
Hindawi Publishing Corporation
Computational Intelligence and Neuroscience
Volume 2011, Article ID 363565, 13 pages
doi:10.1155/2011/363565

Research Article

Craniux: A LabVIEW-Based Modular Software Framework for
Brain-Machine Interface Research

Alan D. Degenhart,1 John W. Kelly,2 Robin C. Ashmore,3 Jennifer L. Collinger,3, 4

Elizabeth C. Tyler-Kabara,1, 5 Douglas J. Weber,1, 3, 4 and Wei Wang1, 3

1 Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
2 Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
3 Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA
4 Department of Veterans Affairs, Human Engineering Research Laboratories, Pittsburgh, PA 15206, USA
5 Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA

Correspondence should be addressed to Wei Wang, wangwei3@pitt.edu

Received 1 October 2010; Revised 7 December 2010; Accepted 24 January 2011

Academic Editor: Sylvain Baillet

Copyright © 2011 Alan D. Degenhart et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper presents “Craniux,” an open-access, open-source software framework for brain-machine interface (BMI) research.
Developed in LabVIEW, a high-level graphical programming environment, Craniux offers both out-of-the-box functionality and
a modular BMI software framework that is easily extendable. Specifically, it allows researchers to take advantage of multiple features
inherent to the LabVIEW environment for on-the-fly data visualization, parallel processing, multithreading, and data saving. This
paper introduces the basic features and system architecture of Craniux and describes the validation of the system under real-
time BMI operation using simulated and real electrocorticographic (ECoG) signals. Our results indicate that Craniux is able to
operate consistently in real time, enabling a seamless work flow to achieve brain control of cursor movement. The Craniux software
framework is made available to the scientific research community to provide a LabVIEW-based BMI software platform for future
BMI research and development.

1. Introduction

Brain-machine interface (BMI) technology aims to establish
a direct link for transmitting information between the brain
and external devices. It offers a rich and natural assistive
device control interface for individuals with disabilities [1, 2]
and is a rapidly-progressing, extremely active research area
in the field of neuroscience and neural engineering. Various
neural signal modalities, including electroencephalography
(EEG) [3], magnetoencephalography (MEG) [4], electrocor-
ticography (ECoG) [5], intracortical local field potentials
(LFPs) [6], and neuronal firing rates [7–9], have been used
for BMI research. Regardless of the input modality, all BMI
systems require an essential suite of software capable of
acquiring neural signals continuously and converting them
in real time or near real time into specific BMI control
commands for an external device, such as a prosthetic hand,
in order to accomplish a specific task.

To conduct innovative and unique BMI studies, resea-
rchers very often need to implement new signal processing
techniques, neural decoding algorithms, or experimental
paradigms in a BMI software package. Given the rapid
progression of the field, it is desirable to reduce the time
it takes from the conception of a new idea to software
implementation, data collection, and data analysis. However,
the increasing complexity of BMI systems has made this
problematic. For example, sophisticated neural decoding
algorithms previously studied in offline analysis are now
being investigated for real-time BMI control [10]. Addition-
ally, more advanced external devices are being controlled
by BMI systems, such as the dexterous prosthetic arm and
hand system developed by the Revolutionizing Prosthetics
project [11, 12]. These advancements call for an open-
source software framework that enables BMI researchers
to better focus on the essential engineering and scientific
questions they are investigating and to develop advanced
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BMI features more efficiently. This framework should be able
to manage the basic software operations common to many
BMI studies and should be easily extendable in a high-level
programming environment that offers the ease and flexibility
for programming new BMI modules.

One successful open-source general purpose BMI soft-
ware package is BCI2000, a modular C++-based system for
neural signal acquisition, data saving, stimulus presentation,
and more [13], which has been widely distributed among
academic institutions and used in numerous research studies
[14]. Source code as well as binary executable files are freely
available for download, allowing end users to either use the
software as is or modify it to suit their own needs. One of the
greatest advantages of BCI2000 is its modular, lightweight,
and portable design, making it extremely popular and
successful in the BMI research community. Recently, the
BCPy2000 open-source framework [15] has been made avail-
able as a user contribution package to BCI2000. This frame-
work follows the same system architecture as BCI2000, but it
allows BMI researchers to develop new modules in Python,
a high-level language that greatly reduces software program-
ming complexity for fast prototyping of new BMI software.

This paper presents an open-source open-access real-
time BMI software framework inspired by BCI2000 termed
“Craniux,” developed using LabVIEW (National Instru-
ments, Inc.), a high-level multiplatform graphical develop-
ment environment. Craniux implements a core framework
for BMI operation, including modular architecture, network
communications between modules, data flow control, data
visualization, data storage, and graphical user interfaces.
Craniux offers a unique set of advantages that can greatly
facilitate BMI software development and research. First, it
enables BMI researchers to develop and share new BMI mod-
ules in the LabVIEW development environment and take full
advantage of many features inherent to this environment,
such as

(i) high-level graphical programming for fast develop-
ment and run-time debugging,

(ii) a rich set of data visualization options and graphical
user interface elements,

(iii) ease of multithreading and parallel processing pro-
gramming, including automatic parallelism and mul-
ticore processor support,

(iv) a large number of high-quality LabVIEW function
libraries for signal processing and stream-lined inte-
gration with a wide range of engineering hardware
(e.g., national instruments controller cards),

(v) reuse and sharing of custom-made LabVIEW mod-
ules as sub-VI (virtual instrument) blocks.

Second, facilitated by the above-mentioned LabVIEW fea-
tures, we have further implemented functionality critical for
BMI research

(i) Real-time operation in which the system is capable
of acquiring a block of neural data, processing this
data, and generating an output before the next block
of data is received [13, 16].

(ii) Online neural decoder training capability accom-
plished through data sharing between real-time oper-
ations and parallel decoder training.

(iii) “On-the-fly” data visualization and online experi-
ment parameter control.

(iv) Deterministic control of system execution, including
parameter updates and display of visualization data.

(v) Streaming and storage of raw neural data, vari-
ous intermediate processing data, and experimental
parameters to disk for offline analysis.

(vi) Distribution of BMI modules across computers
using well-defined generic network communication
protocols optimized for data transmission between
software modules.

Finally, Craniux has been developed to be a lightweight,
extendable, and portable software framework. Its modular
architecture, well-defined user interfaces, and generic net-
work communication protocol make it very easy to maintain
and develop BMI engines. The existing engines and standard
template engines provide a starting point for new engine
development.

In the following sections, we will first introduce the basic
system architecture of the Craniux software. We will then
provide system performance testing results based on both
simulated and real experimental data. The last section will
further discuss the uniqueness of this software framework
as compared to other existing BMI software tools, its
advantages and limitations, and future directions.

2. System Architecture

The Craniux software package has been designed to be
a highly modularized system, capable of operating across
both a distributed network of computers and on a single
computer. To accomplish this, and to make data transfer
between engines as reliable as possible, all data commu-
nication is conducted using the TCP/IP protocol. Data
saving is implemented using the LabVIEW TDMS (Technical
Data Management Streaming) framework [17], ensuring all
system data are streamed to disk as quickly as possible
in order to maximize system performance. The following
sections describe the system framework, engine execution,
GUI operation, communication protocols, and data saving
operation in further detail.

2.1. Distributed Engine Framework. Figure 1 depicts the
design of the Craniux system. Inspired by the BCI2000
framework, this system consists of five distinct components:
the system launcher, acquisition engine, signal processing
engine, application engine, and data saving manager and
may be distributed across as many as four computers.
Furthermore, each engine has an associated graphical user
interface (GUI), through which the user interacts with the
engine. The main system components perform the following
functions.
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System Launcher. The system launcher is the initial interface
the user is presented with when running the software and
allows the user to specify system-level parameters at runtime.
It is here that the specific engines, their network locations,
and high-level experimental parameters (e.g., subject ID,
date, investigators, and session number) are specified. Addi-
tionally, the system launcher controls the start and stop
of execution though it itself is not a part of the real-time
operation of the system.

Acquisition Engine. Acquisition engines are responsible for
the acquisition and initial preprocessing (e.g., spectral esti-
mation) of neural data from some signal source such as an
amplifier or user datagram protocol (UDP) connection.

Signal Processing Engine. Signal processing engines receive
data from the acquisition engine and are responsible for the
processing of this data, such as the generation of a control
signal.

Application Engine. Application engines receive data from
the signal processing engine and are responsible for the
control of interaction between the subject and the BMI.

Data Saving Manager. The data saving manager is responsi-
ble for the saving of Craniux data and receives input from the
acquisition, signal processing, and application engines.

In order to ensure sequential processing of data through
each engine, system execution proceeds from the acquisition
engine to the signal processing engine, then to the applica-
tion engine, and finally from the application engine back to
the acquisition engine; only one of each type of engine may
be running at a given time. This cyclical data flow guarantees
that each block of data received by the acquisition engine is
processed and a system output is generated before processing
of the next block of data begins.

At any point in operation, the system may be suspended
and any of the engines replaced with another of the same
type, preserving the state of those engines that remain
running. This is desirable for BMI operation, as system
parameters such as neural decoder weights obtained during
operation with a specific application (e.g., a center-out
computer cursor task) may be retained and immediately used
for a new application (e.g., the control of a robotic arm).
Table 1 provides a list of the current engines available in the
Craniux system.

2.2. Engine Execution. Each engine in the system operates
in a basic sequence, first receiving data from a previous
engine, processing the received data, and sending the relevant
results of that processing to the next engine in the signal
chain. Figure 2 outlines the basic flow of the execution of
an individual engine. Engine execution first begins with
the initialization of all parameters, including the loading
of user-specified parameter files, and the identification of
those engine-specific parameters to be saved. From here,
execution proceeds into the main sequence of the engine,
where the engine (1) waits for data from the previous

engine in the signal chain, (2) processes the received data
(or performs some other action), and (3) sends the results
of this processing to the next engine in the signal chain.
Execution then proceeds back to (1), where the engine waits
for the next block of input data. Operating in parallel to this
main sequence are a number of additional threads, such as
data saving, engine-specific processes not capable of or not
requiring real-time operation (e.g., neural decoder training),
and communication with the engine’s GUI. A detailed
description of engine execution, including the enforcement
of deterministic execution within engine components, is
provided in the supplemental materials (see supplementary
materials available online at doi:10.1155/2011/363565).

2.3. Graphical User Interface (GUI) Elements. The GUI for
each engine is responsible for both on-the-fly control of
engine-specific parameters as well as the visualization of
engine-specific data. Permitting on-the-fly control is essen-
tial to successful BMI operation, as during real-time closed-
loop BMI operation it is often necessary to dynamically
adjust parameters such as the computer assist level or com-
puter cursor speed [8]. As opposed to a traditional graphical
user interface, which simply serves as a front end user
interface for a LabVIEW application, GUIs in the Craniux
system exist as stand-alone applications. It is through these
applications that the user interacts with each engine. GUIs
and their associated engines maintain reciprocal two-way
communication; parameter value change events are moni-
tored by the GUI and transmitted to its associated engine via
TCP/IP, while data to be visualized is transmitted from the
engine to the GUI. It should be noted that parameter value
changes are instantaneously transmitted from the GUI to the
engine and are accessed by the engine at the beginning of
its main sequence in order to ensure the consistency of all
parameter values throughout the processing of a single block
of data. Parameter value changes are also index stamped
and saved to disk, allowing the complete reconstruction or
replay of the full system state during offline analysis. In order
to allow for data visualization on the fly, all data elements
are transmitted from the engine to the GUI, providing the
experimenter with the most accurate representation of the
state of the engine. This occurs in parallel with the real-time
main sequence execution, so that this communication does
not interfere with the timing of the execution of the main
sequence of the engine.

2.4. Communication between Components. Communication
between Craniux components utilizes self-establishing and
self-repairing network connections that provide efficient,
reliable data flow robust to any data type or combination
of variables that is sent over them. For communication
between engines, these connections take the form of a ring
that maintains data flow and controls program execution.
For communication between engines and their GUIs or the
data saving manager, a single TCP connection is established.
When creating new engines, this ring requires no input and
single connections only require the developer to provide a
network host name. The only user input necessary is the
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Figure 1: Craniux system framework. The Craniux system is comprised of the acquisition, signal processing, and application engines, their
associated GUIs, the system launcher, and the data saving manager. Engines and user interface elements are spread across four network hosts:
the acquisition host, the signal processing host, the application host, and the user interface host, though the same computer may serve as
multiple hosts. Network communication between system engines, as well as communication between engines and GUIs, is performed using
the TCP/IP protocol. A block of neural data enters the system through the ACquisition engine, which sends preprocessed data to the Signal
processing engine. The signal processing engine generates a control signal, which is then sent to the application engine. The application
engine then communicates any relevant application-specific data (e.g., target information used for neural decoder training) back to the
acquisition engine, which reads the next block of neural data. Bidirectional data transfer occurs between engine-specific GUIs and their
associated engines, with system parameters transferred from the GUI to the engine and visualization data transferred from the engine to the
GUI. Finally, the system launcher is responsible for loading the desired engines, tracking general experimental parameters, and experimental
control.

Table 1: List of current acquisition, signal processing, and application engines.

Engine name Engine type Description

Acquisition template Acquisition
“Empty” acquisition engine generating random data used to maintain system
dataflow

Read UDP binary Acquisition Reads raw neural data transmitted via UDP

SimECoG Acquisition Generates synthetic ECoG data

Signal processing template Signal processing “Empty” signal processing engine used to maintain system dataflow

Linear decoder Signal processing Generates a control signal using linear combinations of input features

Population vector Signal processing Generates a control signal using the population vector algorithm [18]

OLE Signal processing Generates a control signal using the optimal linear estimator algorithm [19]

Application template Application “Empty” application engine used to maintain system dataflow

Center-out cursor control Application Two or three-dimensional cursor control application

Threshold Crossing Application
Sends UDP commands to an external device when control signals cross
user-defined thresholds

Circle drawing Application Circle/ellipse-drawing application [20]

Biofeedback Application Displays real-time feedback of a neural control signal to the subject

IP address of each engine, which is specified on the system
Launcher. Available ports are automatically selected for each
connection.

All network connections use the TCP protocol. TCP was
chosen over UDP because its superior reliability is important
in a ring structure responsible for the control of program
execution; a dropped packet between engines would break
the ring and leave each engine waiting for data that will never
arrive. It is also important to note that Nagle’s algorithm
[21] was disabled for all connections used in the Craniux
system. The Nagle algorithm attempts to reduce TCP packet

overhead and bandwidth usage by intentionally delaying
transmission, so that multiple packets can be combined
before being sent. Here, the latency introduced by this
algorithm is unacceptable, and bandwidth usage is not a
concern. The concept behind Nagle’s algorithm is retained
in our system; however, as all data to be sent simultaneously
is combined into a single packet before transmission.

To send variables over the network, the developer must
only create a list of the variable names on the sending
side of the connection. No information on variable type
or size is needed. The provided variable names are packed
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Figure 2: Engine execution. After initialization, each engine proceeds into the main sequence loop, in which core engine processes are
executed sequentially. Data are first received from the previous engine in the signal chain, and any parameter value changes received from
the engine’s GUI are updated locally. The system next performs any actions specific to the individual engine (e.g., calculation of a control
signal or updating of a display), and sends the results of these actions to the next engine in the signal chain. Current values of any data
items to be visualized are placed in a queue, and data is sent to the data saving manager. The engine then proceeds to the beginning of the
main sequence loop to await the arrival of the next input. Parallel to the main sequence loop are any parallel processes designed to operate
asynchronously. These processes will always include receiving parameter value updates from the GUI and sending visualization data to the
GUI, and may include individual engine-specific operation such as decoder training or monitoring for events. Shaded blocks represent those
areas to be modified by the developer during the creation of new engines, while white blocks represent sections of code providing core
functionality.

together with their values into a single variable of LabVIEW’s
“variant” data type, which is then sent over the network. On
the receiving side of the connection, the data is read and
parsed into the correct values, which are written to those
existing variables on the receiving side with the same name
and data type as the sent variables. Additional information
on the transfer of information between components has been
provided in the supplemental materials.

2.5. Data Saving. The Craniux framework for saving data
is a reliable process that minimizes latency introduced by
saving and creates highly accessible data. Data saving is
conducted by an independent data saving manager, which
receives data from all engines. This data is initially saved in
LabVIEW’s TDMS format, which was specifically created for
quickly and continuously streaming large amounts of data
to the hard drive to help eliminate data-saving bottlenecks
in speed normally introduced by slow writes to disk [17].
When saving data, a packet containing all the variable values
to be saved and the data packet index is placed into a first-
in-first-out (FIFO) buffer. Parallel to the main execution of
Craniux, these packets are removed from the buffer and sent

to the data saving manager, located on the user interface host,
via the communications framework described in Section 2.4.
Upon receiving a packet, the data saving manager streams
the data to a TDMS file. When creating new engines, it is
only necessary to provide a list of variable names to be saved;
these items will be automatically identified and their values
saved accordingly.

A single TDMS file is saved for each experimental
run; stopping or suspending system execution closes all
references to the current data file. Within each data file,
data saved by each engine is separated into two groups:
sampled variables and controls. Sampled variables are data
sampled continuously at each update of the BMI system,
such as cursor position during a brain-controlled cursor
movement task. As controls are normally parameter settings
that are infrequently updated (e.g., the number of targets),
these values are only saved when changed. The current
data packet number is included in every save operation, so
that the experiment can be reconstructed afterwards with
the data properly aligned in time. A separate LabVIEW VI
has been created to convert Craniux TDMS files into the
MATLAB (Mathworks, Inc.) MAT format. These MAT files
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Figure 3: Simulated ECoG experimental setup. Experimenter-controlled mouse position on the simulation computer modulates the high-
gamma power of simulated directionally tuned ECoG signals. These signals are output at 2400 Hz using a National Instruments D/A card
and are read into the Craniux system using the g.USBamp amplification system and BCI2000. The Craniux system then decodes the desired
cursor position from the simulated signals using the population vector algorithm.

contain structures for each engine paired with each data
type (sampled variables and controls). The saved values for
each variable are stored in an array, with the data packet
number array providing the time index for each element.
Array variables are stored as cell arrays, allowing them to
be aligned with their associated data packet numbers and
enabling the data structure to handle dynamic changing of
array sizes during a BMI session.

3. System Validation

3.1. Closed-Loop Cursor Movement Control Using Simulated
ECoG Signals. The experimental setup used for validation
of the Craniux system is shown in Figure 3. An electrocor-
ticographic (ECoG) signal simulator in which experimenter-
controlled mouse cursor movement was used to modulate
the high gamma-band activity of a number of synthetic
signals. This simulator is capable of generating 32 channels
of analog signals with directionally tuned high-gamma band
(70–120 Hz) activity emulating ECoG signals recorded from
human subjects [2, 22] according to the following [6, 18],

S = S1 + d cos(θ)S2, (1)

where S is a single simulated directionally modulated ECoG
signal, S1 is a pink noise signal with a 1/frequency power
falloff [23]. S2 is a second pink noise signal band-pass filtered
between 70 and 120 Hz, d controls the depth of modulation
of the high-gamma band, and θ is the angle between the
preferred direction of the simulated ECoG signal and the
vector pointing from the center of the computer screen to
the current mouse cursor position on the computer screen.
The preferred directions of the 32 simulated signals were
uniformly distributed over two-dimensional (2D) space.
Simulated signals were generated at 2400 Hz using a National
Instruments NI PCI-6723 32 channel analog output board
on a simulation computer (Windows XP x86 operating
system, AMD Athlon 64 FX-62 Dual Core CPU @ 2.81 GHz,
3.5 GB RAM, NVIDIA GeForce 7900 GS video card) and
then stepped down to match the amplitude of typical ECoG
signals recorded from human subjects.

Simulated ECoG signals were then sampled at 1200 Hz
using the g.USBamp amplification system (Guger Tech-
nologies, OEG) on a separate computer (Windows XP x86
operating system, Intel Core i7 CPU 920 @ 2.67 GHz,
2.49 GB RAM, 2 NVIDIA GeForce 9800 GT video cards) and

sent to the Craniux system as binary UDP packets using a
simplified version of the BCI2000 software package. BCI2000
was used in this case due to its reliability and efficiency in
interfacing with the g.USBamp amplification system. These
raw time-domain signals entering the Craniux system were
first converted into the frequency domain using LabVIEW’s
built-in autoregressive (AR) spectral estimation function
(10 Hz bins, 500 ms window) in the read UDP binary
acquisition engine and then passed to the population vector
signal processing engine. Here, signals were normalized to
pseudo-Z-scores based on the following [24, 25],

fnorm,i, j =
fi, j − f i, j

σi, j
, (2)

where fnorm,i, j , fi, j , and f i, j are the normalized, raw, and
mean power of the ith channel and jth frequency band,
respectively, and σi, j is the standard deviation of the raw
band power of the ith channel and jth frequency band.
Mean and standard deviation values were calculated based
on data collected during a baseline condition in which the
computer cursor on the simulation computer remained in
the center of the screen (i.e., no modulation of high-gamma
band activity).

The brain control task used was a typical 2D center-out
design, with the movement direction of a cursor controlled
by multiple ECoG signal features across 32 channels accord-
ing to the population vector algorithm [18]

fi = b0,i + bx,imx + by,imy ,

P =
N∑

i

(
di − b0,i

)
Ci,

(3)

where fi is the activity of individual feature i, mx and my

are the desired movement in the x and y direction, b0,i,
bx,i, and by,i are coefficients found using linear regression
relating desired movement to the activity of feature i, Pi
is the trajectory vector predicted by the activity of feature
i, di is the instantaneous activity of feature i, and Ci =
[bx,i by,i]/(b2

x,i + b2
y,i)

1/2
is a vector representing the preferred

direction of feature i.
The standard workflow used to achieve ECoG-controlled

2D cursor movement with the Craniux framework is
described below. Though simulated ECoG signals were used
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Figure 4: Craniux system screenshot during population vector-based control. (a) Plot of the instantaneous activity of each feature used for
cursor control along its preferred direction (blue) and the resultant population vector (red). (b) R2 value plot indicating the distribution of
R2 values obtained during population vector training (blue) compared to the mean, 80th, 90th, and 95th percentile R2 values obtained after
training on 1000 iterations of target-shuffled data (red, dark orange, light orange, and yellow lines). The threshold above which features are
chosen for use in the decoder is shown by the pink line. (c) R2 values obtained during population vector training arranged by channel and
frequency band. Note that the 70–120 Hz frequency band features show high R2 values across all channels, consistent with the method used
to generate the simulated ECoG signals. (d) The preferred direction distribution of all features. Red lines correspond to those features with
R2 values above the user-determined threshold, while white lines are those features falling below the threshold.

here to validate the system, this workflow will be similar for
real neural signals.

(1) Collection of Baseline Data. Once the Craniux system
is started, approximately 3 minutes of baseline data
is collected, from which the Craniux system will
calculate feature mean and standard deviation values.
These will then be used in the calculation of pseudo-
Z-scores for all ECoG signal features in real time.

(2) Collection of Training Data for the Neural Decoder.
During this period, the experimenter will use the
ECoG signal simulator to generate modulated ECoG
signals based on the target position (i.e., desired
cursor movement direction). The ECoG data along
with target position are automatically buffered by
Craniux for neural decoder training.

(3) Training of the Neural Decoder. During this period,
the buffered data is used to train the neural decoder.
A multiple linear regression procedure is used to
determine the degree of directional tuning and
preferred direction for each ECoG signal feature as
mentioned above [26, 27]. The resulting R-squared
values and preferred directions are displayed by the
population vector GUI, allowing experimenters to

visualize the results on the fly and interactively select
a subset of directionally tuned ECoG signal features
for brain control.

(4) Real-Time Brain Control. Activities of ECoG signal
features selected during step (3) are then used to
generate the population vector, a 2D velocity control
signal that drives the cursor. Figure 4 shows the pop-
ulation vector GUI during closed-loop brain control,
illustrating the user interface elements provided to
the user during this process.

It is worth noting that all the above procedures are con-
ducted in a continuous BMI session without stopping and
restarting the Craniux system. This streamlined workflow
allows BMI studies to be conducted smoothly and efficiently.
Furthermore, steps (2) and (3) can be conducted at any
time during a BMI session in parallel with step (4). This
allows the neural decoder to be recalibrated on the fly to
adapt to any potential changes or nonstationarities of input
neural signals, a key element for achieving and maintaining
reliable brain control [28]. Figure 5 shows an example of
directionally modulated normalized time-frequency data for
one ECoG signal saved by the Craniux system, as well as
trajectories of the cursor during real-time brain control.
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3.2. Brain-Controlled Cursor Movement Using Real ECoG
Signals Recorded from a Human Subject. Further validation
of the Craniux system was conducted in a human subject
undergoing subdural epilepsy monitoring. Informed consent
was obtained from the subject prior to testing; all experimen-
tal procedures were approved by the University of Pittsburgh
Institutional Review Board and followed all guidelines for
human subject research. Experimental methods used were
similar to those presented in [29], with the exception that
the Craniux system was used for data collection and brain
control. Standard ECoG electrodes exhibiting high-gamma
band modulation in response to overt movement screening
tasks were chosen for use in closed-loop control. High-
gamma band power (70–110 Hz) of two neighboring ECoG
electrodes was used to control the vertical movement of a
cursor with a push-pull scheme, with the cursor control
signal calculated according to:

cy = a(s1 − s2)− b, (4)

where cy is the one-dimensional control signal, s1 and s2

are the high-gamma band power of the two neighboring
electrodes used for control, and a and b are gain and offset
terms used to normalize the control signal to zero mean and
unit variance. Thus, in order to achieve satisfactory brain
control, the subject had to decorrelate the activity of the two
electrodes to generate the desired cursor control signal. Brain
control sessions began with the collection of baseline data for
normalization purposes as described in the previous section.
Individual trials began with the placement of the cursor at
the center of the computer screen along with the presentation
of one of two peripheral targets located in the vertical plane
of the workspace (e.g., a “center-out” task). Trials in which
the subject was able to hit the presented target within the
maximum trial length of 10 seconds were deemed successful;
failure to do so resulted in an unsuccessful trial. All trials
were followed by an inter trial interval of 2 seconds in which
neither the cursor nor the target were visible. Figure 6 shows
the results of one brain control session, during which the
subject was able to achieve an 88% success rate.

3.3. System Timing. To evaluate the consistency of system
performance, timing characteristics were analyzed for a
typical Craniux setup using 15th order autoregressive (AR)
spectral estimation of 10 Hz frequency bins over 0.5 second
windows of simulated neural data (see Section 3.1), the linear
decoder signal processing engine, and the center-out cursor
control application engine. Analog and digital data were
sampled by the g.USBamp amplification system at 1200 Hz
and acquired directly by Craniux at a 33.3 ms frame rate. To
trigger timing events, a digital signal was sent from Craniux
back to the digital input of the amplifiers, so that the timing
events could be acquired precisely and synchronously with
the raw analog input signal at 1200 Hz.

Three different timing tests were conducted: a system
processing test, a display update rate test, and an overall
system latency test. The first two tests (system processing
and display update rate) were performed on both a single
computer (Windows XP x86 operating system, Intel Core i7

CPU 920 @ 2.67 GHz, 2.49 GB RAM, 2 NVIDIA GeForce
9800 GT video cards) and with Craniux distributed across
the network, so that data acquisition, spectral estimation,
and GUIs were hosted on one computer (the same as that
used for local timing test, see above) while signal processing
and Application engines, including the 3D render window,
were hosted on a separate computer (Windows XP x86
operating system, AMD Athlon 64 FX-62 Dual Core CPU
@ 2.81 GHz, 3.5 GB RAM, NVIDIA GeForce 7900 GS video
card). For both configurations, tests were conducted using
16, 32, and 64 channels of data. The third test (system
latency) was run only on the single-computer configuration
with processing performed on 32 channels of data.

The first test used 5,000 consecutive frames of collected
data to measure the system processing time, the time between
the arrival of a block of data from the amplifier, and the
time when the Craniux system had finished all processing on
the data and begun waiting on the next block. These results
are shown in the second column of Table 2. As expected,
processing time was found to increase with the number of
processed channels but remained below the 33.3 ms time
required to maintain a consistent frame rate and prevent the
loss of data. Distributing Craniux across the network showed
improvements in processing time for all channel configura-
tions. Since processing time is only required to remain below
the frame rate, running Craniux as a distributed system is
not necessary unless the system is under a heavy load. AR
spectral estimation was found to require the most processing
time, especially as the number of channels increased. These
results indicate the extra processing time made available
when Craniux is run as a distributed system could easily be
utilized to run more complex signal processing algorithms or
to decrease the frame rate.

The second test also used 5,000 consecutive frames of
data but now measured the refresh rate, the amount of time
between consecutive display updates on the center-out cursor
control engine. The results are shown in the third column
of Table 2. The refresh time was found to be 33.3 ms for all
configurations, precisely what would be expected given the
system frame rate. Furthermore, the low variability of this
timing indicates that the user would experience a consistent
cursor update with no noticeable jitter.

The final test measured system latency, the elapsed time
between a neural signal event, and the point in time when
the Craniux system can generate an action in response to
this event. A 10 Hz sine wave with zero offset was input to 1
channel of the amplifier; this channel of data was fed through
the Craniux system to the point at which the display was
updated in the center-out cursor control engine, occurring
just before processing fully completes and the system begins
waiting on the next data block. At this point, if a zero crossing
was detected on the sine wave, the digital output bit being
written back to the amplifier was flipped. In this case, the
elapsed time between a zero crossing of the sine wave (a
simulated neural event) and the bit value change (the time
of the system response) indicates the system latency. Data
was collected for 5,000 consecutive sine wave zero-crossings,
with zero crossing events symmetrically distributed about
the center of each 33.3 ms data frame. In distributing the zero
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Figure 5: Closed-loop brain control using simulated ECoG data. (a) Time-frequency plots of a single simulated ECoG signal averaged across
all repetitions of an 8-target center-out cursor control task. Plots are aligned to target presentation at time t = 0 (dashed white line). In all, a
total of 32 channels of simulated directionally tuned ECoG signals were generated. (b) Real-time cursor trajectories controlled by simulated
ECoG signals using the population vector algorithm.
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Figure 6: Closed loop ECoG-based computer cursor control. One-dimensional computer cursor control using the Craniux system in a subject
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frequency data saved by the Craniux system for the same electrode. Bottom-middle. Control signal generated by the Craniux system to
control computer cursor movement. Positive control signal values move the cursor in the up direction, while negative control signal values
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variance. Bottom. Vertical cursor positions generated by the neural control signal. Dashed black lines represent target onset, green circles
indicate the position of presented targets, blue lines indicate cursor trajectories for successful trials, and red lines indicate cursor trajectories
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Table 2: Characterization of system timing. Craniux system processing time, refresh rate, and latency for local and network system
configurations under various processing loads. Values shown are mean timing values plus or minus one standard deviation from the mean.

System configuration Processing time (ms) Refresh rate (ms) Latency (ms)

Local, 16 channels 12.8± 0.7 33.3± 0.5 N/A

Network, 16 channels 9.9± 0.6 33.3± 0.5 N/A

Local, 32 channels 17.8± 0.8 33.3± 0.7 33.2± 9.6

Network, 32 channels 15.2± 1.0 33.3± 0.4 N/A

Local, 64 channels 28.0± 1.3 33.3± 0.7 N/A

Network, 64 channels 24.9± 0.9 33.3± 0.4 N/A

crossings in this way, it is known that the latency should have
an average of slightly less than half the frame length plus the
mean processing time (33.9 ms for this configuration) and
a range nearly equal to the frame length. The latency was
found to have a mean and standard deviation of 33.2±9.6 ms,
meeting all expectations.

4. Discussion

Craniux is a powerful, yet simple and easily extendable,
open-source framework for BMI studies that require high-
performance real-time BMI software. Currently, a num-
ber of open-source software solutions for BMI research
are available for academic use. These software packages
include extremely specialized, high-overhead systems used
in nonhuman primate BMI research [8, 28, 30], highly-
modular, visual-programming-based software platforms
such as OpenViBE [31], as well as portable, lightweight
systems for human BMI research [13]. Software tools for
more specific BMI research applications have also been made
available, from toolboxes allowing for the interfacing of MEG
systems in real time for BMI use [32, 33] to real-time brain
mapping software capable of quickly identifying signals from
electrocorticographic electrodes related to cortical activity
corresponding to overt movement, speech, and sensory
stimulation [34, 35].

The Craniux framework is inspired by the system archi-
tecture design of BCI2000, and we believe that it takes
advantage of several unique features of the LabVIEW
graphical development environment for developing real-
time BMI software. By making it an open-access and open-
source software framework, we hope to serve the research
community on at least two fronts. First, at the basic level,
Craniux is a BMI software solution with an easy-to-use
graphical user interface. Those researchers interested in BMIs
can use this software to conduct research without writing
custom software. Second and most importantly, we hope
this framework will facilitate the development of new BMI
paradigms and signal processing algorithms by the research
community through providing the basic functionalities of
BMI system operation, allowing researchers to focus on the
development of their specific research questions. Finally, as
this framework is set up in the LabVIEW environment, it
naturally inherits the many advantages offered by the high-
level graphical nature of LabVIEW programming.

In its current form, the Craniux framework demonstrates
the benefits and ease with which it can be used and mod-
ified to develop new BMI paradigms and algorithms. The
simplicity of the LabVIEW programming language makes
the creation of new BMI engines accessible to individuals
who may not be familiar with object-oriented programming.
Would-be developers can simply take one of the provided
engine templates, implement their desired operation, and
save the engine under a new name (this process is described
in greater detail in the supplemental materials). This new
engine will then be available for use in the Craniux frame-
work, without the need for the compiling of code down to
executables as required by programming languages such as
C/C++. The debugging of newly created engines can also
be easily performed during run time through the use of
LabVIEW’s built-in debugging tools. The dataflow-driven
nature of Craniux further simplifies debugging, allowing
system execution to be halted and resumed at any point
during operation without the loss of the current state of the
system. These tools, along with advanced data visualization
options, make the rapid prototyping of highly sophisticated
neural signal processing techniques possible.

Craniux currently offers a rich set of options to visualize
BMI data on the fly at multiple processing stages in various
formats. Neural signals, such as EEG, MEG, or ECoG, can
be viewed as scrolling time-frequency plots or dynamic
spatiotemporal plots in the frequency domain. This is
beneficial for online examination of neural signal quality, as
certain features may be difficult to view in a simple plot of
time-domain raw neural signals. The results of calculations
performed during the training and application of neural
decoding algorithms can also be visualized on the fly, provid-
ing researchers with the opportunity to select neural signal
features, visualize decoding weights, and examine decoder
outputs without suspending operation of the system. For
example, our implementation of the population vector
algorithm allows researchers to dynamically change the value
of the R-squared threshold used for feature selection, view
the preferred direction distribution of the currently selected
features, and view the instantaneous contribution of all
features to the control signal output by the algorithm. This
visualization capability is of particular importance when
using and developing sophisticated decoding algorithms, as
it allows BMI researchers to judge the validity of the decoding
weights on the fly and make adjustments of neural signal
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processing and other BMI experiment parameters accor-
dingly.

We have also shown the potential for enhancement
in Craniux performance through its distribution across
multiple network hosts, as assigning individual engines to
separate computers eliminates the possibility of competition
between engines for system resources. The separation of
graphical user interface elements from real-time engines
further improves system performance by ensuring the real-
time engine execution is not affected by user interface
interaction events or data visualization. Furthermore, the
capability to distribute the Craniux system across multiple
network hosts could prove especially useful in long-term
human BMI studies. Experimental sessions could be run
remotely on a daily basis, eliminating the need for either
subjects or investigators to travel to participate in these
sessions. This will become important as BMI technology
moves into preclinical and clinical trials.

Craniux also offers a streamlined workflow for BMI
research. It allows for on-the-fly control of specific exper-
imental parameters, offering experimenters great flexibility
for BMI user training. For example, an experimenter can
quickly adjust the output gain of a neural decoder if it
is deemed that a brain-controlled cursor is moving in the
correct direction but with a very low speed. In our expe-
rience, this flexibility is critical for effective BMI training.
Meanwhile, the Craniux system is capable of capturing all
changes in experimental parameters along with BMI data,
allowing researchers to perform offline analysis of BMI
sessions. Furthermore, various BMI procedures, including
the collection of baseline data for the normalization of neural
signals and the training of neural decoding algorithms, may
be performed without the cessation of system operation. This
provides both BMI researchers and experimental subjects
with a seamless experience in which system parameters can
be continuously updated to improve BMI performance.

It should be noted that the timing of the Craniux
system is dependent on the timing of the acquisition engine,
which currently can be driven by UDP packets sent from
neural acquisition hardware or controlled explicitly by the
acquisition engine itself (e.g., the “SimECoG” engine). Any
number of neural recording hardware solutions may be
used for BMI operation provided that data recorded by
these devices can be packaged and transmitted via UDP.
Additionally, hardware-specific acquisition engines can also
be created within the Craniux framework.

In addition, it is important to mention that editing or
developing new BMI engines in the Craniux framework
requires the purchase of LabVIEW. However, it is not
uncommon for open-source research tools to be built upon
commercial software; two such examples are the EEGLAB
[36] and FieldTrip packages for neural data analysis. These
packages are both built upon MATLAB, an extremely
powerful commercial data analysis software package. Just as
many researchers are now using MATLAB instead of custom-
written C programs for data analysis, we believe that the time
and effort saved by the use of the Craniux system in BMI
software development will outweigh the cost of the LabVIEW
software. Furthermore, if the Craniux software is to be

used as a self-contained out-of-the-box software package,
all engines can be compiled down to binary executable files
and run using the freely available LabVIEW runtime engine,
eliminating the need for the LabVIEW software. Finally, as
demonstrated in Section 3, given the computing capability
of current personal computers and the code optimization
inherently performed by the LabVIEW environment, the
overall performance of the Craniux system is comparable
to BMI systems developed using other programming lan-
guages. Hence, the gain from using the high-level LabVIEW
programming environment does not come at the expense of
significant sacrifices in system performance.

The Craniux software package, including in-depth doc-
umentation and detailed operation instructions for all
engines, has been made available free of charge to academic
institutions and can be accessed at http://hrnel.pitt.edu/Soft-
ware.html. The Craniux software package can be down-
loaded as a library of LabVIEW virtual instruments (VIs),
and all stable system updates will be made available for
download.

5. Conclusion

While other open-access open-source BMI software solu-
tions are currently available, we feel that the Craniux software
package fills a specific need in the realm of BMI research.
Powerful yet lightweight, this system allows experimenters
to rapidly develop and test cutting-edge technology in
an online environment, whether it is new neural signal
processing techniques, new neural decoders, or advanced
prosthetic devices. This system offers an easy-to-use “out-of-
the-box” solution for BMI research as well as other neural
data visualization and processing purposes. Additionally, the
Craniux system provides an extendable framework through
the provision of template engines. The provided framework
possesses the basic fundamental architecture for running
closed-loop BMI experiments and enables other researchers
to take advantage of LabVIEW functionality to design and
conduct novel experimental paradigms without the need to
implement their own core system framework. It is also worth
noting that functionality offered by the Craniux framework
also lends itself useful for other neuroscience research and
even neurorehabilitation applications that could benefit from
real-time processing and visualization of neural data, such as
cortical source imaging using EEG or MEG recordings. It is
with these characteristics in mind that we feel the Craniux
software package will prove an important addition to the
BMI research community.
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C. Fischer, “Attention modulates gamma-band oscillations
differently in the human lateral occipital cortex and fusiform
gyrus,” Cerebral Cortex, vol. 15, no. 5, pp. 654–662, 2005.

[25] E. Edwards, S. S. Nagarajan, S. S. Dalal et al., “Spatiotemporal
imaging of cortical activation during verb generation and pic-
ture naming,” NeuroImage, vol. 50, no. 1, pp. 291–301, 2010.

[26] A. B. Schwartz, R. E. Kettner, and A. P. Georgopoulos,
“Primate motor cortex and free arm movements to visual
targets in three-dimensional space. I. Relations between
single cell discharge and direction of movement,” Journal of
Neuroscience, vol. 8, no. 8, pp. 2913–2927, 1988.

[27] W. Wang, S. S. Chan, D. A. Heldman, and D. W. Moran,
“Motor cortical representation of position and velocity during
reaching,” Journal of Neurophysiology, vol. 97, no. 6, pp.
4258–4270, 2007.

[28] D. M. Taylor, S. I. H. Tillery, and A. B. Schwartz, “Direct
cortical control of 3D neuroprosthetic devices,” Science, vol.
296, no. 5574, pp. 1829–1832, 2002.

[29] W. Wang, A. D. Degenhart, J. L. Collinger et al., “Human
motor cortical activity recorded with micro-ECoG electrodes



Computational Intelligence and Neuroscience 13

during individual finger movements,” in Proceedings of the
31st Annual International Conference of the IEEE Engineering
in Medicine and Biology Society: Engineering the Future of
Biomedicine (EMBC ’09), pp. 586–589, September 2009.

[30] D. Bacher, J. McFerron, N. Krishnamurthy, and A. Batista, “An
experimental rig for closed-loop neuroprosthetics,” in Poster
Presented as Part of the Society for Neuroscience Conference, pp.
1–5, Washington, DC, USA, September 2008.

[31] Y. Renard, F. Lotte, G. Gibert et al., “OpenViBE: an open-
source software platform to design, test, and use brain-
computer interfaces in real and virtual environments,”
Presence: Teleoperators and Virtual Environments, vol. 19, no.
1, pp. 35–53, 2010.

[32] G. Sudre, W. Wang, T. Song et al., “rtMEG: a real-time
software toolbox for brain-machine interfaces using
magnetoencephelography,” in Proceedings of the 17th
International Conference on Biomagnetism Advances in
Biomagnetism (Biomag ’10), vol. 28, pp. 362–365, March 2010.

[33] “The FieldTrip buffer for real-time access to EEG/MEG
data,” October 2010, http://fieldtrip.fcdonders.nl/developm-
ent/realtime/buffer.

[34] G. Schalk, E. C. Leuthardt, P. Brunner, J. G. Ojemann, L.
A. Gerhardt, and J. R. Wolpaw, “Real-time detection of
event-related brain activity,” NeuroImage, vol. 43, no. 2, pp.
245–249, 2008.

[35] G. Schalk, P. Brunner, L. A. Gerhardt, H. Bischof, and J. R.
Wolpaw, “Brain-computer interfaces (BCIs): detection instead
of classification,” Journal of Neuroscience Methods, vol. 167,
no. 1, pp. 51–62, 2008.

[36] A. Delorme and S. Makeig, “EEGLAB: an open source
toolbox for analysis of single-trial EEG dynamics including
independent component analysis,” Journal of Neuroscience
Methods, vol. 134, no. 1, pp. 9–21, 2004.


	Introduction
	System Architecture
	Distributed Engine Framework
	System Launcher
	Acquisition Engine
	Signal Processing Engine
	Application Engine
	Data Saving Manager

	Engine Execution
	Graphical User Interface (GUI) Elements
	Communication between Components
	Data Saving

	System Validation
	Closed-Loop Cursor Movement Control Using Simulated ECoG Signals
	Brain-Controlled Cursor Movement Using Real ECoG Signals Recorded from a Human Subject
	System Timing

	Discussion
	Conclusion
	Acknowledgments
	References

