.69) 1.19 (0.99, 1.42)

Combined 6311/3222 0.444/0.502 0.636/0.945 2.31 3 10�14 1.59 (1.41, 1.80) 1.27 (1.15, 1.41)

rs7325450 23365004 G GWAS (SH) 0/419 0/0.504 0/0.558 NA NA NA

FD1(WZ) 2525/843 0.436/0.493 0.598/0.254 4.31 3 10�5 1.59 (1.27, 1.99) 1.34 (1.11, 1.61)

FD2(CD) 1890/549 0.427/0.492 0.767/0.373 1.32 3 10�4 1.70 (1.30, 2.22) 1.19 (0.95, 1.49)

FD3(GD-HK) 1227/1411 0.450/0.491 0.969/0.640 0.00274 1.39 (1.12, 1.73) 1.15 (0.96, 1.38)

Combined 5642/3222 0.436/0.493 0.603/0.758 1.49 3 10�13 1.59 (1.41, 1.80) 1.23 (1.11, 1.36)

rs7331047 23365342 C GWAS (SH) 0/419 0/0.499 0/0.696 NA NA NA

FD1(WZ) 2525/843 0.425/0.486 0.769/0.589 1.42 3 10�5 1.62 (1.30, 2.03) 1.34 (1.11, 1.61)

FD2(CD) 1890/549 0.425/0.505 0.655/0.767 2.05 3 10�6 1.93 (1.47, 2.53) 1.33 (1.05, 1.67)

FD3(GD-HK) 1227/1411 0.449/0.491 0.857/0.531 0.00245 1.40 (1.12, 1.74) 1.16 (0.96, 1.38)

Combined 5642/3222 0.430/0.493 0.957/0.680 6.16 3 10�16 1.66 (1.47, 1.88) 1.27 (1.15, 1.41)

a GWAS cohort: Shanghai cohort. FD1: follow-up dataset 1, Wenzhou cohort. FD2, follow-up dataset 2, Chengdu cohort. FD3, follow-up dataset 3, Guangdong-
Hong Kong cohort.
b RAF, frequency of risk allele.
c The allelic p value was corrected by age and gender, and genomic control was used for the GWAS cohort.
d CI: confidence interval.
myopia and 1890 unrelated normal controls (Table 1).

Participants in the Chengdu cohort were from the

Chengdu region of Sichuan Province and were recruited

at the Sichuan Academy of Medical Sciences and Sichuan

Provincial People’s Hospital Ophthalmic Clinic, China.

This project was approved by the Institutional Review

Board of the Sichuan Academy of Medical Sciences and

Sichuan Provincial People’s Hospital. The Guangzhou-
808 The American Journal of Human Genetics 88, 805–813, June 10,
Hong Kong cohort was composed of 1411 unrelated

patients with high myopia and 1227 unrelated normal

controls (Table 1). The participants came from the Guangz-

hou and Hong Kong regions and were recruited at

the Zhongshan Eye Center, Zhongshan University and the

Department of Ophthalmology and Visual Sciences, the

Chinese University of Hong Kong, Hong Kong, China.

The diagnosis criteria for the cases and controls were the
2011



Figure 2. The 13q12.12 Region and Its Association with High Myopia in Han Chinese
(A) Results of the GWAS and replication identify 13q12.12 as a risk locus. Plot of –log10 p values of 18 SNPs genotyped in the GWAS
within a 200 kb region surrounding this locus at 13q12.12. The color of each SNP spot reflects its r2 value: The top SNP (rs9318086)
changes from red to white as the r2 value decreases. Estimated recombination rates were adapted from the University of California at
Santa Cruz Genome Browser. The small diamonds indicate the p values of the initial GWAS (upper panel). The lower panel shows
the LD block of nine SNPs (p values less than 0.05 in our GWAS data) surrounding the 13q12.12 region.
(B) The p values of rs9318086 and rs1886970 were 1.913 10�16 and 2.313 10�14, respectively, after all four datasets composed of 3222
cases and 6311 controls were combined (black circle). Four additional SNPs (rs9510902, rs3794338, rs7325450 and rs7331047) in the
same LD block with rs9318086 and rs1886970 were shown to have a similar association with high myopia; p values ranged from
5.46 3 10�11 to 8.68 3 10�16 after all four datasets composed of 3222 cases and 5642 controls were combined (669 controls from
the GWASwere absent because no DNAwas available at this stage) (red square). The linkage disequilibrium block structure was examined
with the programHaploview (Vision 4.0). The D0 values and r2 values for all pairs of SNPs were calculated, and the haplotype blocks were
estimated with the program Haploview.
same as those in the GWAS cohort. This project was

approved by the institutional review board of the Zhong-

shan Eye Center, Zhongshan University and the institu-

tional review board of the Chinese University of Hong

Kong. Informed consent was obtained from all participants

of both the Chengdu and Guangzhou-Hong Kong cohorts.

We found that these two SNPs were also significantly asso-

ciated with high myopia in these two cohorts after adjust-

ment by gender and age (for rs9318086, ORhet ¼ 1.30,

ORhom ¼ 1.86, p ¼ 5.09 3 10�6 in the Chengdu cohort,

ORhet¼ 1.22, ORhom¼ 1.40, p¼ 2.173 10�3 in the Guang-

dong-Hong Kong cohort; for rs1886970, ORhet ¼ 1.28,

ORhom ¼ 1.81, p ¼ 1.67 3 10�5 in the Chengdu cohort,

ORhet¼ 1.19, ORhom¼ 1.36, p¼ 5.123 10�3 in the Guang-

dong-HongKongcohort; Table 2). The same risk alleleswere

found across the datasets (i.e., the direction of the effectwas

consistent in all cohorts being studied). The combined

allelic p value for rs9318086 in all four datasets, including

3222 cases and 6311 controls, was 1.91 3 10�16; ORhet ¼
1.32 (95% confidence interval [CI]: 1.19, 1.46) and a

ORhom ¼ 1.64 (95% CI: 1.46, 1.85) (Figure 2B, Table 2) after
The Ame
adjustment for gender and age. With a p value of 2.31 3

10�14 after adjustment for gender and age in all combined

samples, rs1886970 also proved to be highly significantly

associated with high myopia (ORhet ¼ 1.27, ORhom ¼
1.59, Table 2).

To verify that this locus (13q12.12) is a true high-myopia-

responsible locus, we used the SNaPshotmethod to investi-

gate four additional SNPs (rs9510902, rs3794338,

rs7325450, and rs7331047) in the same LD block with

rs9318086 and rs1886970 in the Han Chinese Beijing in

the HapMap database in all samples available (Figure S1

and Table S3) in the four datasets (Figure S1). All four

SNPs showed a significant association with the high

myopia phenotype at p values ranging from 5.46 3 10�11

to 6.82 3 10�16 after adjustment for gender and age

(Figure 2B, Table 2). The linkage disequilibrium block struc-

ture was examined with the program Haploview (Vision

4.0). The D0 values and r2 values for all pairs of SNPs were

calculated, and the haplotype blocks were estimated with

the program Haploview. All six SNPs genotyped in this

study were in the same LD block in the samples studied
rican Journal of Human Genetics 88, 805–813, June 10, 2011 809



Table 3. The Haplotype Association with High Myopia in a Han Chinese Population at 13q12.12

Haplotypea Frequency Case, Control Frequencies Chi Square p Value Odds Ratio (95% CI)b

H1:GGCAAT 0.490 0.462, 0.505 30.218 3.86 3 10�8 0.84 (0.79, 0.90)

H2:AATGGC 0.338 0.381, 0.313 82.868 8.77 3 10�20 1.35 (1.27, 1.44)

H3:AACGGC 0.082 0.087, 0.080 2.763 0.0965

H4:AGCAAT 0.027 0.028, 0.026 0.519 0.4712

H5:GACGGC 0.010 0.012, 0.008 4.513 0.0336 1.39 (1.02, 1.89)

H6:GGCAGT 0.009 0.001, 0.014 70.779 4.00 3 10�17

H7:AATGAC 0.008 0.003, 0.011 32.499 1.19 3 10�8

H8:AATGAT 0.007 0.005, 0.009 7.765 0.0053

H9:GATGGC 0.006 0.006, 0.007 1.259 0.2618

H10:AACGAT 0.004 0.002, 0.005 11.479 0.0007

H11:AGTAGC 0.004 0.002, 0.005 5.878 0.0153

H12:GGCAGC 0.003 0.002, 0.004 4.45 0.0349

H13:GACGAT 0.003 0.002, 0.003 0.253 0.6147

H14:AGTGGC 0.003 0.001, 0.003 5.711 0.0169

H15:AATGGT 0.002 0.003, 0.002 1.268 0.2601

H16:AACGAC 0.002 0.002, 0.002 0.045 0.8324

H17:GGCGAT 0.001 0.000, 0.002 14.93 0.0001

H18:AACGGT 0.001 0.001, 0.001 0 0.9903

a The haplotypes were generated from SNPs rs9510902, rs9318086, rs3794338, rs1886970, rs7325450, and rs7331047, in that order.
b The odds ratio was not calculated when haplotype frequency was lower than 0.01.
and had D0 values from 0.88 to 0.98 (Figure 2B). Risk haplo-

type AATGGC generated from these six SNPs proved to be

significantly different between the cases and controls

(p ¼ 8.77 3 10�20, Table 3). An individual with this risk

haplotype has a 1.35-fold increase in susceptibility to

high myopia.

Although SNPs in this locus did not reach genome-wide

significance in our initial GWAS, we did replicate signifi-

cant signals in our larger follow-up datasets. It is likely

that we did not have enough power in our relatively small

sample size to observe a significant association in the

initial GWAS. Similar examples have been reported by

previous studies.19,20 Raychaudhuri et al.19 identified

a CDK6 (MIM 603368) variant responsible for rheumatoid

arthritis at a GWAS p value of 5.5 3 10�5 at rs42041

(combined p ¼ 4.0 3 10�6), and Barrett et al.20 identified

a CDH1 (MIM 192090) variant responsible for ulcerative

colitis at a GWAS p value of 1.8 3 10�5 at rs1728785

(combined p ¼ 2.8 3 10�8). Furthermore, other groups

successfully confirmed these findings in different popula-

tions in later studies.21–23 Here again, we showed that it

is worth replicating SNPs with p values of greater than

2.5 3 10�7 in GWAS in complex-disease-identification

studies.

The 200 kb sequence flanking rs9318086 contains

three genes that might be involved in high myopia devel-

opment at this locus:MIPEP, C1q, and tumornecrosis factor

related protein 9B (C1QTNF9B, also called RP11-45B20.2),
810 The American Journal of Human Genetics 88, 805–813, June 10,
and C1QTNF9B antisense RNA 1 (non-protein coding)

(C1QTNF9B-AS1) (Figure 2A). To investigate the expression

of these three genes in ocular tissues, we examined the

expression of the genes in different human tissues and

human cell lines by using reverse-transcriptase polymerase

chain reaction (RT-PCR) (Table S4). Human tissues were

graciously donated by Han Chinese donors: the choroid

and retina samples were from a deceased 55-year-old

male, and the placenta and blood were from a 29-year-old

female. Both MIPEP and C1QTNF9B genes were expressed

inhuman retina andD047 cells (established from aprimary

culture of human retinal pigment epithelial cells) as well as

in A2780 cells (established from a primary culture of

human ovarian cancer cells), HEK293 cells (established

from human embryonic kidney cell cultures), and human

placenta (Figure 3). In addition, MIPEP was also expressed

in human choroid and blood (Figure 3). These findings

were consistent with previous studies that showed differen-

tial expressions of MIPEP and C1QTNF9B in human

tissues.24,25 C1QTNF9B-AS1 was not expressed in either

the retina or the D047 cells, but it was expressed in human

blood, HEK293 cells, and placenta (Figure 3). These find-

ings were consistent with previous studies that showed

that C1QTNF9B-AS1 was not expressed in human eyes.

On the basis of expression in the human retina and RPE

cells, both MIPEP and C1QTNF9B seem more likely to be

high-myopia-associated genes within 13q12.12 than does

C1QTNF9B-AS1,which was not expressed in human retina
2011



Figure 3. Expression Analysis with RT-PCR of MIPEP, C1QTNF9B,
and C1QTNF9B-AS1 in Human Tissues and Cell Lines
We examined the expression of these three genes in different
human tissues (human blood, choroid, placenta, and retina) and
human cell lines (retinal pigment epithelium cell line [D407],
kidney cell line [HEK293], and ovarian cell line [A2870]) by using
RT-PCR. GAPDH was used as an internal control for cDNA quanti-
fication.
or RPE cells. TheMIPEP protein is primarily involved in the

maturation of oxidative phosphorylation (OXPHOS)-

related proteins; the product of this gene performs the final

step in processing a specific class of nuclear-encoded

proteins targeted to the mitochondrial matrix or inner

membrane.24 Given that the retina is the most energy-

consuming tissue in the eye and that MIPEP is involved in

the process of energy generation via oxidative metabolism,

MIPEP is likely to play a role in normal eye development.

Previous studies have also shown that mitochondrial

protein might play an important role in the development

of high myopia. A study by Andrew et al. demonstrated

that two important mitochondrial genes, mitofusin 1

(MFN1, MIM 608506) and presenilin-associated, rhom-

boid-like (PARL, MIM 607858) on 3q26, might be involved

in the development ofmyopia.10 Nakanishi et al. identified

a susceptible locus for pathological myopia at 11q24.1,

which contains BH3-like motif containing, cell death

inducer (BLID, MIM 608853). BLID plays a proapoptotic

role involving the BH3-like domain by inducing a cas-

pase-dependent mitochondrial cell-death pathway.11,26 A

recent study by Wojciechowski et al. suggested that matrix

metallopeptidase 1 (MMP1, MIM 120353) and matrix met-

allopeptidase 2 (MMP2, MIM 120360) were involved in

refractive variation in Old Order Amish, probably through

insulin-like growth factors (IGFs). IGFs are fundamental

cell regulators involved in cell adhesion and migration

and the regulation of the cell cycle and apoptosis.27 The

current study further suggested mitochondria-mediated

cell death as a possible mechanism in the myopization.

However, a mutation in complement C1q tumor necrosis

factor5 (C1QTNF5, MIM 608752) (which, like C1QTNF9B,

belongs to the complement C1q tumor necrosis factor

family) can cause late-onset retinal degeneration. This is

an autosomal-dominant disorder characterized by onset

in the fifth to sixth decade, night blindness, and punctate

yellow-white deposits in the retinal fundus; the disorder

progresses to severe central and peripheral degeneration

with choroidal neovascularization and chorioretinal
The Ame
atrophy.24 This suggests that a functional change inMIPEP

orC1QTNF9B could, therefore, disrupt normal eye develop-

ment and give rise to high myopia. However, because

rs9318086, the SNP with the most significant association

with highmyopia at the locus, is located in an intron ofMI-

PEP and33 kbdownstreamofC1QTNF9B, rs9318086might

not directly affect the function ofMIPEP orC1QTNF9B. The

causal variation for high myopia at this locus might not

have been identified yet. Because the underlying mecha-

nism by which MIPEP or C1QTNF9B might cause high

myopia has not yet been determined, C1QTNF9B-AS1

cannot be completely excluded as a candidate gene for

causing high myopia at this stage at this locus. Further

studies should address resequencing of this high-myopia-

associated region to identify the true causal genetic

variant(s). A functional dissection of the gene responsible

for high myopia at this locus will provide insights into the

pathogenesis of this serious eye condition.

Two loci, 15q14 and 15q25, have been recently reported

to be associated with high myopia in European popula-

tions.13,14 A recent study in Japanese populations also

found a significant associationwith 15q14 and a suggestive

associationwith 15q25when the same SNPs as those in the

European populations were used.28 Here, in our GWAS,

rs560766 at 15q14 (psmallest ¼ 0.34) and rs939661 at

15q25 (psmallest ¼ 0.017) were not significantly associated

with high myopia. It is possible that larger datasets will be

needed to allow observation of the association between

15q25 and 15q14 and high myopia in East Asian popula-

tions. Intriguingly, we found no association between high

myopia and 11q24.1 (SNP, rs10892819, psmallest ¼ 0.288

in our initial GWAS; Table S5), as was reported in the Japa-

nese population.11 No association was found between high

myopia and variants in CTNND2 either (SNP, rs6885224,

psmallest ¼ 0.496 in our initial GWAS; Table S5), as was re-

ported in the Japanese and Singapore Chinese popula-

tions.12 The fact that previous reported loci were not repli-

cated in our GWAS might be explained as follows: (1) the

variation in association and effect sizes for high-myopia-

susceptibility genes among different populations might

suggest the genetic heterogeneity of high myopia among

the populations; (2) it might simply be due to insufficient

power or chance; (3) it could be due to different LD and

haplotype patterns among the different populations; or

(4) these loci might not be responsible for high myopia in

Han Chinese in China; the p values of the combined

GWAS and replication samples were only 2.2 3 10�7 and

1.14 3 10�5 in the previous studies, respectively.11,12 A

recent study found no association between 11q42.1 and

high myopia (SNP, rs11604461, psmallest ¼ 0.073) in a Han

Chinese cohort, either.29

In summary, we performed GWAS and replication

studies of high myopia in a Han Chinese population and

identified a genetic susceptibility locus for high myopia.

This study not only helps us reveal the genetic basis of

high myopia but also indicates the existence of genetic

heterogeneity of disease susceptibility among different
rican Journal of Human Genetics 88, 805–813, June 10, 2011 811



ethnic populations, which should provide valuable in-

sights into the pathogenesis of high myopia.

Supplemental Data

Supplemental Data include three figures and five tables and can be

found with this article online at http://www.ajhg.org.
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