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Abstract
Fetal alcohol spectrum disorder (FASD) is the most common preventable cause of mental
retardation in the USA. Ethanol impairs neuronal survival and function by two major mechanisms:
1) it inhibits insulin signaling required for viability, metabolism, synapse formation, and
acetylcholine production; and 2) it functions as a neurotoxicant, causing oxidative stress, DNA
damage and mitochondrial dysfunction. Ethanol inhibition of insulin signaling is mediated at the
insulin receptor (IR) level and caused by both impaired receptor binding and increased activation
of phosphatases that reverse IR tyrosine kinase activity. As a result, insulin activation of PI3K-
Akt, which mediates neuronal survival, motility, energy metabolism, and plasticity, is impaired.
The neurotoxicant effects of ethanol promote DNA damage, which could contribute to
mitochondrial dysfunction and oxidative stress. Therefore, chronic in utero ethanol exposure
produces a dual state of CNS insulin resistance and oxidative stress, which we postulate plays a
major role in ethanol neurobehavioral teratogenesis. We propose that many of the prominent
adverse effects of chronic prenatal exposure to ethanol on CNS development and function may be
prevented or reduced by treatment with peroxisome-proliferated activated receptor (PPAR)
agonists which enhance insulin sensitivity by increasing expression and function of insulin-
responsive genes, and reducing cellular oxidative stress.
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The Public Health Problem
Gestational exposure to alcohol is the leading preventable cause of mental retardation in
North America. As many as 7 per 1000 women binge drink during pregnancy, and even
higher percentages consume alcohol at various times during pregnancy. Binge drinking has
not declined among women of child-bearing age in the USA.1 The syndrome caused by
maternal consumption of alcohol during pregnancy is termed, “Fetal Alcohol Spectrum
Disorders” (FASD).2 FASD is not one entity, but rather a collection of heterogeneous
disorders that range broadly in terms of severity and outcomes.3 Fetal alcohol syndrome
(FAS) is the most severe form of FASD, and associated with intrauterine growth restriction,
central nervous system (CNS) malformations, mental retardation, and craniofacial and
skeletal defects, whereas less severe effects of prenatal alcohol exposure have been
classified as alcohol-related birth defects and alcohol-related neurodevelopmental disorders.
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4 The economic burden of FASD/FAS is high5, and despite public health efforts, the
incidence rates have not declined in the past decade.6 Epidemiologic data indicate that in the
US, FAS rates range from 0.2-1.5 per 1,000 live births, whereas alcohol-related birth defects
and alcohol-related neuro-developmental disorders occur in approximately 0.9% of live
births.7

The tendency to abuse alcohol during pregnancy could be consequential to heavy chronic or
binge alcohol abuse during adolescence. In this regard, attendant sustained structural and
functional abnormalities in the brain8-11, including deficits in performing executive, visual-
spatial12-14, and working memory tasks15, might contribute to poor judgment concerning
alcohol and drug misuse during pregnancy. Increased tendency to abuse alcohol during
child-bearing years, including its inadvertent misuse during pregnancy, could account for the
high prevalence rates of attention deficit hyperactivity disorder (ADHD) in the United
States.16-18 Children with ADHD and deficits in visual-spatial, fine motor, and cerebellar
learning are more challenged8,19-21, and if their problems go unrecognized or ignored, the
risk for engaging in aberrant, socially unacceptable behaviors, including drug and alcohol
dependence and abuse as adolescents or young adults, also increases.22-26 Experimentally, it
has been demonstrated that alcohol misuse during adolescence does increase the propensity
to consume alcohol as adults.27 In essence, alcohol abuse in adolescents and young adults
establishes a vicious cycle whereby impaired judgment and cognition increase the risk of
causing pre-natal alcohol exposure. Long-term consequences of prenatal alcohol exposure
range from behavioral abnormalities to learning disabilities and ADHD, to mental
retardation.19,20,28-31 Presumably, structural and functional CNS abnormalities mediate the
increased tendency of adolescents and young people to participate in high-risk behaviors,
including alcohol abuse during pregnancy.

Prenatal Ethanol Exposure Impairs CNS Growth and Development
Heavy gestational exposure to alcohol can be teratogenic, resulting in gross abnormalities in
the developing CNS2,17,32-35 including microencephaly, white matter hypomyelination,
hydrocephalus, cerebellar hypoplasia, neuronal migration disorders, and neuroglial
heterotopias.5,32,36-43 Moderate levels of prenatal alcohol exposure tend to be less harmful,
although they still lead to structural and functional abnormalities, including altered gene
expression in the brain40,44-46 and impairments in cognitive, behavioral, and motor
functions.47 Ethanol mediates its neurotoxic effects on proliferating and immature neuronal
cells by causing permanent structural and functional abnormalities that promote cell
death41,48-50 and impair neurotransmission and plasticity.27,51-55 Correspondingly, prenatal
ethanol exposure causes sustained cognitive-motor deficits in children, adolescents, and
young adults.20,28 29

Although the mechanisms are not entirely understood, based on the known targets of alcohol
neurotoxicity and structure-function relationships, long-term cognitive deficits are likely due
to impaired function of the hippocampus and anterior cingulate region of the frontal lobe.
Sustained motor deficits could be caused by structural and functional impairments in the
cerebellum. Behavioral abnormalities are probably caused by loss of neurons within
hypothalamic-limbic brain structures. Our research has focused on the role of impaired
insulin and insulin-like growth factor (IGF) signaling as mediators of neuro-developmental
abnormalities caused by chronic gestational exposure to alcohol.40,42,50,56 Others have
examined the contributions of impaired IGF actions in relation to sustained deficits in neuro-
cognitive function caused by prenatal alcohol exposure.57-62 Herein, we review the
importance of insulin and IGF signaling in relation to CNS neuronal function, and the
mechanisms and potential consequences of ethanol-impaired insulin/IGF signaling in brain.
While emerging data suggest alcohol-mediated epigenetic modifications in gene expression
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may serve as underlying mechanisms of the brain structural abnormalities and associated
aberrant behaviors27,63-67, it is noteworthy that at least some of these effects are linked to
perturbations in IGF, in particular IGF-2 expression and function in the CNS.67,68

Insulin Regulates Growth, Viability and Function in CNS Neurons by
Signaling through Insulin Receptor Substrate Molecules

In the CNS, neuronal survival, energy metabolism, and plasticity are critical for maintaining
cognitive and motor functions, and regulated through the actions of insulin and IGF types 1
and 2. Insulin, IGF-1 and IGF-2, and their corresponding receptors are abundantly expressed
in various cell types throughout the brain, including neurons.69-71 The highest brain levels
of insulin and IGF polypeptide and receptor expression are distributed in the hypothalamus,
temporal lobe, and cerebellum, which notably represent major targets of ethanol
neurotoxicity. Insulin promotes neurite outgrowth, protein synthesis, neuronal cytoskeletal
protein expression, and nascent synapse formation.72 The stimulatory effects of insulin are
mediated through complex intracellular signaling pathways, beginning with ligand binding
and activation of the intrinsic receptor tyrosine kinase (RTK).69,72-78 Insulin RTK
phosphorylates specific cytosolic molecules, including one of its major substrates, insulin
receptor substrate, type 1 (IRS-1). Tyrosyl phosphorylated IRS-1 (PY-IRS-1) transmits
intracellular signals that mediate growth, metabolic function, and viability by interacting
with downstream src-homology 2 (SH2)-containing molecules through specific motifs
located in the C-terminal region of IRS-1. Phosphorylation of tyrosine residue 897 within
the YVNI motif of IRS-1 (897YVNI) enables binding to the growth-factor receptor-bound
protein 2 (Grb2) adapter molecule, whereas phosphorylation of tyrosine 1180 (1180YIDL
motif) enables IRS-1 interaction with Syp protein tyrosine phosphatase, and phosphorylation
of tyrosine residues 613 and 942 (613YMPM and 942YMKM motifs) leads to IRS-1 binding
to the p85 subunit of phosphatidylinositol-3 kinase (PI3K). Grb2 binds to PY-IRS-1 via its
SH2 domain, and to a prolinerich region of son-of-sevenless (SOS) through its SH3 domain.
Sos complexed with PY-IRS-1 and Grb2, interacts with Ras-GDP, catalyzes a GDP/GTP
exchange on Ras, which promotes sequential activation of p21ras, mitogen-activated protein
kinase kinase (MAPKK), and MAPK. Erk MAPK activation directly contributes to growth
factor-stimulated mitogenesis, neuritic sprouting, and gene expression. Tyrosyl
phosphorylated Syp acts as an adapter protein between the Grb2-SOS complex and the
epidermal growth factor (EGF) or platelet-derived growth factor (PDGF) receptor, whereas
catalytically inactive (non-phosphorylated) Syp inhibits MAPK activity. Therefore, the
catalytic substrates of Syp may help regulate mitogenic signals and cell cycle progression.
The binding of PY-IRS-1 to p85 stimulates glucose uptake and inhibits apoptosis by
signaling through Akt/Protein kinase B. In addition, insulin signaling through PI3K
phosphorylates and thereby inactivates glycogen synthase kinase 3β (GSK-3β). GSK-3β has
roles in energy metabolism, cell survival, and phosphorylation of neuronal cytoskeletal
proteins. A very similar signaling cascade exists for IGF-1.

Ethanol Inhibits Neuronal Responses to Growth Factors
Ethanol-induced developmental arrest in the CNS may be due to impaired responses to
various growth factors.56,58,61,79,80 For example, ethanol inhibits bFGF-, PDGF-AA-,
PDGF-BB-, NGF, and IGF-1-stimulated proliferation and cell cycle progression in neural
cells.61,81-83 Ethanol inhibition of neuronal proliferation can be mediated by reduced levels
of growth factor receptor expression, growth factor stimulated receptor autophosphorylation,
abolishment of the association between growth factor receptor and Ras GTPase-activating
protein (Ras-GAP), and inhibition of Erk MAPK activation.82 Major consequences of
ethanol-impaired neuronal responses to growth factor stimulation include reduced viability
(increased cell death), motility, adhesion, mitochondrial function, and acetylcholine
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homeostasis. 40,54,83-88 Importantly, many of these adverse effects of ethanol are mediated
by reduced phosphorylation and consequently increased activation of GSK-3β.42,50, 89-93

Ethanol Inhibits Insulin and IGF1 Signaling Through IRS-1 in Immature
Neuronal Cells

Since insulin and IGFs have significant roles in regulating many functions in the immature
brain, understanding how ethanol inhibits the corresponding signaling pathways will likely
provide important mechanistic clues regarding the pathogenesis of FASD and its associated
CNS developmental abnormalities. Previous studies demonstrated that ethanol inhibits
phosphorylation and activation of insulin and IGF RTKs, as well as down-stream signaling
through IRS-1.94-98 In addition, ethanol inhibits G-protein expression 99, cyclic AMP-
dependent signaling100, IRS-1-associated PI3 kinase94,98,101,102, and second messenger
cascades such as calcium phospholipid-dependent protein kinases (PKC).103 PI3 kinase is
important for signaling cell survival through Akt/protein kinase B (PKB).104 Therefore,
inhibition of insulin signaling through PI3 kinase could account for the increased apoptosis
observed in ethanol-exposed CNS cells. Apart from it’s inhibitory effects on PI3K-Akt
signaling, ethanol promotes neuronal apoptosis by increasing intracellular Ca++ release105,
activating pro-death signaling through Bax, Bad, GSK-3β, and caspases, or by inhibiting
survival signaling through Bcl-2.46,50,93,98,101,106,107 Since the signaling networks
corresponding to a number of trophic factor receptors expressed in brain converge
downstream to modulate MAPK, PI3K-Akt, Bax, Bad, Bcl-2, GSK-3β, and caspases,
ethanol’s adverse effects on neuronal growth, survival, energy metabolism, and plasticity
could be mediated by inhibition of one or more different receptors, including insulin and
IGF-1. Studies utilizing immature brains (mainly cerebella) and cultured neuronal cells
demonstrated that ethanol inhibits insulin and IGF signaling at multiple points within the
cascade, beginning at the receptor level and extending downstream through pathways that
regulate growth, survival, energy metabolism, neuronal migration, and plasticity (Figure 1).
88,101,108-111 Ethanol’s inhibitory effects on insulin/IGF stimulated neuronal survival
through blockage of downstream signaling through PI3 kinase-Akt50,88,108,112 promote both
apoptosis88,106,108 and mitochondrial dysfunction.50,84,85,108,112 At proximal points,
ethanol inhibition of insulin and IGF stimulated survival signaling in brain is mediated at the
receptor level by two distinct mechanisms: 1) reduced receptor binding and attendant
activation of receptor tyrosine kinases (RTK) and corresponding downstream signaling
through PI3 kinase-Akt40; and 2) increased activation of phosphatases that negatively
regulate RTK (PTP-1b) and PI3 kinase (PTEN) and increase GSK-3β activity.56,98,102

Therefore, chronic ethanol exposure causes insulin/IGF resistance in the developing brain.

Ethanol Impairs Mitochondrial (Mt) Function
Ethanol toxicity perturbs the structural and functional integrity of mitochondria in brain.
50,112-118 Experimental chronic ethanol feeding results in oxidative modification of
MtDNA, manifested by increased 8-hydroxydeoxyguanosine (8-OHdG) incorporation,
reduced MtDNA content, and increased MtDNA single-strand breaks.84,112,119-122 Ethanol-
induced MtDNA damage and impaired Mt function increase cellular sensitivity to toxins,
and promote Mt permeability transition resulting in necrosis or apoptosis.84,112,121,122

These adverse effects of ethanol are likely mediated by increased oxygen free radical
production, lipid peroxidation, and inhibition of Mt glutathione.116,123-126 Ethanol
metabolism by the microsomal monoxygenase system, involving the alcohol-inducible
cytochrome P450 2E1 could contribute to oxidative cellular injury through hydroxylethyl
radical formation.127,128 Therefore, with regard to the CNS, we hypothesize that ethanol-
induced MtDNA damage and impaired Mt function cause defects in energy metabolism and
oxidative phosphorylation, leading to reduced neuronal viability, as well as compromised
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activities required for synaptic plasticity and cognitive/motor functions. In this regard,
experimental results demonstrated that chronic ethanol exposure during development results
in significantly reduced expression of mitochondria-encoded cytochrome c oxidase and ATP
synthase, and increased expression of NADPH oxidase.50,84,112 These effects lead to
reduced ATP production, and increased indices of oxidative stress, including DNA damage
and lipid peroxidation in the developing brain.84,115,118 In addition to impairing
mitochondrial function, chronic ethanol exposure increases cellular stress by promoting free
radical generation, endoplasmic reticulum stress, and pro-apoptosis signaling, and inhibiting
survival pathways.50,54,92,112,115-117,125,129-132

The extent to which these mechanisms mediate the teratogenic effects of prenatal alcohol
exposure has been demonstrated through the use of anti-oxidants to minimize the adverse
effects of ethanol on brain development and function.116,117,120,126,130,133

Downstream Consequences of Ethanol-Impaired Insulin/IGF Signaling in
the CNS

Neuronal integrity and function in the CNS are highly influenced by insulin and IGF
signaling. For example, CNS neuronal survival, energy metabolism, and plasticity, which
are critical for maintaining cognitive and motor functions, are regulated through the actions
of insulin and IGF types 1 and 2.72 In this regard, insulin promotes neurite outgrowth,
protein synthesis, neuronal cytoskeletal protein expression, and nascent synapse formation.
134,135 Insulin and IGF-1 regulate the expression and phosphorylation of tau 136,137, an
important neuronal cytoskeletal protein, while ethanol-impaired signaling through insulin or
IGF-1 increases GSK-3β phosphorylation of tau, which is pathologic and contributes to
neurodegeneration.138,139 Insulin and IGF-1 signaling also regulates choline
acetyltransferase (ChAT)40,140,141, which is required for acetylcholine biosynthesis.

Acetylcholine is a major neurotransmitter that mediates cognitive-motor functions in the
brain and is deficient in brains of chronic ethanol-exposed animal models.40,129,142-145

Although ethanol has demonstrated inhibitory effects on many neurotransmitter systems that
modulate neuronal activity and plasticity51-53,129,146-150, herein we emphasize the adverse
effects of ethanol on cholinergic systems because of their widespread distribution in the
brain and their regulation by insulin/IGF signaling.40,72,151

In aggregate, the data suggest that an important mechanism by which ethanol impairs
neuronal survival, growth, neurotransmitter function and plasticity is to inhibit the actions of
insulin and IGFs in the developing brain. On a cellular basis, compromise of insulin/IGF
signal transduction networks leads to increased neuronal apoptosis, mitochondrial
dysfunction with deficits in energy metabolism, oxidative stress, activation of pro-death and
pro-stress signaling, and deficits in cholinergic function, all of which are features of FASD.
40,56,84 Therefore, it is likely that ethanol inhibition of insulin and IGF signaling in the brain
significantly contributes to the cognitive and motor impairments associated with FASD.
Together, these observations led us to the hypothesis that insulin sensitizer agents such as
peroxisome-proliferator activated receptor agonists that both enhance expression and
function of downstream targets of insulin/IGF signaling and reduce cellular stress may have
therapeutic application in the context of FASD.

Peroxisome-proliferator Activated Receptors (PPAR)
PPAR-α, δ, and γ, are nuclear hormone receptors that bind to DNA and regulate gene
transcription in a broad range of cells and tissues.152-155 PPARs are regulated by ligand
binding and mediate their effects by heterodimerizing with the retinoid × receptor.152-155
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PPARs have important roles in regulating adipocyte growth and differentiation, insulin
responsiveness, and cardiovascular function.152-155 For example, the enhanced insulin
sensitivity imparted by PPAR-γ agonists led to their current use in the treatment of type 2
diabetes mellitus.156 In addition, PPAR agonists can modulate vascular function, resulting in
vasorelaxation and lowered blood pressure through increased release of nitric oxide.157,158

Correspondingly, dominant-negative mutations in the PPAR-γ gene result in early onset
hypertension and insulin resistance in humans.159 In addition to their actions on endocrine
signaling, PPARs help protect cells from the adverse effects of lipid peroxidation.154,155,160

Lipid peroxidation is a recognized consequence of oxidative stress in the brain, and
increased levels of lipid peroxidation products have been detected in brains with
neurodegeneration161-164, as well as in disease states that cause mitochondrial dysfunction
and oxidative stress.84,165

Potential Therapeutic Role for PPAR Agonists in FASD
To begin examining potential therapeutic effects of PPAR agonists in relation to ethanol-
induced neuro-cognitive deficits, we generated an in vivo model in which Long Evans rat
pups were treated with ethanol (3 mg/g) or vehicle by intraperitoneal injection.166,167 (50 μl)
on postnatal days (P) 4, P6, and P8. Rats in both groups were also treated with vehicle or a
PPAR-delta (δ agonist (L-165,041; 2 μg/Kg) by i.p. injection on P5, P7, and P9. We
previously showed that L-165,041 treatment could prevent insulin resistance-mediated
neurodegeneration141 and alcohol-induced liver disease168 in vivo. On P16 the rats were
evaluated by rotarod tests of latency to fall using an incremental fixed speed protocol (10
trials, 1-5 rpm)169, and data from Trials 7-10 (speed= 5 rpm) were grouped and analyzed by
two-way ANOVA with the Bonferroni post-hoc test. From P27 to P30, rats were evaluated
by Morris Water Maze testing as previously described.141 In brief, rats were subjected to 3
daily trials in which the latencies (seconds) required to locate and land on the platform were
recorded. On Day 1, the platform was visible, but on Days 2-4, the platform was submerged.
On Days 3 and 4, the water entry quadrants were randomized for each trial. Morris water
maze data were grouped and analyzed by repeated measures mixed models ANOVA (diet ×
treatment × trial day) using area-under-the-curve (AUC) calculations corresponding to
performance over the 3 trials each day 141. For both studies, 8 male rats were included in
each sub-group.

Rotarod performance differed significantly among the groups as demonstrated by two-way
ANOVA (F=4.98, P=0.028 for interaction of group by treatment; F=4.754, P=0.031 for
treatment effect; F=3.04, P=0.084 for group effect). The Bonferroni post-hoc test
demonstrated that vehicle-treated ethanol exposed rats had a significantly shorter mean
latency to fall compared with all other groups (P<0.05; Figure 2A). In essence, L-165,041
treatment of ethanol-exposed rats increased the mean latency to fall, resulting in an overall
performance that was similar to controls treated with either vehicle or the PPAR-δ agonist.
With regard to the Morris water maze tests, all groups exhibited gradual improvements in
latency required to locate the platform. The repeated measures mixed model ANOVA test
demonstrated highly significant inter-group performance differences due to treatment effects
(F=20.83, P<0.0001) and trial day/time (F=95.72, P<0.0001). Furthermore, Bonferroni post-
hoc tests revealed significant differences in mean latency for locating the platform between
the Control+Vehicle and Ethanol+Vehicle groups on Trial Days 1 (P<0.05) and 4 (P<0.01),
between the Control+PPAR-δ and Ethanol+Vehicle groups on Trial Days 1 (P<0.001), 2
(P<0.001), 3 (P<0.05), and 4 (P<0.01), and between the Control+PPAR-δ and Ethanol
+PPAR-δ groups on Trial Days 1 (P<0.001), 2 (P<0.01), and 4 (P<0.01). In essence, ethanol
treatment significantly impaired performance on the Morris water maze tests relative to
controls that were treated with either vehicle or the PPAR-δ agonist. Importantly, PPAR-δ
agonist treatment improved Morris water maze performance in ethanol exposed rats such
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that, on Trial Days 3 and 4 when the platform was hidden and the entry points were
randomized, their mean latencies needed to locate the platform were similar to controls, and
significantly shorter than in the ethanol+vehicle group (Figure 2B).

These findings suggest that early treatment with a PPAR-δ agonist can reduce the severity or
prevent ethanol-mediated cognitive-motor deficits. Moreover, these results support our main
hypothesis.

HYPOTHESIS
The experimental evidence to date suggests a dual mechanism underlies ethanol-mediated
CNS neuronal death during development, namely: 1) impaired survival signaling through
brain insulin (IRβ) and probably also IGF-1 receptors, as evidenced by reduced levels of
tyrosine phosphorylated (PY) IRβ, IRβ tyrosine kinase (TK) activity, PY-insulin receptor
substrate-1 (IRS-1), and PI3 kinase-Akt; and 2) increased oxidative stress that is principally
mediated by the combined effects of mitochondrial dysfunction (Figure 3), increased
generation of reactive oxygen species (ROS), lipid peroxidation, and DNA damage. Our
working hypothesis is that chronic gestational exposure to ethanol produces long-lasting and
progressive abnormalities in CNS structure and function due to persistent impairments in
insulin signaling caused by CNS insulin resistance. We propose that by circumventing
upstream problems in the insulin signaling cascade, i.e. bypassing receptor functions,
activating downstream pathways, and altering gene expression, we will be able to
therapeutically rescue CNS neuronal cells from ethanol-mediated injury/degeneration.
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FIG. 1.
Schematic of ethanol’s adverse effects on insulin/IGF signaling in the brain. Ethanol inhibits
phosphorylation and activation of insulin/IGF-1 receptor tyrosine kinases, as well as
downstream mediators of neuronal growth, survival, plasticity, energy metabolism,
migration, and neurotransmitter function. In addition, ethanol stimulates GSK-3β activity
through inhibition of PI3K and activation of PTEN phosphatase.
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FIG. 2A & 2B.
Therapeutic benefit of PPAR-delta (δ treatment in an ethanol exposure model. Long Evans
rat pups were treated with ethanol (3 mg/g) or vehicle (Veh) by i.p. injection (50 μl) on
postnatal days (P) 4, 6, and 8. Rats were also treated with vehicle or L-165,041 (2 μg/Kg), a
PPAR-δ agonist by i.p. injection on P5, P7, and P9. Eight male rats were included in each
sub-group. (A) On P16, the rats were evaluated by rotarod testing of latency to fall using an
incremental (1-5 rpm) fixed speed protocol. Rotarod data from trials 7-10 (speed= 5 rpm)
were grouped and analyzed by two-way ANOVA (F=4.98, P=0.028 for interaction of group
by treatment; F=4.754, P=0.031 for treatment effect; F=3.04, P=0.084 for group effect). The
Bonferroni post-hoc test revealed that the mean latency to fall was significantly shorter for
the Ethanol (EtOH) +Veh group compared with all other groups (P<0.05). (B) From P27 to
P30, rats were evaluated by Morris Water Maze testing with 3 trials per day. On Day 1, the
platform was visible, but on Days 2-4, the platform was submerged. On Days 3 and 4, the
water entry quadrant was randomized. The latency for locating and landing on the platform
was recorded. Data were analyzed using area-under-the-curve (AUC) calculations
corresponding to performance over the 3 trials each day. The graph depicts the mean ±
S.E.M. of AUC latencies for each group on each day of testing. Inter-group comparisons
were made using repeated measured mixed model ANOVA (F=20.83, P<0.0001 for
treatment; and F=95.72, P<0.0001 for Trial Day). Post-hoc Bonferroni tests demonstrated
significant differences between Control+Vehicle and Ethanol+Vehicle on Trial Days 1
(P<0.05) and 4 (P<0.01), between Control+ PPAR-δ and Ethanol+Vehicle on Trial Days 1
(P<0.001), 2 (P<0.001), 3 (P<0.05), and 4 (P<0.01), and Control+PPAR-δx and Ethanol
+PPAR-δ on Trial Days 1 (P<0.001), 2 (P<0.01), and 4 (P<0.01). (*P<0.05; **P<0.01;
***P<0.001)
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FIG. 3.
Dual mechanisms hypothesis of alcohol-mediated CNS teratogenesis. Chronic gestational
exposure to ethanol causes oxidative stress and insulin/IGF resistance in the brain. The
oxidative stress is caused by mitochondrial dysfunction, which promotes DNA damage, lipid
peroxidation, pro-inflammatory cytokine activation, and apoptosis. Insulin/IGF resistance in
brain impairs gene expression required for neuronal genesis, myelin maintenance, cell
migration, neurotransmitter function, and energy metabolism. Oxidative stress and pro-
inflammatory cytokine activation exacerbate the adverse effects of insulin/IGF resistance.
Together, these abnormalities lead to deficits in neuronal plasticity, learning and memory.
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