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 Monostructured single-wall carbon nanotubes (SWCNTs) are important in both scientifi c 

research and electronic and biomedical applications; however, the bulk separation of SWCNTs 

into populations of single-chirality nanotubes remains challenging. Here we report a simple and 

effective method for the large-scale chirality separation of SWCNTs using a single-surfactant 

multicolumn gel chromatography method utilizing one surfactant and a series of vertically 

connected gel columns. This method is based on the structure-dependent interaction strength of 

SWCNTs with an allyl dextran-based gel. Overloading an SWCNT dispersion on the top column 

results in the adsorption sites of the column becoming fully occupied by the nanotubes that 

exhibit the strongest interaction with the gel. The unbound nanotubes fl ow through to the next 

column, and the nanotubes with the second strongest interaction with the gel are adsorbed in this 

stage. In this manner, 13 different ( n ,  m ) species were separated. Metallic SWCNTs were fi nally 

collected as unbound nanotubes because they exhibited the lowest interaction with the gel.         
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 C
onceptually, a single-wall carbon nanotube (SWCNT) is 
a hollow cylinder formed by rolling up a graphene sheet 1 . 
Th e direction and magnitude of the rolling vector defi ne the 

chiral angle and diameter, respectively, of the resulting nanotube. 
Th ese geometric parameters determine the electrical properties of 
the nanotube 1 . For example, SWCNTs can be either metallic (M) or 
semiconducting (S) depending on their chiral angles and diameters 1 . 
Moreover, the energy bandgap of S-SWCNTs is inversely propor-
tional to the nanotube diameter 2,3 . However, many advanced appli-
cations of SWCNTs (such as conductive fi lms 4,5 , high- performance 
fi eld-eff ect transistors 6 , nanoscale sensors 7  and optical devices 8 ) 
require a population of nanotubes with well-defi ned structures and 
electrical properties. Th e current processes for SWCNT growth 
generally produce complex mixtures that contain many chiralities. 
Consequently, there have been intense eff orts to develop various 
postgrowth techniques for separating SWCNTs, including selec-
tive chemistry 9,10 , dielectrophoresis 11 , selective oxidation 12 , electrical 
breakdown 13 , ultracentrifugation 14 – 16  and DNA wrapping chroma-
tography 17 – 20 . Several of these methods have been demonstrated to 
achieve high-purity separation of M- and S-SWCNTs. DNA wrap-
ping and ultracentrifugation can even be used to separate nanotubes 
to single chirality. However, these powerful nanotube separation 
methods suff er from problems such as low yields and high cost. 

 Our group recently developed a technique that uses agarose gel 
chromatography to separate M- and S-SWCNTs at a large scale 21 – 24 . 
We observed that using agarose gel as the medium for gel column 
chromatography required the use of a surfactant solution with a 
high dispersibility (such as sodium deoxycholate) to elute the bound 
S-SWCNTs. Successively increasing the sodium deoxycholate con-
centration during collection of S-SWCNTs permitted low-resolution 
diameter separation 24 , but further chirality separation was not pos-
sible. Th ese results indicate that agarose gel interacts strongly with 
S-SWCNTs of various structures, but it has a low selectivity. 

 Moshammer  et al.  25  successfully separated M- and S-SWCNTs 
using an allyl dextran-based size-exclusion gel (Sephacryl S-200, 
GE Healthcare). In this study, we used this gel as the medium and 
devised a single-surfactant multicolumn gel chromatography (SS-
MUGEC) method, in which several gel columns are connected ver-
tically in series to achieve large-scale chirality separation. Loading 
an excess amount (that is, overloading) of SWCNT dispersion in a 
sodium dodecyl sulphate (SDS) aqueous solution onto the top col-
umn resulted in the selective adsorption of S-SWCNTs with diff er-
ent chiralities in the various columns on the basis of the strengths 
of their interactions with the gel. Metallic nanotubes exhibited 
the lowest interaction with the gel and so were fi nally collected as 
unbound nanotubes. By performing a second separation of each 
S-SWCNT fraction to improve chirality purity level, we successfully 
isolated 13 major ( n ,  m ) species from a high-pressure carbon mon-
oxide (HiPco)-grown mixture 26 .  

 Results  
  Overloading eff ect   .   To investigate the overloading eff ect, we 
prepared two columns (Cols. 1 and 2), each fi lled with the same 
amount (1.4   ml) of allyl dextran-based size-exclusion gel ( Fig. 1a ). 
A total of 1- and 8-ml SWCNT dispersions in a 2 wt %  aqueous SDS 
solution were applied to Cols. 1 and 2, respectively. Aft er elution 
of the unbound nanotubes with a low-concentration (2 wt % ) SDS 
aqueous solution, the colours of the two columns were diff erent 
( Fig. 1b ). Th e top of Col. 1 was purple, and it became increasingly 
blue down the column, whereas Col. 2 was a uniform purple. Aft er 
injecting a high-concentration (5 wt % ) SDS solution, the S-SWCNT 
solution collected from Col. 1 was a deep blue, whereas that from Col. 
2 was purple ( Fig. 1c ). Th is colour diff erence clearly demonstrates 
that nanotubes with diff erent structures were selectively adsorbed 
by the two gel columns. A video of the separation process illustrates 
this result (see  Supplementary Movie 1 ). 
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       Figure 1    |         Effect of overloading single-wall carbon nanotubes (SWCNTs) on gel columns. ( a ) Schematic diagram of overloading effect with SWCNTs in 

the gel columns. One- and 8-ml aliquots of SWCNT dispersion were loaded into Col. 1 and Col. 2, respectively. ( b ) Photograph of the gel columns after 

washing the unbound nanotubes. ( c ) Photograph of the collected S-SWCNT solutions from Cols. 1 (left) and 2 (right). ( d ) Optical absorption spectra of 

nanotubes selectively adsorbed in the gel columns. The spectrum for the HiPco (pristine) SWCNTs was measured as a reference. The blue shaded region 

(200 – 300   nm) in  d  indicates the ultraviolet optical absorption characteristic of the nanotubes. (Col., column; S, semiconducting; sol., solution).  
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 To determine the compositions of the nanotubes adsorbed from 
the 1- and 8-ml aliquots of the SWCNT dispersion, we measured the 
optical absorption spectra using an ultraviolet-visible-near- infrared 
spectrophotometer (Shimadzu, UV-3700). Th e optical absorption 
spectra ( Fig. 1d ) confi rm that the nanotubes adsorbed in each col-
umn were enriched with S-SWCNTs but had diff erent diameter 
distributions. For the 1-ml SWCNT dispersion, the adsorbed nano-
tubes included several chiralities and a wide diameter distribution. 
For the 8-ml SWCNT dispersion, the adsorbed nanotubes exhibited 
a much narrower diameter distribution and were highly enriched 
with (6, 5) nanotubes (also see  Supplementary Fig. S1 ). Th ese results 
demonstrate that increasing the amount of SWCNT dispersion 
loaded (that is, overloading) enhances the selective adsorption of 
S-SWCNTs with a specifi c chirality in a gel column. 

 Th e selective adsorption of S-SWCNTs in a gel column suggests 
that nanotubes with diff erent structures undergo diff erent inter-
actions with the gel. A particular gel column has specifi c eff ective 
adsorption sites. Nanotubes with the strongest interaction with 
the gel are adsorbed fi rst and occupy the adsorption sites in the gel 
column. Th e other nanotubes are then adsorbed and occupy the 
remaining adsorption sites. As the loading amount of SWCNT dis-
persion is increased, the nanotubes exhibiting the strongest interac-
tion with the gel eventually replace the other nanotubes and occupy 
all the adsorption sites. In this manner, a population of nanotubes 
with an identical structure is produced.   

  Chirality separation by multicolumn gel chromatography   .   Th e 
selective adsorption of S-SWCNTs on an allyl dextran-based gel 
column suggests that S-SWCNTs can be gradually and selectively 
separated by diameter based on the magnitude of their interaction 
strength with the gel by repeatedly loading unbound nanotubes 
onto a gel column. However, this is a tedious and ineffi  cient iterative 
process for completely separating S-SWCNTs from M-SWCNTs. 
To simplify this process, we proposed the SS-MUGEC method, in 
which several gel columns are connected vertically in series ( Fig. 2a ). 
An SWCNT dispersion is applied to the top column. As the amount 
of the SWCNT dispersion loaded is increased, the nanotubes with 
the strongest interaction with the gel gradually replace other nano-
tubes and occupy all the adsorption sites in the top column, and 
the unbound nanotubes fl ow into the second column. Th e same 
process occurs in the second column;that is, among the unbound 
nanotubes, the nanotubes with the strongest interaction with the gel 
replace the other nanotubes and eventually occupy all the adsorp-
tion sites in the second column. Finally, nanotubes with diff erent 
structures are sorted across the diff erent columns on the basis of 
the strength of their interaction with the gel. Because they exhibit 
the lowest level of interaction with the gel, the metallic nanotubes 
are fi nally collected as unbound nanotubes. Th e S-SWCNTs in each 
column are collected by elution with high-concentration (5 wt % ) 
aqueous SDS solution ( Supplementary Fig. S2 ). 

  Figure 2b  shows the optical absorption spectra of the nanotubes 
collected from the various columns and that of the unbound metallic 
nanotubes, with the spectrum of pristine HiPco SWCNTs provided 
as a reference. Th ese absorption spectra confi rm that the nanotubes 
bound in each gel column were highly enriched with semiconductor 
nanotubes, whereas the unbound nanotubes were highly enriched 
with metallic nanotubes. Moreover, for the S-SWCNT fractions from 
the fi rst to the last column, the E 11  optical absorbance peaks in the 
range of 850    −    1,350   nm shift  towards longer wavelengths, indicating 
that the nanotubes with smaller diameters interacted more strongly 
with the gel and were initially adsorbed on the gel column; this eff ect 
resulted in the separation of S-SWCNTs based on their diameter 
and bandgap.  Figure 2b  also indicates that the optical absorbance 
intensity of the separated nanotubes in the ultraviolet (UV) region 
(200    −    300   nm) greatly increased with increasing nanotube diameter. 
Recently, the dependence of  nanotube UV absorbance wavelength on 

tube diameter has been experimentally demonstrated 27 , but the vari-
ation of absorbance intensity with tube diameter was not observed. 
Here the successful observation of a strong correlation between the 
extinction coeffi  cient in the UV region and tube diameter is possibly 
due to the narrow diameter distribution of the separated nanotubes. 
Chirality separation of S-SWCNTs by the SS-MUGEC method was 
further confi rmed by both the Raman spectra ( Supplementary Fig. 
S3 ) and photoluminescence (PL) contour maps (see  Supplementary 
Fig. S4 ) of the S-SWCNT fractions. Th e various S-SWCNT fractions 
exhibited signifi cant diff erences in their diameter and chirality dis-
tributions. More importantly, our proposed SS-MUGEC method is 
highly effi  cient and high yielding. When each column was fi lled with 
1.4   ml of gel beads,  ~ 24    μ g of separated nanotubes were produced 
from each gel column. In this study, each series of columns usu-
ally contained six columns. In practice, 10 series of six columns (60 
columns) can be operated concurrently because of the simplicity of 
the separation process; thus,  ~ 1.44   mg of separated nanotubes can 
be generated in a single run. Using this method, we easily produced 
 ~ 50   mg of separated nanotubes in 36 repetitions of separation runs. 
 Figure 2c  shows a photograph for 2,000   ml ( ~ 0.8    μ g   ml     −    1 ) each of 
solutions of the separated metallic and semiconducting nanotubes 
with diff erent diameters.   

  Single-chirality separation   .    Figure 2  shows that, aft er the fi rst sep-
aration of HiPco SWCNTs by the SS-MUGEC method, both M / S 
separation and chirality separation of nanotubes were achieved. 
However, each S-SWCNT fraction still contained several chirali-
ties. Further separation of these S-SWCNTs fractions to achieve 
nanotube fractions with single chirality is highly desirable. Because 
the SS-MUGEC method uses the same surfactant (that is, a high-
 concentration SDS aqueous solution) to collect the S-SWCNTs, 
repeated separation of each S-SWCNT fraction can be easily per-
formed aft er a simple dilution of the SDS solution 28 . 

  Figure 3  shows the optical absorption spectra of the S-SWCNT 
fractions obtained aft er the second separation. Th e top spectra rep-
resent the optical absorbances of the S-SWCNT fractions aft er the 
fi rst separation, whereas the lower spectra show the optical absorb-
ances of the corresponding S-SWCNT fractions aft er the second 
separation. Th e separation order is indicated by an arrow. Th e spec-
tra clearly indicate that each S-SWCNT fraction was further sepa-
rated. Aft er the second separation, some of the S-SWCNT fractions 
exhibited a main or single S 11 , S 22 , S 33  or S 44  peak 2 , suggesting that 
high-purity fractions containing S-SWCNTs with a single chirality 
were obtained. On combining the fi rst and second chirality separa-
tion orders of S-SWCNTs, we concluded that the general separation 
index of single-chirality nanotubes from a HiPco mixture is as fol-
lows: (7, 3), (6, 4), (6, 5), (7, 5), (8, 3), (8, 4), (7, 6), (8, 6), (9, 4), (10, 2), 
(10, 3), (8, 7) and (12, 1). Th e optical absorption spectra of these 
single-chirality species are compiled in  Figure 4a  on the basis of 
their separation order (that is, the interaction strength between 
( n ,  m ) and the gel). Th is fi gure clearly indicates that 13 major single-
chirality species were isolated from HiPco nanotubes aft er two 
separations. S 11 , S 22 , S 33  and S 44  peaks are clearly visible for each 
single-chirality S-SWCNT fraction ( Supplementary Fig. S5 ). In 
addition, the wavelength and intensity of the UV optical absorbance 
(200 – 300   nm) varied among the various ( n ,  m ) fractions. An increase 
in the UV absorbance wavelength and intensity of S-SWCNT frac-
tions was observed to follow the separation order. Recently, Takagi and 
Okada 29  theoretically demonstrated that the absorption spectrum in 
the UV region depended strongly not only on nanotube diameter but 
also on the chiral index. Th ey suggested that these UV spectral fea-
tures are characteristic of the interband transitions near the M point of 
the hexagonal Brillouin zone of graphene. Th is structure-dependent 
UV optical absorption feature should be useful for further investiga-
tions of the electronic and optical properties of single-chirality species. 
 Figure 4b  presents photographs of solutions of the separated metallic 
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nanotubes and ( n ,  m ) nanotubes. Th e distinct diff erence in the col-
ours of these nanotube solutions further demonstrates the successful 
separation of single-chirality nanotube populations.    

 Discussion 
 Th e purity of single-chirality nanotubes is important in electronic 
applications. In this study, the main impurities in each separated ( n ,  m ) 
species were metallic nanotubes and other semiconducting chirali-
ties. Th e absence of metallic peaks in the optical absorption spec-
tra of the S-SWCNT fractions ( Fig. 4a ) indicates that these ( n ,  m ) 
fractions exhibited high electronic purities. Raman spectroscopy 
( Supplementary Fig. S6 ) also confi rmed the high electronic purity 
of the ( n ,  m ) fractions. Metallic peaks were not observed for any 

of the ( n ,  m ) fractions. Th erefore, the risk of metallic impurity can 
be ignored when calculating the purities of the separated ( n ,  m ) 
fractions. In addition, the low relative intensities of the D bands 
(near 1,300   cm     −    1 ) in the Raman spectra suggest that the nano-
tubes separated by SS-MUGEC contained few defects. We used the 
method described in ref.  15 ( Supplementary Figs S7 and S8 ) to esti-
mate the chirality enrichment of each ( n ,  m ) fraction; the results 
are given in  Table 1 . Th e ( n ,  m ) purities are comparable with those 
recently obtained by the DNA wrapping method 20 . We also meas-
ured the fl uorescence intensity of each ( n ,  m ) fraction as a function 
of the excitation and emission wavelengths ( Fig. 4c ). Th e resulting 
contour plots further confi rmed the signifi cant enrichment of the 
single-chirality species. 
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        Figure 2    |         Chirality separation of SWCNTs using single-surfactant multicolumn gel chromatography (SS-MUGEC). ( a ) Schematic diagram of SS-MUGEC 

for separating SWCNTs. ( b ) Optical absorption spectra and ( c ) photograph of the separated metallic and semiconducting SWCNT fractions (2,000   ml per 

fraction,  ~ 0.8    μ g   ml     −    1 ). In  b , the relative interaction strength between SWCNTs and the gel is indicated with an arrow (Col., column; Semi, semiconducting).  
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 A high yield is important for an eff ective sorting method. To 
assess the purifi cation yield of each ( n ,  m ) fraction aft er the second 
separation by the SS-MUGEC method, we converted the absorption 
spectrum intensity of each ( n ,  m ) nanotube fraction into an SWCNT 
mass concentration 30 . Th e yields of purifi ed ( n ,  m ) nanotubes were 
estimated using the ratios of the amounts of collected purifi ed ( n ,  m ) 
fractions to those of the corresponding ( n ,  m ) nanotubes in the 
HiPco SWCNTs that were initially loaded. Th e results are given in 
 Table 1 , indicating high purifi cation yields. 

 In  Figure 4  and  Table 1 , only the ( n ,  m ) fractions with the high-
est purities are presented. A few fractions that sorted in diff erent 
columns and collected in the second separation contained substan-
tial amounts of the ( n ,  m ) species, with varying degrees of purity 
( Supplementary Fig. S9 ). Accordingly, the purifi cation yield of a 
specifi c ( n ,  m ) nanotube depends on the degree of purifi cation. 
Because of the repeatable nature of the SS-MUGEC method, low-
purity ( n ,  m ) fractions can be collected for reseparation to improve 
their chirality purity, and we expect that it will be possible to com-
pletely separate each ( n ,  m ) fraction from the mixture aft er several 
rounds of separation. Note that increasing the purifi cation times 
infl uences the fi nal purifi cation yield and increases the cost because 
irreversible adsorption and column degradation is a ubiquitous 
problem in liquid chromatography, although here less than 1wt 
 %  of the nanotubes were irreversibly adsorbed on the gel columns 
in each separation run. Th e purifi cation yield and effi  ciency of a 
specifi c ( n ,  m ) can be improved markedly if it is present at a high 
level in the starting material (for example, (6, 5)-enriched Comocat 
nanotubes 31 ). We also attempted to perform chirality separation of 
arc plasma jet-grown SWCNTs with diameters of 1.28 – 1.52   nm 32 . 
Th e results indicated that the chirality separation of nanotubes 
with diameters larger than 1.4   nm was not observed using the 
SS-MUGEC method and the present separation parameters. 

 To clarify the order-dependent chirality separation mechanism, 
we characterized the morphologies of the separated ( n ,  m ) nanotubes 
using atomic force microscopy (AFM). Th e AFM images  indicated 

little diff erence in length among the diff erent ( n, m ) nanotubes 
( Supplementary Fig. S10 ), suggesting that a length diff erence of the 
nanotubes was not the main reason for their chirality separation. Note 
that the S-SWCNTs trapped on an allyl dextran-based size-exclusion 
gel can be easily desorbed and eluted by injecting high-concentration 
surfactant (SDS). Th is result suggests that an SDS coating fully cov-
ering the nanotubes minimizes their interactions (such as van der 
Waals or hydrophobic) with the gel. Th e order-dependent chirality 
separation is thought to originate from diff erent degrees of SDS coat-
ing coverage on the nanotube surfaces, which scales the interaction 
strength of each ( n ,  m ) single-chirality nanotube with the gel. 

 Th e morphology and coverage of SDS coatings on nano-
tubes have recently been reported to be dependent on nanotube 
structure 33,34 . To address this issue, we analysed the relationships 
between the separation order of ( n ,  m ) nanotubes and their chi-
ral angle (  θ  ), diameter ( D  t ) and smallest bond curvature radius 
( R  c ,  R  c     =     D  t  / (2 cos 2 ) (30    −      θ  )) 12,35 . As presented in  Figure 5 , the rela-
tionship between the smallest bond curvature radius of the ( n ,  m ) 
nanotubes and the separation order displays a relatively smooth 
increasing tendency compared with the relationships between 
separation order and chiral angle or diameter, indicating that 
the nanotubes that interact more strongly with the gel basically 
have smaller bond curvature radii, except for (6, 4), (9, 4) and (9, 
5). We believe that diff erences in the surface  π -electron states of 
the various S-SWCNTs resulting from diff ering bond curvatures 
aff ect the interaction between S-SWCNTs and SDS and cause the 
variation in the SDS coating coverage. Th erefore, this method for 
the chirality separation of nanotubes depends strongly on their 
curvature. SWCNTs with diameters larger than 1.4   nm generally 
have a larger bond curvature radius and hence a higher SDS coat-
ing coverage, leading to weak interaction with the gel and there-
fore low-resolution chirality separation or no separation. Metallic 
nanotubes are generally thought to be fully covered by SDS 22 , and 
they have a much weaker interaction with the gel than do semi-
conducting nanotubes. Th e full SDS coating coverage on  metallic 
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   Figure 3    |         Optical absorption spectra of nanotube fractions sorted in the second separation. In each spectral pattern, the top spectrum corresponds 

to one of the fi rst separated S-SWCNT fractions, and the lower spectra are the optical absorbances of the corresponding second separated S-SWCNT 

fractions. The arrows indicate the separation order of the S-SWCNT fractions in the second separation (Col., column; S, semiconducting).  
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nanotubes is attributed to their diff erent electronic structures 
from  semiconducting nanotubes, resulting in a strong  interaction 
with the SDS surfactant. Accordingly, the metallic nanotubes were 
collected as unbound nanotubes and are diffi  cult to separate with 
the present method. 

 In summary, the new phenomenon of a structure-dependent 
interaction strength of SWCNTs with an allyl dextran-based size-
exclusion gel was observed. Th is interaction permitted nanotubes 
to be separated on the basis of their chirality. On the basis of these 
results, we developed a highly eff ective SS-MUGEC method for 
large-scale chirality separation of SWCNTs that can be used for the 
simultaneous separation of M- and S-SWCNTs. One of the most 

attractive features of this method is that the separation process 
uses only a single surfactant, therefore the separation of SWCNTs 
can easily be repeated to improve the chirality purity level follow-
ing a simple dilution of the SDS solution. Aft er two separations of 
HiPco SWCNTs, we were able to purify at least 13 highly enriched 
( n ,  m ) S-SWCNT species. More importantly, the SS-MUGEC 
method is simple, rapid and inexpensive. Th is method realizes the 
chirality separation of SWCNTs on a large scale, and we expect to 
be able to produce single crystals of single-chirality nanotubes in 
the near future. We believe that this separation method will open 
up a new research fi eld and accelerate the use of SWCNTs in prac-
tical applications.   
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maps of separated ( n ,  m ) fractions. Each fraction is highly enriched with a single semiconducting species.  
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 Methods  
  Dispersion of SWCNTs   .   Single-wall carbon nanotubes produced by  high-pressure 
catalytic CO (HiPco) decomposition  (HiPco, R Ø 500, 1.0    ±    0.3   nm) were purchased 
from  Carbon Nanotechnologies Inc.  and were used as the starting material for the 
nanotube separation trials. Aliquots of 100   mg of HiPco SWCNTs were dispersed in 
100   ml of purifi ed water with  2 wt %  SDS  (99 % ,  Sigma-Aldrich ) using an  ultrasonic 
homogenizer  ( Sonifi re 450D ,  Branson ) equipped with a 0.5-inch. fl at tip for 20   h at 
a power density of 20   W   cm     −    2 . To prevent heating during sonication, the bottle con-
taining the sample solution was immersed in a bath of cold water. To remove the 
residue of catalytic metal particles, nanotube bundles and impurities, the dispersed 
sample solution was centrifuged at 197,000 g  for 15   min in a  swinging-bucket rotor 
 ( S52ST ,  Hitachi Koki ). Th e upper 90 %  of the supernatant was collected and used 
for gel chromatography.   

  Overloading effect   .   Medical plastic syringes (10 ml; 8   cm in length and 1.5   cm in 
inner diameter) were used as the columns. Allyl dextran-based size-exclusion gels 
( Sephacryl gel, S-200 HR or S-300 HR ,  GE Healthcare ) were used as the gel media. 
Two gel columns were prepared by fi lling the same amount of allyl dextran-based 
size-exclusion gel (1.4   ml of gel beads) into two syringes that were labelled Col. 
1 and Col. 2 ( Fig. 1a ). Before fi lling with gel beads, the outlet of each syringe was 
plugged with cotton. Aft er the gel columns were equilibrated with a 2 wt %  SDS 
solution, 1- and 8-ml aliquots of the SWCNT dispersion were applied to Col. 1 and 
Col. 2, respectively. Next, a 2 wt %  aqueous SDS solution was used to elute the 
unbound nanotubes until no nanotubes were detected in the eluent. Th e nanotubes 
adsorbed on the two gel columns were desorbed and collected by injection with a 
5 wt %  SDS solution. A video of the separation process was recorded (see  Sup-
plementary Movie 1 ). Th e nanotubes adsorbed by each of the two columns were 
characterized using optical absorption spectra ( Fig. 1d ) and PL contours (see 
 Supplementary Fig. S1 ).   

  Chirality separation by multicolumn gel chromatography   .   Chirality separation 
was performed using a SS-MUGEC method. In this method, several 10-ml syringes 
fi lled with 1.4   ml of allyl dextran-based size-exclusion gel beads ( Sephacryl S-200 
HR or S-300 HR ,  GE Healthcare ) were connected vertically in series. Th e top of 
each column was open, and there were no seals between the stacked columns. 
A schematic diagram of the SWCNT separation process is presented in  Figure 2a  
and  Supplementary Figure S2 . Aft er the gel columns were equilibrated with a 2 
wt %  SDS solution, a 5 – 10   ml aliquot of the SWCNT dispersion was applied onto 
the top column. Subsequently, a 2 wt %  SDS aqueous solution was added onto 
the top column to elute the unbound nanotubes. Th e unbound SWCNTs fl owed 
from one column to another by gravity and were fi nally collected from the bottom 
column. Th e trapped semiconducting nanotubes were desorbed and collected 
from each column by disconnecting the gel column series and adding a 5 wt %  SDS 
aqueous solution to each column. Aft er equilibrating the gel columns with 2 wt %  
aqueous SDS, we repeated the above procedure by loading the unbound SWCNTs 
until no semiconducting SWCNTs were trapped in the gel columns. Th e remain-
ing unbound nanotubes were identifi ed as highly metal-enriched nanotubes. Th e 
 semiconducting nanotubes collected from each column were confi rmed to be 
separated by diameter and chirality ( Fig. 2 ,  Supplementary Figs S3 and S4 ).   

  Single-chirality separation   .   Single-chirality separation from each semiconducting 
nanotube fraction was performed using the SS-MUGEC method. Several 10-ml 
medical syringes, as described above, were connected vertically in series. Before 
separation, the SDS concentration in each semiconducting nanotube fraction was 
diluted to 2 wt % . Aft er the gel columns were equilibrated with 2 wt %  SDS solution, 
the diluted semiconducting fractions (5 – 10   ml, 16    μ g   ml     −    1 ) were applied to the top 
column, and a 2 wt %  SDS aqueous solution was then added to the series of columns 
to elute the unbound nanotubes. Th e semiconducting nanotubes adsorbed in each 
column were collected by injecting a 5 wt %  SDS solution. Th e second separated 
semiconducting nanotube fractions were characterized by optical adsorption spec-
tra and PL contours ( Figs 3 and 4 ;  Supplementary Fig. S5 ), which confi rmed that at 
least 13 diff erent ( n ,  m ) species were isolated from the HiPco-grown SWCNTs.   

  Optical absorption measurement   .   Optical absorption data were recorded 
from 200 to 1,350   nm with an  UV    −    vis    −    NIR spectrophotometer  ( SHIMADZU  
SolidSpec    −    3700DUV), using a quartz cell with a path length of 5   mm. Pristine 
HiPco SWCNTs and sorted samples were dispersed in 5 wt %  aqueous SDS solu-
tion. Th e spectral resolution was 1   nm. For the HiPco SWCNTs, the absorption 
peaks at 850    −    1,350, 500    −    850, 330    −    450 and 300    −    400   nm were derived from 
the fi rst (S 11 ), second (S 22 ), third (S 33 ) and fourth (S 44 ) optical transitions of the 
semiconducting SWCNTs, respectively ( Supplementary Fig. S5 ) 2 . Th e absorb-
ance peak at 400    −    650   nm represented the fi rst optical transition of metallic (M-) 
SWCNTs (M 11 ) 2 . Th e absorption peaks observed in the shorter wavelength region 
(200 – 300   nm) indicate the UV optical absorption characteristic of the nanotubes.   

  Raman spectra measurements   .   Raman spectra were measured in aqueous SDS 
solution at a concentration of 5 wt %  using a triple  monochromator  ( Bunkou-Keiki , 
M331-TP) equipped with a charge-coupled device detector. Th e samples were 
excited at excitation wavelengths of 633, 561 and 514   nm using a power of 10   mW.   

  Photoluminescence spectra measurements   .   We measured near-infrared fl uo-
rescence intensity as a function of excitation and emission wavelengths for pristine 
HiPco and sorted HiPco samples in aqueous SDS solution (concentration 5 wt % ) 
with a  spectrofl uorometer   (HORIBA, NanoLog)  equipped with a liquid- nitrogen-
cooled InGaAs near-IR array detector. Th e excitation wavelength was varied from 
450 to 850   nm in 5-nm steps, and the emission wavelength was varied from 850 to 
1,400   nm in 5-nm steps. Th e spectral slit widths were 7   nm for both excitation and 
emission. Th e raw data were corrected with instrumental factors.   

  AFM observation   .   Atomic force microscopy was used to observe the mor-
phologies of the sorted nanotubes. Th e samples for AFM characterization were 
prepared by casting an SWCNT dispersion onto an SiO 2  / Si substrate coated with a 
self- assembled monolayer of  3-aminopropyltriethoxysilane  ( Sigma-Aldrich ) and 
further rinsing it with water. Aft er drying the sample with a stream of dry N 2  gas, 
AFM images were recorded using a dynamic force mode AFM (SII, SPI3800) at a 
resolution of 512 samples per line.   

  Purity evaluation of sorted SWCNTs   .   PeakFit soft ware was used to simulate the 
near-infrared spectra as sums of Voigt functions representing individual ( n ,  m ) 

   Table 1      |    The purity and product yield of each ( n ,  m ) enriched semiconducting species. 

    ( n ,  m )    (7, 3)    (6, 4)    (6, 5)    (7, 5)    (8, 3)    (8, 4)    (7, 6)    (8, 6)    (9, 4)    (10,2)    (10,3)    (8, 7)    (12,1)  

   Purity ( % )  89  46  93  88  56  63  94  89  46  39  69  68  71 
   Yield ( % )  60  71  34  49  73  31  36  45  34  56  51  31  35 
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  Figure 5    |         The relationship between the separation order of ( n ,  m ) nanotubes and their physical structures. ( a ) Chiral angle. ( b ) Diameter. ( c ) Smallest 

bond curvature radius. The separation orders for the (9, 5), (10, 5) and (11, 3) nanotubes were determined in the fi rst separation process. ( c ) Indicates that the 

separation order of ( n ,  m ) semiconducting species depends most strongly on their smallest C – C bond curvature radius (that is, their largest bond curvature).  
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species with peaks from 800 to 1,350   nm. Th e purity of each ( n ,  m ) fraction was 
computed as the ratio of the area of the dominant peak to the sum of the areas of 
all peaks.   

  Assessment of purifi cation yield for ( n, m ) tubes   .   Th e yield of purifi ed ( n ,  m ) 
fractions was estimated as the ratio of the amount of the collected purifi ed ( n ,  m ) 
fractions to that of the corresponding ( n ,  m ) nanotubes in the initially loaded 
HiPco SWCNTs. Th e amount of each ( n ,  m ) fraction was evaluated by converting 
its absorption spectrum intensity into a mass concentration 30 .                   

   References  
     1   .      Dresselhaus  ,   M .  S .    ,    Dresselhaus  ,   G .      &     Avouris  ,   P .        Carbon Nanotubes Synthesis, 

Structure, Properties, and Applications     (    Springer  ,   2001    )  .  
      2   .      Kataura  ,   H .        et al.       Optical properties of single-wall carbon nanotubes  .   Synth. 

Met.     103   ,    2555   –   2558   (  1999  ).  
  3   .      Hagen  ,   A .      &     Hertel  ,   T .        Quantitative analysis of optical spectra from individual 

single-wall carbon nanotubes  .   Nano Lett.     3   ,    383   –   388   (  2003  ).  
   4   .      Wu  ,   Z .  C .        et al.       Transparent, conductive carbon nanotube fi lms  .   Science     305   ,  

  1273   –   1276   (  2004  ).  
  5   .      Green  ,   A .  A .      &     Hersam  ,   M .  C .        Colored semitransparent conductive coatings 

consisting of monodisperse metallic single-walled carbon nanotubes  .   Nano 
Lett.     8   ,    1417   –   1422   (  2008  ).  

   6   .      Javey  ,   A .    ,    Guo  ,   J .    ,    Wang  ,   Q .    ,    Lundstrom  ,   M .      &     Dai  ,   H.J .        Ballistic carbon 
nanotube fi eld-eff ect transistors  .   Nature     424   ,    654   –   657   (  2003  ).  

   7   .      Barone  ,   P .  W .    ,    Baik  ,   S .    ,    Heller  ,   D .  A .      &     Strano  ,   M .  S .        Near-infrared optical 
sensors based on single-walled carbon nanotubes  .   Nat. Mater.     4   ,    86   –   92   (  2005  ).  

   8   .      Weisman  ,   R .  B .        Fluorimetric characterization of single-walled carbon 
nanotubes  .   Anal. Bioanal. Chem.     396   ,    1015   –   1023   (  2010  ).  

   9   .      Kamaras  ,   K .    ,    Itkis  ,   M .  E .    ,    Hu  ,   H .    ,    Zhao  ,   B .      &     Haddon  ,   R .  C .        Covalent bond 
formation to a carbon nanotube metal  .   Science     301   ,    1501   (  2003  ).  

  10   .      Maeda  ,   Y .        et al.       Large-scale separation of metallic and semiconducting single-
walled carbon nanotubes  .   J. Am. Chem. Soc.     127   ,    10287   –   10290   (  2005  ).  

   11   .      Krupke  ,   R .    ,    Hennrich  ,   F .    ,    L ö hneysen  ,   H .  V .      &     Kappes  ,   M .  M .        Separation of 
metallic from semiconducting single-walled carbon nanotubes  .   Science     301   ,  
  344   –   347   (  2003  ).  

    12   .      Miyata  ,   Y .        et al.       Chirality-dependent combustion of single-walled carbon 
nanotubes  .   J. Phys. Chem. C     111   ,    9671   –   9677   (  2007  ).  

   13   .      Collins  ,   P .  C .    ,    Arnold  ,   M .  S .      &     Avouris  ,   P .        Engineering carbon nanotubes and 
nanotube circuits using electrical breakdown  .   Science     292   ,    706   –   709   (  2001  ).  

   14   .      Arnold  ,   M .  S .    ,    Green  ,   A .  A .    ,    Hulvat  ,   J .  F .    ,    Stupp  ,   S .  I .      &     Hersam  ,   M .  C .        Sorting 
carbon nanotubes by electronic structure using density diff erentiation  .   Nat. 
Nanotech.     1   ,    60   –   65   (  2006  ).  

   15   .      Ghosh  ,   S .    ,    Bachilo  ,   S. M .      &     Weisman  ,   R. B .        Advanced sorting of single-walled 
carbon nanotubes by nonlinear density-gradient ultracentrifugation  .   Nat. 
Nanotech.     5   ,    443   –   450   (  2010  ).  

  16   .      Yanagi  ,   K .    ,    Miyata  ,   Y .      &     Kataura  ,   H .        Optical and conductive characteristics of 
metallic single-wall carbon nanotubes with three basic colors; cyan, magenta, 
and yellow  .   Appl. Phys. Exp.     1   ,    034003   (  2008  ).  

   17   .      Zheng  ,   M .        et al.       DNA-assisted dispersion and separation of carbon nanotubes  . 
  Nat. Mater.     2   ,    338   –   342   (  2003  ).  

  18   .      Zheng  ,   M .        et al.       Structure based carbon nanotube sorting by sequence-
dependent DNA assembly  .   Science     302   ,    1545   –   1548   (  2003  ).  

  19   .      Zheng  ,   M .      &     Semke  ,   E .  D .        Enrichment of single chirality carbon nanotubes  . 
  J. Am. Chem. Soc.     129   ,    6084   –   6085   (  2007  ).  

   20   .      Tu  ,   X .    ,    Manohr  ,   S .    ,    Jagota  ,   A .      &     Zheng  ,   M .        DNA sequence motifs for structure-
specifi c recognition and separation of carbon nanotubes  .   Nature     460   ,    250   –   253   
(  2009  ).  

   21   .      Tanaka  ,   T .    ,    Jin  ,   H .    ,    Miyata  ,   Y .      &     Kataura  ,   H .        High yield separation of 
metallic and semiconducting single-wall carbon nanotubes by agarose gel 
electrophoresis  .   Appl. Phys. Exp.     1   ,    114001   (  2008  ).  

   22   .      Tanaka  ,   T .        et al.       Simple and scalable gel-based separation of metallic and 
semiconducting carbon nanotubes  .   Nano Lett.     9   ,    1497   –   1500   (  2009  ).  

  23   .      Tanaka  ,   T .    ,    Urabe  ,   Y .    ,    Nishide  ,   D .      &     Kataura  ,   H .        Continuous separation of 
metallic and semiconducting carbon nanotubes using agarose gel  .   Appl. Phys. 
Exp.     2   ,    125002   (  2009  ).  

   24   .      Liu  ,   H .    ,    Feng  ,   Y .    ,    Tanaka  ,   T .    ,    Urabe  ,   Y .      &     Kataura  ,   H .        Diameter-selective metal/
semiconductor separation of single-wall warbon nanotubes by agarose gel  .   
J. Phys. Chem. C     114   ,    9270   –   9276   (  2010  ).  

   25   .      Moshammer  ,   K .    ,    Hennrich  ,   F .      &     Kappes  ,   M .  M .        Selective suspension in 
aqueous sodium dodecyl sulfate according to electronic structure type allows 
simple separation of metallic from semiconducting single-walled carbon 
nanotubes  .   Nano Res.     2   ,    599   –   606   (  2009  ).  

   26   .      Nikolaev  ,   P .        et al.       Gas-phase catalytic growth of single-walled carbon nanotubes 
from carbon monoxide  .   Chem. Phys. Lett.     313   ,    91   –   97   (  1999  ).  

   27   .      Rance  ,   G .  A .    ,    Marsh  ,   D.H .    ,    Nicholas  ,   R .  J .      &     Khlobystov  ,   A .  N .        UV-vis 
absorption spectroscopy of carbon nanotubes: relationship between the  π  
plasmmon and nanotube diameter  .   Chem. Phys. Lett.     493   ,    19   –   23   (  2010  ).  

   28   .      Richard  ,   C .    ,    Balavoine  ,   F .    ,    Schultz  ,   P .    ,    Ebbesen  ,   T .  W .      &     Mioskowski  ,   C .      
  Supramolecular self-assembly of lipid derivatives on carbon nanotubes  .   Science   
  300   ,    775   –   778   (  2003  ).  

   29   .      Takagi  ,   Y .      &     Okada  ,   S .        Th eoretical calculation for the ultraviolet optical 
properties of single-walled carbon nanotubes  .   Phys. Rev. B     79   ,    233406-1   –
   233406-4   (  2009  ).  

    30   .      Attal  ,   S .    ,    Th iruvengadathan  ,   R .      &     Regev  ,   O .        Determination of the concentration 
of single-walled carbon nanotubes in aqueous dispersions using UV-visible 
absorption spectroscopy  .   Anal. Chem.     78   ,    8098   –   8104   (  2006  ).  

   31   .      Bachilo  ,   S .  M .        et al.       Narrow ( n,m )-distribution of single-walled carbon 
nanotubes grown using a solid supported catalyst  .   J. Am. Chem. Soc.     125   ,  
  11186   –   11187   (  2003  ).  

   32   .      Ando  ,   Y .        et al.       Mass production of single-wall carbon nanotubes by the arc 
plasma jet method  .   Chem. Phys. Lett.     323   ,    580   –   585   (  2000  ).  

   33   .      Tummala  ,   N .  R .      &     Striolo  ,   A .        SDS surfactants on carbon nanotubes: aggregate 
morphology  .   ACS Nano     3   ,    595   –   602   (  2009  ).  

  34   .      Xu  ,   Z .    ,    Yang  ,   X .      &     Yang  ,   Z .        A molecular simulation probing of structure and 
interaction for supermolecular sodium dodecyl sulfate/single-wall carbon 
nanotube assemblies  .   Nano Lett.     10   ,    985   –   991   (  2010  ).  

  35   .      Li  ,   J .  Q .    ,    Jia  ,   G .  X .    ,    Zhang  ,   Y .  F .      &     Chen  ,   Y .        Bond-curvature eff ect of sidewall 
[2+1] cycloadditions of single-walled carbon nanotubes: a new criterion to the 
adduct structures  .   Chem. Mater.     18   ,    3579   –   3584   (  2006  ).    

           Author contributions  
 H.L. performed all the experiments and analyzed the data. H.L. and D.N. performed the 

Raman measurements. H.L., T.T. and H.K. conceived the experiments and discussed the 

results. H.L. wrote the paper. H.K. reviewed and corrected the paper. 

  Additional information  
  Supplementary Information  accompanies this paper at  http://www.nature.com/

naturecommunications  

  Competing fi nancial interests:  Th e authors declare no competing fi nancial interests. 

  Reprints and permission  information is available online at  http://npg.nature.com/

reprintsandpermissions/  

  How to cite this article:  Liu, H.  et al.  Large-scale single-chirality separation of 

single-wall carbon nanotubes by simple gel chromatography.  Nat. Commun.  2:309 

doi: 10.1038 / ncomms1313 (2011).   

   License:      Th is work is licensed under a Creative Commons Attribution-NonCommercial-

Share Alike 3.0 Unported License. To view a copy of this license, visit http://

creativecommons.org/licenses/by-nc-sa/3.0/       




