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DASH: A Method for Identical-by-Descent Haplotype
Mapping Uncovers Association with Recent Variation

Alexander Gusev,1 Eimear E. Kenny,1,2 Jennifer K. Lowe,3,4 Jaqueline Salit,2 Richa Saxena,4

Sekar Kathiresan,4,5 David M. Altshuler,4,6,7 Jeffrey M. Friedman,2 Jan L. Breslow,2 and Itsik Pe’er1,*

Rare variants affecting phenotype pose a unique challenge for human genetics. Although genome-wide association studies have success-

fully detected many common causal variants, they are underpowered in identifying disease variants that are too rare or population-

specific to be imputed from a general reference panel and thus are poorly represented on commercial SNP arrays.We set out to overcome

these challenges and detect association between disease and rare alleles using SNP arrays by relying on long stretches of genomic sharing

that are identical by descent.We have developed an algorithm, DASH, which builds upon pairwise identical-by-descent shared segments

to infer clusters of individuals likely to be sharing a single haplotype. DASH constructs a graph with nodes representing individuals and

links on the basis of such segments spanning a locus and uses an iterativeminimum cut algorithm to identify densely connected compo-

nents. We have applied DASH to simulated data and diverse GWAS data sets by constructing haplotype clusters and testing them for

association. In simulations we show this approach to be significantlymore powerful than single-marker testing in an isolated population

that is from Kosrae, Federated States of Micronesia and has abundant IBD, and we provide orthogonal information for rare, recent vari-

ants in the outbredWellcome Trust Case-Control Consortium (WTCCC) data. In both cohorts, we identified a number of haplotype asso-

ciations, five such loci in the WTCCC data and ten in the isolated, that were conditionally significant beyond any individual nearby

markers. We have replicated one of these loci in an independent European cohort and identified putative structural changes in low-

pass whole-genome sequence of the cluster carriers.
Introduction

Recent advances in whole-genome sequence analysis have

led to the discovery of many directly causal variants in

small cohorts with highly penetrant diseases and stirred

an interest in understanding the links between rare varia-

tion and phenotype. In complex diseases, however, inde-

pendent testing of single rare variants could still be under-

powered for statistically unequivocal genetic mapping.

However, strategies that examine multiple common

markers simultaneously can leverage combinations of co-

occurring proximate alleles, or haplotypes, in much larger

and readily available sets of samples and precisely infer rare

variation. A haplotype consisting of common alleles would

differ in frequency between cases and controls at causal

loci whenever it co-occurs with a causal allele and serves

as its tag. Approaches that exhaustively test such haplo-

types,1,2 or a local spectrum of haplotypes,3–5 have been

devised and tend to focus on relatively short haplotypes

(below 20 SNPs) of high frequency that can be identified

confidently. Methods that focus on haplotypes known to

tag previously observed variants culminate in imputation

of the untyped polymorphism on the basis of a densely

typed reference panel.6–8 This approach has been widely

successful, particularly with the availability of the

HapMap Project as a reference panel for common variants.

However, imputation inherently depends on a reference
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panel that has haplotypes in common with the study

samples as well as deeply typed markers that are good

tags for the underlying causal variant. This has proven

a hurdle for imputation in outlier populations9 and in

recovering low-frequency alleles.10

Alternatively, current work focusing on cryptic related-

ness has resulted in accurate methods for discovery of

long genomic regions recently coinherited by pairs of indi-

viduals. These methods look for a nonrandom increase of

alleles identical by state that indicates that the region is

identical by descent from a recent common ancestor and

identify these shared segments using a hidden Markov

model (HMM)11–13 or haplotype sampling.14,15 Although

the HMM schemes offer high resolution of detection

(segments 1 centimorgan [cM] and longer), the implemen-

tations require examining all pairs of samples and are

intractable for GWAS-sized cohorts. The latter technique,

implemented in the GERMLINE algorithm14 (used here)

and recently in the fastIBD algorithm,15 is computation-

ally efficient enough to handle populations in the tens of

thousands with trillions of putative identical-by-descent

segments. In aggregate, these identical-by-descent seg-

ments can represent the totality of detectable recent haplo-

type sharing and could thus serve as refined proxies for

recent variants that are generally rare and difficult to detect

otherwise. Here, we propose a method that efficiently

constructs pairwise identical-by-descent segments into
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multisample haplotype clusters that are oriented toward

rare and uncommon variants and can be directly tested

for association with phenotype without dependence on

a reference panel.

We test our method with power simulations as well as

genome-wide associationwith quantitative traits on a popu-

lation isolated from the island of Kosrae, Federated States of

Micronesia, where identical-by-descent sharing is pervasive

and an ancestrally-close, densely typed reference panel is

unavailable. We also analyze association with common

diseases in the Wellcome Trust Case-Control Consortium

(WTCCC), a large,well-studied cohort of individualsof Euro-

pean origin. TheWTCCCdata has previously been analyzed

in several haplotype association studies with a localized

haplotype-clustering method implemented in BEAGLE16 as

well as a window- or gene-based search for short haplo-

types.17–19 Although we cannot compare our results directly

to those findings without conditional analysis of the under-

lyingmarkers detected by eachmethod,we examine regions

of association found by our method for loci identified in

previous work and report putative candidate genes.
Material and Methods

We defined haplotypes as contiguous blocks of genomic material

free of recent recombination and shared haplotypes as those haplo-

types which have been coinherited by multiple individuals from

a common ancestor. We distinguish these from haploid copies of

the genome, which are phased genome-wide. We first formulated

the problem of recovering shared haplotypes from pairwise iden-

tity by descent at a single locus and then extended this method-

ology for multiple loci. Note that because the construction of

haplotype clusters is fundamentally dependent on the presence

of identical-by-descent segments, we could partition individuals

into different haplotype clusters even though their local marker

alleles were identical by state because the larger region was not

identified as being shared IBD. This is an important conceptual

difference between our method and the resultant haplotype clus-

ters and traditional identity by state (IBS) clustering techniques.

Formally, we considered N haploid copies of the genome

numbered 1, ., N, along a genome with coordinates 1, ., M.

We assumed a previously identified collection S ¼ s1, ., sk of

identical-by-descent segments in this phased data set, where

each sk is a quartet (hk,h’k,lk,rk) specifying a segment shared

between haploid copies hk, h’k ˛ {1, ., N} along the genomic

interval [lk,rk]4 [1,M].We observed that the set of interval bound-

aries B ¼ {lk} U {rk} includes the only sites where identical-by-

descent status changes in this cohort. We therefore denoted the

unique elements of B¼ b1% b2%. bjBj and partition the genome

by these boundaries to the intervals {(bi,biþ1)} from i ¼ 1 to jBj�1

where identical-by-descent status is fixed for the entire cohort.

Single-Locus Analysis
Within a given fixed identical-by-descent region (bi,biþ1) along the

genome, we define a weighted undirected graph Gi ¼ (V, Ei, Wi) to

capture known relatedness. The presence of a segment shared

between two individuals who are identical by descent across this

locus is represented as an edge between their respective vertices,

with the weight of the edge corresponding to the total genetic
The Ame
length of the shared segment. Formally, V ¼ {1 . N}, Ei ¼
{ (hk, h

0
k) j lk % bi, biþ1 % rk} and for the edge eik ¼ (hk, h

0
k) ˛ Ei,

we set Wi(eik) equal to the genetic distance, in cM, from rk to lk.

Assuming error-free data, a complete subgraph of Gi would be

indicative of a region commonly coinherited by all vertices in

this subgraph and thereby represent a haplotype cluster shared

by all individuals carrying the respective haploid copies. Further-

more, we would expect all connected components of Gi to be

such fully connected graphs because sharing a detectable iden-

tical-by-descent segment is transitive with regards to haploid

copies. Under these assumptions, finding all shared haplotype

clusters involves a simple search that identifies the set of all con-

nected components, which would also be maximal cliques in Gi.

In the presence of error, where identical-by-descent segments

are incorrectly detected or undetected, we would expect to see

false or missing edges in the graph. In particular, when the errors

are not pervasive enough to generate an entire false haplotype

cluster, we expect to observe partially-complete subgraphs similar

to the error-free ideal. Practically, such error is typical around the

boundaries of a true segment, where low marker density or insuf-

ficient detection specificity could result in shared segments that

are called as extended to loci beyond the region that is genuinely

shared or fall below the detectable segment length and be missed.

Our goal is then to systematically identify a set of subgraphs that

most likely represent shared haplotypes. In calculating this likeli-

hood, we assume known rates of false-positive, true-positive, false-

negative segments given a corresponding edge, e, as 4FP(e), 4TP(e),

and 4FN(e), respectively. We can then compute a likelihood-ratio

for any subgraph g induced by Gi as

LðgÞ ¼

Q

e˛g
fTPðeÞ

Q

e˛g
fFNðeÞ

Q

e˛g
fFPðeÞ

;

where e˛g and e˛gare edges in g and edges in the complement of g

(with respect to the complete graph induced by g only), respec-

tively. This effectively calculates the probability that the graph is

a clique with erroneous edges over the probability that the graph

is entirely false, assuming edges are independent. We note that

this formulation can easily incorporate error rates that vary with

segment length by parameterizing the 4 values according to the

edge weight Wi(eik) for each examined edge, and we have shown

in previous work that error is indeed directly correlated to segment

length.14 In practice, we expect type I error measures to be

segment-specific, and type II error to be specific to the population

and the expected number of generations to the common ancestor.

In searching for themaximum likelihood subgraphs, we observe

that the likelihood ratio is correlated to the density of that

subgraph. Specifically, when the error rates are constant, the ratio

is a function of the density d and the size of the graph:

LfixedðgÞ ¼ f
jEðgÞ j
TP f

jEðgÞ j
FN

f
jEðgÞ j
FP

jEðgÞ j ¼ 1

2
jVðgÞ j ð jVðgÞ j � 1Þ d

jEðgÞ j ¼ 1

2
jVðgÞ j ð jVðgÞ j � 1Þð1� dÞ

In light of this, we borrow a highly connected subgraphs (HCS)

algorithm from the systems biology domain.20 HCS relies on iter-

atively identifying the minimum cut in a graph, that is, the
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minimal set of edges whose removal divides the graph into two

subgraphs with disjoint vertices and edges. The algorithm

performs this min-cut recursively until it identifies a subgraph of

desired density or a trivial subgraph that contains no edges to be

cut. The algorithm provably identifies dense subgraphs with

minimumdiameter of two and, in practice, is fast when the under-

lying subgraphs have relatively few sparsely connected outlier

vertices. This gives us an efficient starting point of dense

subgraphs likely to be representing haplotypes. We make amend-

ments to the algorithm specifically to encourage the largest likely

haplotype cluster (Appendix A, Algorithm 1: Hierarchical Haplo-

type Clustering). In our case, we use a weighted min-cut so that

our desired cut set is minimal in total weight rather than size.21

For each identified subgraph, we also perform a two-part postpro-

cessing step to encourage homogenously connected graphs: (1)

during clustering any vertex whose removal would increase the

likelihood of the graph is excluded from it (Appendix A, Algorithm

1: Hierarchical Haplotype Clustering, lines 7–10) and (2) after clus-

tering any vertex not in a subgraph but incident to a subgraph for

which adding the vertex would increase its likelihood is incorpo-

rated into it (Appendix A, Algorithm 2, lines 5–9). The latter step

is performed in a greedy fashion such that vertices are incorpo-

rated into larger subgraphs first, in accordance with our desire to

identify the largest likely subgraphs. This procedure accounts for

instances where the HCS threshold is not aggressive enough in

removing the few outliers that do not majorly impact the overall

density of a very dense subgraph. As computed in Algorithm 2

(Appendix A), our final output is then pi, a set of subgraphs repre-

senting the largest likely haplotype clusters within the region

(bi,biþ1), where each node is present in at most one subgraph.

Multilocus Analysis
We implement multilocus clustering as an extension to the single-

locus method by scanning across consecutive fixed identical-by-

descent regions (Appendix A, Algorithm 3). The first region

(b0,b1) is analyzed with the single-locus algorithm and produces

an initial set of haplotype clustersp0. Subsequently, within a given

fixed identical-by-descent region (bi,biþ1) we now have the set of

subgraphs pi�1 from the previous region as well as the graph Gi

representing identical-by-descent segments overlapping (bi,biþ1).

Because the subgraphs in pi�1 have already passed the likelihood

ratio test at least once, we give them precedence in constructing

pi; this strategy also offers the benefit of tracking a single haplo-

type cluster as it evolves across multiple regions to minimize

redundancy. For each subgraph in pi�1, we generate a new

subgraph g0 with an identical set of vertices as well all incident

edges and additional incident vertices observed in Gi and cluster

g0 (Appendix A, Algorithm 3, lines 3–9). Whereas in the single-

locus analysis we primarily used this procedure to clean estab-

lished subgraphs of outliers, here it also removes or adopts any

vertices that are newly incident on a previously established

subgraph or have lost edges and should be disconnected from a

previously established subgraph. In practice, the scan for removal

or adoption can be made much faster by examining only those

members of pi�1 that were modified from (bi�1,bi) to (bi,biþ1).

The resultant set of haplotype clusters from g0 is then incorporated

into pi and removed from Gi (Appendix A, Algorithm 3, lines

10–11). Subsequently, the remaining graph can also be clustered

in accordance with the single-locus approach and incorporated

into pi. In this way, multilocus subgraphs will tend to grow and

shrink as the focus moves through consecutive fixed identical-

by-descent regions and their respective graphs (Figure 1).
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Software Implementation
Themethod has been implemented in Cþþ and is freely available.
Data
Isolated Population from the Island of Kosrae, Federated States of

Micronesia

A full description of the screening and genotyping of the Kosraen

cohort was provided elsewhere.22 In brief, 3148 highly-related

individuals, who represent >75% of the adult population on the

island, were surveyed from the Pacific island of Kosrae in three

separate screenings carried out in 1994, 2001, and 2003. Of these

study participants, 2906 were successfully genotyped on the Affy-

metrix 500k array; data were generated at Affymetrix. Genotypes

were called with the BRLMM algorithm and a minimum call rate

of 95% was achieved, with a final set of 398,876 polymorphic

autosomal markers. Twenty-six traits relating to metabolic

syndrome were ascertained and are detailed in Table S6, available

online. Phenotypes were adjusted for age and gender, transformed

to approximate a normal distribution, and recalculated to Z scores.

Previously, 17 of these traits were tested with the PLINK/QFAM-

total framework,22,23 and all have been tested with the EMMAX

variance components model.24,25 We compare our data to the

EMMAX model results when referencing single-marker analysis

in study participants from Kosrae. Analysis was determined as

exempt from institutional review board approval at Columbia

University.

Data from the WTCCC

Data ascertainment and cleaning for the WTCCC cohort have

been described in detail previously.26 The WTCCC data we used

consist of genotypes ascertained in 2000 cases for each of seven

common disease and 3,000 shared controls from the 1958 Birth

Cohort (58C) and National Blood Services (NBS). Genotyping

was performed on the Affymetrix 500k array and called using

the Chiamo algorithm. After excluding the 30,956 SNPs and 815

individuals that did not pass the WTCCC’s quality thresholds,

our final data set consisted of 16,179 individuals and 455,566

autosomal markers. The traits studied and their respective sample

sizes are listed in Table S7. We tested this final set of markers for

association by splitting up the cohort in two ways: by using only

the 58C and NBS samples as controls (controls only) and by using

all other samples—58C and NBS and cases for traits other than the

one tested—as controls (pooled controls).
Simulation of Rare Causal Variants
We sought to measure the performance of our algorithm within

a realistic simulation of rare causal variants with few nearby low-

frequency proxy SNPs. In particular, we designed our simulation

to require as few assumptions as possible about the underlying

haplotype space to maintain an unbiased analysis. Using a typical

framework for testing variant imputation,6,27 we randomly

selected rare alleles to be our simulated causal mutations. For

each such causal allele, we simulated a dichotomous trait from

existing genotype data by randomly assigning case or control

labels to respective individuals such that the causal allele has

a prescribed effect size. We then hid all rare variants from the anal-

ysis and measured the power of various methods to recover their

association signal at a fixed level of statistical significance.

In each population we randomly selected 500 variants for each

of 23 designated minor allele frequencies (MAFs) from 0.5% to

4.9% (in steps of 0.2%). To obtain variants that are likely indepen-

dent, we divided the genome into 1 Mb blocks and for each
2011



Figure 1. Method Workflow
A generalized representation of the DASH clustering algorithm across three windows (vertical lines) of a single chromosome.
(A) Pairs of haploid individuals (left, colored circles) and their respective identical-by-descent segments, if any. True segments are repre-
sented by a thick gray bar spanning at least one window; false positive and negative regions are labeled and unfilled.
(B) The corresponding haplotype graph for each respective window; the haploid individuals are represented as nodes (circles) (the color
is consistent with that in A) and identical-by-descent sharing at the locus represented as edges (lines); false positive and false negative
segments are dashed and dotted lines, respectively. Gray fill shows the most likely dense cluster detected by DASH.
(C) The final haplotypes determined by the algorithm for each window; color is consistent with that in (A) and (B).
designated frequency selected a single variant closest in frequency;

we then randomly selected a subset of 500 such variants. In both

cohorts, the chosen variants were within 0.1% of the designated

frequency, and the root sum of squared differences around each

designated frequency had been<0.05%. For each selected variant,

we constructed a dichotomous phenotype with fixed direct allelic

p value cutoff under an additive disease model. Specifically, the

cutoff was set to 2.5 3 10�20 ¼ 0.5 3 0.05 3 (10�9)2 to detect

a two-sided, genome-wide significant result with 0.5-fold reduc-

tion of significance between the selected causal variant and any

nearby genotyped marker. We considered the one-degree-of-

freedom c2 statistic Z2 ¼ 85 required for this significance level

while fixing the frequency, p, of the risk allele in the entire cohort,

the fraction, f, of cases and the total sample size, N, of cases and

controls. We then solved for the necessary observed deviation,

D, of case allele frequency from its expected val-

ue,D ¼ z=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nf ð1� f Þ pð1� pÞp

, so that a Z score of Z is attained.

In Kosrae, where we fixed the number of cases and total samples

at 500 and 2,906, respectively, the resultant causal variants range

in relative risk from 4.89 (at 0.4% MAF) to 2.44 (at 4.8% MAF).

In theWTCCC cohort, we kept the 500:2,906 ratio of cases to total

samples with 2,783 assigned cases and 13,396 assigned controls to

each simulated phenotype. The relative risks ranged from 2.62 to

1.56. We then removed all markers below 5% MAF, including

those marked as directly causal in our analysis. Removing all

markers in this manner forces incomplete tagging between the

direct causal variant and remaining SNPs, simulating our desired

scenario where the untyped variant might not be well represented
The Ame
in the study set. The final test set consisted of 11,500 individually

simulated phenotypes for each population; 277,243 SNPs

remained in the Kosrae data and 357,594 SNPs in the entire

WTCCC data (Table S1). After hiding low-frequency SNPs, we

phased both data sets by using the BEAGLE software package

with default parameters.

Methods Compared
Identical-by-Descent Detection and Haplotype Clustering

We used the GERMLINE algorithm for all estimates of identical-

by-descent segments in our analysis.14 We ran GERMLINE with

parameters tuned to identify short identical-by-descent segments

of 1 cM or greater; genetic distances were taken from the fine-

scale recombination map estimated by the HapMap project.28

We also set a window size of 32 sites and one allowed mismatch-

ing site (command-line flags: ‘-haploid -min_m 1 -bits 32 -err_hom

1 -err_het 1’). These parameters are much less restrictive than is

typical because we wanted to enrich for relatively short haplo-

types. To minimize the overall number of parameters and poten-

tial biases, we executed DASH on the identical-by-descent

segments as if we had no prior information on identical-by-

descent error, and all segments reported as identical by descent

were assumed truly so (4FP ¼ 0, 4TP ¼ 1, 4FN ¼ 1; 1 SNP minimum

window size), which effectively reports all connected components

of any size as haplotype clusters. Overall, the DASH analysis

identified 330,189 and 787,046 haplotype clusters with

a frequency greater than 0.1% in the Kosrae and the WTCCC

data, respectively.
rican Journal of Human Genetics 88, 706–717, June 10, 2011 709



The analysis was run in parallel batches, and 10% of the genome

required approximately 14 hr to phase with BEAGLE, 29 hr for the

GERMLINE identical-by-descent discovery, and 64 hr for the

DASH haplotype clustering on a single 3 GHz Intel Xeon node

with 16 Gb of RAM.

Imputation of Untyped Variants from HapMap Reference

We compared DASH directly to the SNP array SNPs as well as to

imputed variants from a corresponding HapMap reference panel.

For consistency with the phasing used for GERMLINE, we also per-

formed the imputation with the BEAGLE software package in the

final pruned test set. Because of restrictions on available computa-

tion power, we performed the imputation in batches of 500

randomly chosen individuals with default parameters and kept

all imputed calls that had aminimumestimated r2 of 0.9. As a refer-

ence panel, we used 1,387,466 phased markers from the HapMap

phase 3 panels of 113 European ancestry (CEU) samples and 170

East Asian ancestry (JPTCHB) samples for imputation to the

WTCCC and Kosrae samples, respectively. In both cohorts, the

imputation roughly doubled the number of variants, resulting in

606,051 total markers in the Kosrae data and 706,312 total

markers in the WTCCC data. We observe that over 80% of the

hidden variants in each cohort are typed in the reference panel;

this provides the opportunity for many of the causal variants to

be imputed directly. This effectively implies a lower bound of

80% on association power given perfect imputation and reference.

Although an optimal strategy would incorporate imputation

uncertainty directly into the association test, this would require

evaluating and comparing a variety of proposed testing models10

that are outside the scope of our analysis. In light of this, we stress

that our threshold-based analysis strictly measures the power of

high-quality imputed variants rather than that of an ideal imputa-

tion-based association study.

Assessing Significance

To establish significance for each method and cohort, we per-

formed 1000 genome-wide permutations of an allelic c2 associa-

tion test13 and identified an empirical genome-wide significance

threshold at a family-wise error rate of 0.05 (Table S1). We note

that although there are many fewer haplotype clusters than

single markers, the empirical threshold p value for genome-

wide haplotype clusters was consistently lower than that of

SNPs (Table S1). This suggests the redundancy is higher among

the SNP tests as a whole than among the haplotype clusters.

Standard Bonferroni correction that takes into account only

the sizes of these sets can thus be an inconsistent measure of

the testing burden they incur. For each method and frequency

window of 500 markers, we then measured association with

the respective simulated phenotype of any markers within a 1

Mb region of the true causal variant. The percentage of such

regions that contained an association beyond genome-wide

significance was then taken as the estimate of power for that

frequency.

Real-Data Association Analysis
Variance Components-Based Association in Kosrae

Because of the significant degree of relatedness between individ-

uals on Kosrae, we used the EMMAX program24 to perform the

association testing in real data. EMMAXuses a pairwise relatedness

matrix to incorporate random effects into the association test. This

approach has been shown to be very effective in general popula-

tions29 and specifically in Kosrae.25 We used a relatedness matrix

constructed from pairwise genome-wide identical-by-state scores

and ran EMMAX with default parameters for all analysis.
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Conditional Analysis of Haplotype Clusters

In instances wheremultiple significant haplotype clusters overlap-

ped a single locus, we performed a step-wise conditional analysis

to identify independent haplotype clusters. Iterating in order of

decreasing significance, we introduced each cluster as a covariate

for all remaining clusters within a logistic regression test in PLINK

or directly as a fixed effect in EMMAX for the WTCCC and Kosrae

data, respectively. Any haplotype clusters that remained genome-

wide significant after conditioning were reported as independent.

To identify whether a cluster association was more significant

than typedmarkers, particularly in regions withmultiple indepen-

dent association signals, we performed two types of conditional

analysis. First, we iteratively conditioned the cluster of interest

on each SNP within 1 Mb of either physical cluster boundary (or

from chromosome 6:20–40 Mbp for any cluster within the

MHC) and reported the association that minimizes conditional

significance. This measure represents the residual haplotype

cluster signal given any single nearby marker, and we refer to it

as the conditioned p value. Separately, we performed a step-wise

logistic regression where all genome-wide significant SNPs were

iteratively added as additional covariates until no such SNPs

were present and reported the final residual haplotype cluster asso-

ciation. This measure represents the residual haplotype cluster

signal given all independently genome-wide significant markers,

and we refer to it as the stepwise conditioned p value.

Fine-Mapping of Nominal Haplotype Clusters

We assess the utility of very short haplotype clusters that cannot be

efficientlydetectedonagenome-scalebyperforminga second-stage

short haplotype association analysis in regions of nominal signifi-

cance.We identified any haplotype associations at most two orders

of magnitude less significant than the genome-wide threshold and

established nonoverlapping regions of interest within 500 kb of the

haplotype boundaries. We then reran GERMLINE identical-by-

descent detection with no minimum length threshold and

a window size of 10 markers with no allowed mismatches

(command-line flags: ‘-min_m 0 -bits 10 -err_hom 0 -err_het 0’),

effectively looking for ten SNP haplotypes with complete IBS. We

then ran the DASH haplotype clustering and association in the

same way as described above (including testing for independence)

and retained only those clusters that had surpassed the significance

threshold established in genome-wide analysis andwere condition-

ally independent of any previously identified clusters in the region.

Follow-Up in Low-Pass Sequencing Pilot

Seven Kosraen individuals were lightly sequenced using the SOLiD

System with 50 bp and 35 bp mate-paired reads for an average of

33–63 sequence coverage of nonredundant, uniquely placed

pairs for each individual.30 Calling and variant quality filtering

was done in all samples together using the Genome Analysis Tool-

kit31 following the best practices of the 1,000 Genomes Project.

Results

Estimated Association Power

We performed the causal variant simulation in both

cohorts and report average power to recover the planted

variant using four association techniques in Figure 2.

Figure 2A shows power in the Kosraen cohort to be signif-

icantly higher for either of the DASH-based techniques at

all risk-allele frequencies, particularly at the low end of

the spectrum where testing DASH and SNPs together has

a 403, 53, and 23 increase in power over SNPs alone for
2011



Figure 2. Method Comparison of Rare-
Variant Association Power in One Isolated
and One Outbred Cohort
Power to detect a single rare variant was
estimated by simulating causal sites at
risk-allele frequency range of 0%–5%
with fixed direct allelic significance of
2.5 3 10�20. All variants below 5% MAF
were subsequently hidden from analysis,
and power to detect association with re-
maining proxy markers was measured.
Tested separately were single markers
(yellow, SNP), high-quality imputed
markers from HapMap reference and
single markers (green, IMP), DASH haplo-
types and single markers (blue DASH and
SNP), and DASH haplotypes and high-
quality imputed markers (DASH and
IMP). For each method, power was
measured as a percentage of variants for
which a genome-wide significant proxy
was identified (see Material and Methods).
(A) Results in isolated cohort from Kosrae,
Federated States of Micronesia (imputed
from JPTCHB reference).
(B) Results in European cohort from
WTCCC data (imputed from CEU refer-
ence).
the risk-allele frequencies of 0%–1%, 1%–2%, and 2%–3%,

respectively. We caution that although the relative power

increase is high, the absolute power for rare variants below

1% MAF is still in the low range of 0%–11%. High-quality

imputed variants from the HapMap East Asian panel offer

greater power over the SNP-based association but still

underperform when compared to DASH and SNPs and,

likewise, when compared to DASH and imputed variants

together. Looking at the detailed power distribution

(Figure S5A), we see that the power of DASH alone

converges with imputation and single-marker power at

4.5% MAF and becomes less powerful subsequently.

However, testing DASH in conjunction with the other

methods always offers more power than testing the

methods separately, and DASH and imputation exhibit

approximately 20% more power across the entire risk-

allele-frequency spectrum.

Figure 2B shows the power distribution in the WTCCC

cohort and relatively decreased power across all methodol-

ogies. As in the Kosrae analysis, though, we again see that

using DASH in conjunction with the other methods
The American Journal of Human
increases power within the low-

frequency range (allele frequencies

of 0%–4% in comparison to using

single markers and 0%–3% compar-

ison to using imputation). However,

if we examine the detailed distribu-

tion in Figure S5B, we see a conspic-

uous decrease in power when testing

DASH alone beyond 1.5% MAF, and

the power level eventually intersects

with single-marker tests at 3%. This
is primarily an artifact of the minimum identical-by-

descent-length length threshold we place on GERMLINE;

this threshold de facto restricts the potential for DASH to

capture shorter, more ancient haplotypes. Because

higher-frequency variants tend to be older32 and therefore

lie on the background of more ancient haplotypes, this

thresholding effect will decrease the power of DASH to

capture such alleles and result in the decreasing power

curve. Nevertheless, testing the DASH haplotype clusters

together with imputed variants maintains power gains

over imputed markers of 83–1.53 in the MAF range of

0%–1.5% and decreased power in the MAF range of

3.5%–5%; the average decrease is 0.953.

Robustness to Missing Genotypes and Haplotype

Phasing Error

We sought to examine the effect that missing genotypes

and phasing error can have on the power of the association

methodologies.We focused on the 2% risk-allele frequency

in Kosrae; at this frequency all methods had appreciable

power to detect the planted variants and again performed
Genetics 88, 706–717, June 10, 2011 711



Figure 3. Method Comparison of Association Power in the Presence of Missing Genotypes and Phasing Error
Power estimates (as in Figure 2) for causal variant at 2% risk-allele frequency are plotted with increasing levels of missing genotypes and
phasing error. For both fault types, three methods are compared: single marker (yellow, SNP), imputation from HapMap JPTCHB (green,
IMP), and DASH haplotypes (blue, DASH).
Left: power as a function of percentage of variants excluded at random (filled line) and in increasing order of minor allele frequency
(dashed line).
Right: power as a function of probability that a heterozygous site will be switched (filled line) and probability a heterozygous site will
switch the subsequent haplotype (dashed line); SNP and IMP methods unaffected by haplotype structure are shown for comparison.
the power simulation (including phasing, identical-by-

descent detection, haplotype clustering, and imputation)

while introducing increasing rates of missing genotypes.

Figure 3A shows the effects on power caused by randomly

marking increasing subsets of SNPs as missing without

changing the multiple-testing burden. When SNPs were

randomly labeled as missing (solid line), we see little effect

on power in any of the methods. Even when 20% of the

SNPs are excluded, power dropped by a factor of 0.85,

0.91, and 0.97 for SNPs, tests with imputed markers, and

DASH, respectively, in comparison to the same tests with

no missing markers. This limited decline demonstrates

the high degree of correlation between the ascertained

SNPs that allows for such robustness to missing genotypes.

On the other hand, when we labeled the SNPs missing in

increasing order of allele frequency (Figure 3A, dashed

line) to simulate incomplete ascertainment of low-

frequency variants, we see a significant decrease in the

power of association from SNPs and imputed markers but

we do not see this in the DASH analysis. When comparing

simulated data sets with no missing markers to those in

which 20% of the SNPs were excluded, the most extreme

scenario, we see power drop by a factor of 22.3, 1.4, and

1.1 for SNPs, imputed markers, and DASH, respectively.

This is consistent with the general trend of an increased

association power of DASH haplotype clusters for tagging

low-frequency variants.

Because the GERMLINE algorithm works explicitly on

phased data, the presence of phasing errors could signifi-

cantly impact the sensitivity of identical-by-descent detec-

tion and subsequently introduce noise into the DASH clus-

ters. To measure this impact, we introduced a random

chance of phasing error into the input haplotypes for

GERMLINE and, as we did in the previous analysis, exam-

ined the effect on power at a 2% risk-allele frequency in the
712 The American Journal of Human Genetics 88, 706–717, June 10,
Kosrae data. Figure 3B shows power measured across

increasing rates of two types of error. The solid line repre-

sents data where heterozygous sites were flipped without

effecting adjacent haplotypes, and the dashed line repre-

sents the traditional scenario of a flip also inducing a phase

switch in all subsequent markers. Because the other two

methods are not affected by phasing error, they are plotted

unchanged for reference.We see that both types of phasing

error have an effect on the power of DASH, and power

decreases by a factor of 0.69 for a 2% haplotype switch

rate and slightly for a 4% single-point flip rate. We stress

that this demonstrates the decrease in power is an effect

of phasing error in excess of what is already inherent in

the data.

Haplotype Cluster Associations to Real Phenotypes

We identified a number of loci with haplotype-based asso-

ciations to real phenotypes in the two data sets and explore

these in more detail here. Table 1 details all of the haplo-

type cluster associations identified in either data set that

had genome-wide significance and had strong residual

signal when conditioned on single markers overlapping

the region. Specifically, we compared p values of the

DASH clusters at each such locus to the localized DASH

analysis, listing the cluster which is most significantly

associated from either analysis of that locus. We further

list the most significant association with a single marker

from the original GWASwithin 1Mb of the physical haplo-

type boundaries (or chromosome 6:20–40 Mbp for clusters

in the MHC) as well as the conditional p value, represent-

ing the residual association signal of the cluster given any

individual markers in the region (see Material and

Methods). For the WTCCC data (Table 1), all p values

shown are from the pooled controls analysis which used

cases for alternative traits as controls. We detail the
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Table 1. Conditionally Significant Haplotype Associations Identified in WTCCC and Kosraen Cohorts

Trait Locus f OR P DASHa P GWASb Conditional P DASHc
Published Relevant
Associations

WTCCC Cohort

CD 16q12 7.2% 1.80 1.7 3 10�24 7.5 3 10�19 3.0 3 10�10 NKD1

T1D 6p21 0.6% 3.94 4.2 3 10�24 4.9 3 10�175 2.7�13 MHC

RA 6p21 2.4% 2.35 1.0 3 10�23 9.4 3 10�64 1.8 3 10�16 MHC

CAD 6q26 1.7% 2.17 4.1 3 10�14 5.9 3 10�5 2.6 3 10�9 SLC22A3, LPAL2, LPA

T2D 11p14 0.3% 3.79 1.9 3 10�10 3.1 3 10�3 4.3 3 10�8

Kosraen Cohort

uric acid 11q13 1.8% 0.13 6.6 3 10�49 9.6 3 10�35 2.9 3 10�17 SLC22A11, SLC22A12

HBA1C 16q24 9.9% 0.47 2.5 3 10�24 6.3 3 10�8 2.1 3 10�17

triglycerides 11q23 27.4% 1.31 2.2 3 10�15 3.0 3 10�12 6.8 3 10�5 APOA1, APOA5

total cholesterol 6q26 13.4% 1.33 6.9 3 10�11 2.5 3 10�6 4.9 3 10�6 LPA

total cholesterol 12q23 2.7% 0.54 9.1 3 10�11 5.9 3 10�4 1.6 3 10�8

LDL 12q23 2.8% 0.59 1.0 3 10�8 1.0 3 10�4 2.5 3 10�6

LDL 19q13 1.0% 0.45 2.1 3 10�8 1.7 3 10�6 1.0 3 10�3

folate 19p13 3.2% 1.68 6.4 3 10�8 6.7 3 10�5 5.1 3 10�5 LDLR; TYK2

total cholesterol 11q23 23.5% 1.21 8.5 3 10�8 2.0 3 10�5 9.1 3 10�4 APOA1, APOA5

uric acid 19q13 1.6% 0.46 9.3 3 10�8 3.4 3 10�3 9.5 3 10�6

a Most significant association in locus, conditionally independent of all genome-wide significant and local haplotypes on chromosome.
b Most significant nearby single-marker association (see Table S2 for breakdown by type of controls).
c Least significant haplotype association after conditioning on all nearby single markers.
DASH clusters that are significant but partially explained

by single-marker association in Tables S2–S5. Overall, asso-

ciation results across the entire genome (Figures S3 and S4)

demonstrate a distribution with low genomic inflation

(Figures S1 and S2).

In the Kosrae data, DASH identified eight association

loci, with the localized test strengthening three of these

and uncovering two additional genome-wide significant

regions for a total of ten unique regions. The strongest

association we identified was a cluster at 11q13 for uric

acid (p value ¼ 5.53 10�48) that we have refined in a sepa-

rate work and found to be four-fold more significant than

any previously associated SNP at that locus.25We also iden-

tified regions with no significant single-marker associa-

tions and describe these in detail. A region at 12q23 con-

taining a single cluster was strongly associated with both

total cholesterol (p value ¼ 9.1 3 10�11) and low density

lipoprotein (LDL) cholesterol (1.0 3 10�8). This cluster

overlaps the Farnesoid X-activated receptor NR1H4 (MIM

603826), which regulates the catabolism of cholesterol

into bile acid and is a likely candidate gene. Two clusters

at 16q24 associated with hemoglobin levels (HBA1c)

were localized into a single core cluster that was strongly

significant with a p value of 2.5 3 10�24. This cluster lies

nearby the interleukin-17 receptor IL17C (MIM 604628),

which is involved in the TnF pathway and has been linked

with autoimmune diseases in lower organisms.
The Ame
In theWTCCC data, we identified twelve unique associa-

tionsofwhichfivewere conditionallymore significant than

any nearby singlemarkers. Two such associations, for rheu-

matoid arthritis (MIM 180300) and T1D (MIM 222100),

were identified in the MHC region significantly indepen-

dent of any individual SNP (conditional P DASH column)

or combination of genome-wide significant SNPs (Tables

S2–S3). The presence of multiple causal signals is not unex-

pected in this region because it exhibits complexity in

linkage disequilibrium (LD) structure and enrichment for

disease associations. Three other haplotype clusters were

identified outside this region; one refined a well-known

association of Crohn disease (MIM 266600) to NKD1

(MIM 607851) and another was intergenic at 11p14 with

no significant nearby single-marker tags. Lastly, we found

a genome-wide significant cluster associatedwithCoronary

ArteryDisease (MIM607339) at 6q26with a p value of 8.23

10�15, much stronger than the most significant single-

marker variant (associated at 5.9 3 10�5). Indeed, this

region has recently been mapped to the SLC22A3-LPAL2-

LPA gene cluster (MIM 604842, 611682, and 152200,

respectively) in a genome-widehaplotype association study

that focused on short 10 SNP haplotypes,17 although

it found much lower significance (4.34 3 10�8 with

6-degrees-of-freedom test) than we find here.

Figures S6 and S7 show the region of association signal at

each of the detected loci in detail. In most instances, the
rican Journal of Human Genetics 88, 706–717, June 10, 2011 713



haplotype clusters are bounded by recombination hot

spots as would be expected; however, some can span

multiple such hot spots, particularly in the Kosraen popu-

lation, for which haplotypes tend to be longer and decay

more slowly (e.g., T2D (MIM 125853) at 11p14, uric acid

at 11q13, folate at 19p13). We also note that a number of

the clusters do not overlap any markers of nominal signif-

icance. In particular, two of the five significant clusters

identified in the WTCCC data do not overlap nominally

significant markers (CAD at 6q26 and T2D at 11p14), as

well as four of the ten significant clusters identified in

the Kosrae data (total cholesterol at 12q23, LDL at

12q23, folate at 19p13, and uric acid at 19q13). These

regions generally have several nominal clusters

surrounding those that are significant at a genome-wide

level but do not appear to have any overlapping single-

marker tags.

Potential Effects of Genotyping Error

Previous analysis of the WTCCC data identified a number

of spurious associations that were a result of genotyping

error,16,33 and such sites even introduce false short-haplo-

type associations in some instances. Identifying such sites

conclusively has necessitated reanalyzing the genotype

call intensity plots by hand or recalling the genotypes

with diverse methods. Qualitatively, the fact that signifi-

cant associations identified by DASH are almost all in

regions implicated by independent studies suggests that

the method is robust to false-positive associations.

However, because we only filtered out those markers that

failed standard metrics, this possibility of confounding

genotyping error is still a serious concern. To estimate

the potential effects of such error, we retested all regions

harboring genome-wide significant haplotype clusters on

subsets of markers with much more stringent filtering

criteria. If the original signal is robust and not the result

of calling error, we expect strong correlation between the

cluster identified in the original and filtered data. Specifi-

cally, we established twominimum call-confidence thresh-

olds (0.95 and 0.98) and designated any markers with

fewer than 98% of individuals called below the respective

thresholds as entirely missing (excluding 12.6% and

17.0% of markers, respectively). For each region, we then

reran the GERMLINE and DASH analysis on this filtered

data and reported the strongest r2 correlation between

any resultant clusters and the original associated clusters.

For the genome-wide analysis (Table S2), we find that three

out of 11 haplotype clusters are significantly disrupted

(r2 < 0.8) by the 0.95 call-confidence threshold, and an

additional cluster is disrupted by the 0.98 threshold. This

lack of correlation implies that low-confidence calls that

might have been poorly genotyped are contributing to

some of the original haplotype cluster associations.

However, in the localized analysis (Table S3), where the

underlying identical-by-descent segments are very short

and exact, none of the identified clusters were significantly

affected by strict filtering. Overall, none of the condition-
714 The American Journal of Human Genetics 88, 706–717, June 10,
ally significant associations we report in Table 1 fall below

an r2 of 0.98 under either filtering scenario, suggesting that

the underlying haplotypes are not the spurious result of

low-confidence genotype calls.

Replication of Associated Kosraen Locus in a European

Cohort

We have sought replication of the independent haplotype

cluster associations fromtheKosraendata set inan indepen-

dent European cohort from theDiabetes Genetics Initiative

(DGI).34 The cohort consists of 3,142 Scandinavian samples

genotyped on the Affymetrix 500k platform and pheno-

typed for 18 clinical traits. In particular, 480 of the DGI

samples were phenotyped for HBa1c, for which we identi-

fied a highly significant cluster in the Kosrae data at 16q24

(Table 1 andTable S8).Weperformed a standardDASHanal-

ysis on the DGI samples according to the previously

described phasing and haplotype construction protocol.

Looking within 1 Mb of the boundaries of the Kosraen

haplotype cluster, we identified a nominally significant

overlapping cluster spanning 16 SNPs from 87,404,625 to

87,560,132. Though it is significantly less frequent at

0.64%, the cluster is associated with an allelic p value of

0.015 (after Bonferroni correction) and stronger effect size

in the same direction (Table S8). Additionally, a Kolmo-

gorov-Smirnov-like analysis35 across the entire chromo-

some tested sets of replication clusters that lie increasingly

further away from the initial association for enrichment of

significant associations and showed that haplotype clusters

at this locus in the DGI were generally of elevated signifi-

cance compared to the null hypothesis.We did not observe

any single-marker associations that surpassed their respec-

tive multiple-testing burden in the region.

Putative Causal Mutation and Structural Variation

To assess the utility of these haplotype cluster associations

in the context of whole-genome sequence data, we

analyzed seven Kosraen genomes that had been lightly

sequenced (unpublished data), three of which were carriers

for the HBA1c associated cluster. We identified seven non-

synonymous single-nucleotide variants (SNVs) present

only in carriers of the haplotype cluster, four of which

were not in dbSNP (Table S9), and classified these accord-

ing to their effect using the SiFT tool.36 We used the Seque-

nom iPLEX genotyping platform to assay these sites in 90

islanders that were selected to be amix of haplotype cluster

carriers at the extreme end of the respective phenotype

distribution and noncarriers near the phenotype mean.

Of the four sites that were typed as polymorphic, none

showed strong correlation to cluster status or significant

residual association (Table S9). Because of the low sensi-

tivity of variant detection in the sequencing pilot, these

findings are still inconclusive.

Focusing on copy number variant (CNV) analysis in the

associated region, we find a number of long heterozygous

deletions contained within the HBA1c associated haplo-

type that are not present at such length in the noncarriers.
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Figure S8 shows the CNV calls within 500 kbp of the haplo-

type region and normalized coverage as well as the algo-

rithmic segmentation of the region into discrete heterozy-

gous deletion calls (p < 0.05). Overall, we see that the

cluster carriers have three times more deleted content per

sample overlapping the associated region and that there

are a number of regions present in two or more carriers

explicitly (Figure S9B). For comparison, only 3.3% of the

mapped autosomal genome contains a CNV overlapping

in at least two of samples, and 0.2% contains a CNVexplic-

itly in two or more of these carriers. The presence of these

carrier-specific subregions is highly unusual, and they

harbor a number of candidate gene targets for this trait

(Figure S9G).

Discussion

Haplotypes can provide insights into underlying LD struc-

ture at a locus of interest and help map rare causal loci that

are not well tagged by a single commonmarker.With high-

density array data, using identical-by-descent segments as

building blocks we can base haplotype identification in

recent sharing that is likely to be accurately detected. We

have presented here a method that uses graph techniques

to rapidly construct haplotype clusters out of segments

shared IBD between pairs of individuals.

We have explored the power of this method through

simulations in two very different data sets: one isolated

(Kosrae data set) with an abundance of long identical-by-

descent segments and one large and outbred European

cohort (WTCCC data set). In the isolated population, we

have demonstrated haplotype cluster association to be

much more powerful than direct or imputed association

for all variants below 5% risk-allele frequency. In the Euro-

pean samples, where identical-by-descent segments are

likely to bemuch less recent and therefore harder to detect,

we see that haplotype association is still powerful for

tagging rare variants. Additionally, haplotype association

provides orthogonal information to directly typed or

imputed markers and testing both is the most powerful

strategy for risk alleles up to 4% in frequency.

Lastly, we have shown this approach to be effective at

uncovering regions of association in real data. In the Kos-

rae data, we identified ten independent loci with haplo-

type cluster associations that were more significant than

any surrounding individual markers. Half of these loci

were in regions harboring no significantly associated

SNPs, and one of these loci replicated in an independent

European cohort. In the WTCCC data, we identify five

conditionally independent haplotype clusters; two of the

clusters were in regions not implicated in the original

study and one of these was recently identified in a separate

multimarker analysis with additional samples.17 The iden-

tified clusters provide us with the boundaries of the associ-

ated region as well as the expected carrier individuals.

Researchers can use such information in conjunction

with LD structure and SNP tagging to select samples and
The Ame
define region boundaries when they use fine-mapping

techniques in follow-up studies.37 Indeed, whole-genome

sequencing of carriers of one cluster revealed a significant

enrichment in low copy number that identified candidate

genes for additional follow-up.

Overall, the haplotype-based approach provides a bridge

between the availability of tens of thousands of samples

with densely-typed genotypes and the emerging

sequence-based studies that attempt to capture rare causal

variants. For the former, our algorithm dramatically

increases power to discover putative associations with

rare underlying variants. For the latter, haplotypes empha-

size features of the data that are practically useful in study

design. Looking forward, when thousands of fully

sequenced genomes are readily available an emphasis on

transmitted regions rather than individual markers can

inform us of other potential underlying causes, such as

structural variants, that are not yet straightforward to iden-

tify or test.
Appendix A

Algorithm 1: Hierarchical Haplotype Clustering

clusterGraph:

Input: a subgraph g induced by Gi

if jV(g)j < 2 or E(g) ¼ {} then

return {}

else if L(g) % 1 then

{ ga, gb } ) subgraphs of g after single weighted

minimum cut

return { clusterGraph(ga), clusterGraph(gb) }

else

for each vertex v in g do

if L(g \ {v}) > L(g) thenmark v as removable end if

end for

remove all marked v from g

return { g }

end if
Algorithm 2

DASH-singleLocus:

Input: relatedness graph Gi for fixed identical-by-

descent region i.

for each connected component g in Gi do

pi
0) clusterGraph(g)

for each subgraph c in pi
0 in decreasing order of

size do

for each vertex v incident on c and not in

a subgraph, in decreasing order of degree do

if L(c U {v}) > L(c) then c ) c U {v} end if

end for

done for

pi ) { pi, pi
0 }

done for

return pi
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Algorithm 3

DASH-multiLocus:

Input: set of relatedness graphs { G0 . Gn } for all

identical-by-descent regions 0 to n

p0 ) DASH-singleLocus(G0)

for i ) 1 to n do

for each g in pi�1 do

Create new empty subgraph g0

for each vertex v in V(g) do

V(g0) ) { V(g0), v }

add all edges and vertices incident on v in Gi to g0

done for

g0 ) clusterGraph(g0)
pi ) { pi, g

0 }
Gi ) Gi / g0

done for

pi ) { pi, DASH-singleLocus(Gi) }

done for
Supplemental Data

Supplemental data include nine figures and nine tables and can be

found with this article online at http://www.cell.com/AJHG/.
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