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Abstract
Atlases of the human brain have an important impact on neuroscience. The emergence of ever
more sophisticated imaging techniques, brain mapping methods and analytical strategies has the
potential to revolutionize the concept of the brain atlas. Atlases can now combine data describing
multiple aspects of brain structure or function at different scales from different subjects, yielding a
truly integrative and comprehensive description of this organ. These integrative approaches have
provided significant impetus for the human brain mapping initiatives, and have important
applications in health and disease.

The concept of the brain atlas is not new1. Cartographic approaches have been used for
centuries to identify and target specific regions in the brain and to establish spatial
relationships between a coordinate and a structure. Comprehensive maps of brain structure
have been created, at a variety of spatial scales, from anatomical specimens2-5 and various
histological preparations that reveal regional cytoarchitecture6,7, myelination patterns8-10,
and protein and mRNA distributions. Most early and some more recent atlases of the human
brain were derived from one, or at best a few, individual post-mortem specimens3-5,11-14.
Such atlases provide anatomical references or represent a particular feature of the
brain15,16, such as a specific neurochemical distribution17 or the cellular architecture of the
cerebral cortex6. For example, Brodmann's map (1909) exclusively describes the
cytoarchitectonic segregation of the cortex6, Dejerine's map (1901) describes fibre tract
anatomy18, and the map by Schaltenbrand and Wahren (1977) describes the thalamus14.
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Beyond these traditional, anatomical atlases based on post-mortem tissue, modern brain
atlases are being developed that incorporate flexible, computable systems, which
accommodate the sometimes considerable variation in a population. The application of
magnetic resonance imaging (MRI) to acquire detailed descriptions of anatomy in vivo is a
driving force in brain mapping research. Tomographic imaging has the advantage of largely
retaining the spatial integrity of the data by maintaining the intrinsic three-axis registration
and simple volumetric coordinates19,20. The atlases derived from these images are digital,
allowing a wealth of computational algorithms to be applied to automatically align new two-
and three-dimensional imaging data into the coordinate systems of these atlases21.
Furthermore, there is an increasing ability to image various structural (as well as functional
and chemical) features in the brain such as nuclei, cytoarchitectural details and white matter
tracts. Technological advances continue to improve spatial and contrast resolution and have
led to multispectral characterization (using MRI) of brain anatomy, reflecting features such
as lipid content or water diffusivity in different tissues. Recently, chemoarchitectural maps,
which describe receptor densities relative to their cytoarchitectonic localization and
functional attributes, have been generated21,22 to bridge the gap between anatomical and
functional observations.

The transition from a static atlas representation to a computational one has dramatically
extended the atlas concept. The brain atlas is now equivalent to a database that incorporates
a multitude of data points that are organized, relational, extendable and testable. Initially, the
brain atlas was purely neuroanatomical, based on a single representative example. Now it
can include population statistics on structure, gene expression, receptor patterns or
connectivity over time.

In this review, we describe the features and limitations of traditional methods of creating
brain atlases and outline the requirements of a modern brain atlas. So far, most atlasing
efforts have consisted of grey matter maps obtained from structural and functional MRI
(fMRI) data. Here, we discuss the background and applications of human brain mapping,
focusing on a few selected examples of methods that have shown rapid progress in recent
years. These newer methods can be used to generate statistical data on cortical
cytoarchitecture and receptor distributions, as well as white matter fibre tracts and
projections, using techniques such as diffusion tensor imaging (DTI). It is likely that these
methods will contribute to the future development of advanced integrative atlases. Brain
maps that visualize distributed patterns of task-dependent functional activity are now
beginning to be related to anatomical fibre connectivity computed from DTI — each
modality contributes to better hypotheses and models regarding neural systems involved in
cognitive function. We go on to evaluate several existing integrative, population-based
international initiatives. Algorithms that are used to analyse probabilistic and time-varying
atlases have led to important findings regarding some of the diseases that affect the brain,
and have provided new perspectives on the effects of age, gender and genetic factors. We
discuss how these atlases are evolving rapidly as developments in imaging modalities, post-
mortem mapping and computational analysis of images are combined to detect new features
that were not observable (or measurable) in the past.

The evolution of brain atlases
Lessons from the past

Early research on the cellular composition of the brain culminated in the development of
atlases of the human cerebral cortex, which were pioneered by Brodmann6,23, Flechsig8,
Vogt and Vogt10, and von Economo and Koskinas7. These studies continued until the 1960s
(REFS 24-26). The cortex was segregated into numerous structurally defined areas, based on
regional cytoarchitecture (identified mainly by the number of cortical layers, laminar
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patterns of cell packing density and the shape of neuronal cell bodies) or myeloarchitecture
(identified mainly by the degree of myelination and the presence or absence of myelinated
fibre bundles in the cerebral cortex). These types of architecture were studied by visual
inspection of Nissl- or myelin-stained histological sections in single brains.

However, when maps by different authors of this classical period are considered, a number
of problems become apparent. For example, the drawings do not provide the sulcal pattern
of a single real brain or a well-defined ‘average’ brain but of an imagined ‘ideal’ brain (for
example, Brodmann's schematic drawing of a brain6); so, it is impossible to compare
different maps in a common reference space as they are not registered in a stereotaxic
system, and brain shape and sulcal contours vary greatly between maps. The number of
cortical areas also varies between the different maps, as the delineation procedure for areal
boundaries was highly observer-dependent and not assessed quantitatively or statistically.
Furthermore, with few exceptions, the drawings or descriptions do not show the positions of
areas and their borders in the cortical sectors that are hidden in the sulci. This amounts to
nearly two-thirds of the total surface area of the cortex27. Any designation of cortical areas
in the sulcal part of the cortex5 is pure supposition, and not supported by original
observations. Finally, most classical maps9,10 do not match the high degree of cortical
segregation that has more recently been shown by functional imaging — particularly in the
multimodal association cortices28-31.

Indeed, architectonic brain mapping based on visual inspection has been severely
criticized24,32 because of its lack of clearly stated and objectively verifiable criteria. This
led to a decrease in the general interest in architectonic atlases for decades. More recently,
axonal tracing techniques have been combined with architectonic observations to produce
atlases of selected cortical regions in non-human primates and other mammals28,33.
Unfortunately, this experimental approach cannot be used in studies of the human brain.
Meanwhile, stereotaxic atlases of the human brain, based on imaging data, began to be
published (mostly in book form), primarily in response to the needs of neurosurgeons. These
atlases compensate for some of the problems of the classical brain maps — particularly the
lack of a spatial reference system. However, stereotaxic atlases tend to focus on subcortical
structures and provide only sparse information about the cortex14. Furthermore, they lack
quantitative information on the intersubject variability of areal boundaries11, intersubject
variability in gross anatomy, left–right asymmetries and the criteria to identify architectonic
areas5.

The driving force for modern brain atlases
The current resurgence of interest in brain atlases that provide architectonic maps of the
human cerebral cortex has been largely motivated by the introduction of functional imaging
techniques such as positron emission tomography (PET) and fMRI. Researchers using these
techniques invariably want to define — as far as possible with the limited resolution of PET
or fMRI — the location of neural activity and determine whether the focus of activity is
associated with a portion of a specific cortical area, an entire cortical area or overlapping
areas.

The development of functional imaging techniques has therefore relied on the evolution of
structural imaging. These advances have included both in vivo, structural MRI and high-
resolution imaging of three-dimensional reconstructed histological sections. An example of
the use of these techniques has been the development of the concept of a ‘cortical area’,
which has an important role in functional brain mapping. Cortical areas can be defined
structurally on the basis of either macroscopic or microscopic (architectonic) criteria,
although architectonic borders vary considerably in relation to macroscopic
landmarks34-37. The concept of ‘brain mapping’ benefits from the combination of
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functional imaging of a distinct and well-defined function with a microstructurally defined
architectural atlas, because the correlation between function and its underlying cyto- or
myeloarchitecture can then be tested by using the architectural map for the definition of
regions of interest in functional imaging.

The correlation between the (micro)structure and the function of an area has been
established for many cortical regions, in particular for primary sensory and motor
areas7,8,38-41. Many functional units in the cortex are consistently found in humans and
other primates, such as primary visual area V1, or the motion-sensitive area MT/V5, in the
middle temporal gyrus. The spatial layout of these regions in the cortex is also somewhat
consistent across individuals38,39,42,43. Visual areas V1–V5 were initially defined
electrophysiologically, based on their highly selective responses to visual stimuli with
specific intensities, orientations or directions of motion29,30,38,44,45. These classifications
allow functional imaging studies to relate their observations to known anatomical units that
were initially defined using electrophysiology or direct histological mapping.

Requirements for modern brain atlases
Based on the criticisms of architectonic brain mapping24,32, the requirements of basic and
clinical brain research and the current progress in structural and functional brain imaging
techniques, the criteria for ideal brain atlases can be established. They should include a
multimodal micro-structural approach that combines different independent methods, such as
cytoarchitectonic, myeloarchitectonic, chemoarchitectonic and modern fibre-tracking
approaches along with macroscopic, in vivo and tomographic imaging methods, and use
observer-independent methods46-49 to define cortical boundaries — so-called architectonic
parcellation. Brain atlases should contain data on interindividual variations in the geometry
and topology of architectonic areas and should allow the use of algorithms that perform
adequate linear (such as scaling, rotating, translation and shearing) or nonlinear (based, for
example, on an elastic model50,51) alignment of individual brains and their structures to a
standard spatial reference system. Nonlinear transformations, which apply local contractions
or dilations, are often required (as well as linear transformations such as local rotations and
shearing) to equate, or deform, an individual subject's anatomy to match the shape of a brain
atlas21. In addition, efforts should be made to establish population brain maps (probability
maps), which define the probabilistic position and borders of cortical areas based on studies
of a large number of subjects across various population groups. Finally, these atlases should
use a database format that provides easy access to the original data on which the atlas is
based (for example, anonymized images from individual subjects, or models of specific
brain structures). Alternatively, the statistical maps and anatomical delineations in the atlas
should be readily importable into software and tool boxes that are commonly used when
analysing new brain images. Once imported into other image analysis software, probabilistic
maps of cortical regions or fibre pathways can be used to define regions of interest on new
images, to provide a priori constraints or search regions for new statistical analyses, or
simply to provide visual overlays of data from an alternative modality.

New architectonic atlas approaches
The limitations of classical brain maps led to the evolution of new concepts for generating
atlases34,43,52,53. As a result of these conceptual developments, an objective, observer-
independent procedure for the parcellation of the cerebral cortex has recently been
introduced (FIG. 1). This technique is based on the measurement of the grey-level index
(GLI) as an indicator of the volume fraction of cell bodies throughout the cortical layers
from the surface to the white matter border in cell body-stained histological sections, and
subsequent multivariate analysis of changes in the laminar pattern46. Using this procedure,
areal borders can be more reproducibly mapped than in previous studies, which were based
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on visual inspections34. Three-dimensional reconstructions of post-mortem brains,
including cytoarchitectonically defined cortical areas, are then elastically registered or
‘warped’ to the MRI volume of an in vivo brain that is also used as a spatial reference for the
registration of functional imaging data50,54,55. This strategy (FIG. 2) allowed the classical
maps to be corrected56 and provided a quantitative description of the intersubject variability
of cytoarchitectonic areas34-37,40,57,58. It has also facilitated linear or nonlinear
registration of individual brains and their structures to a spatial reference system and the
discovery of hitherto unknown cytoarchitectonic areas such as intraparietal areas hIp1 and
hIp2 (REF. 59), areas of the secondary somatosensory cortex OP1–4 (REF. 60) and area
hOc5 of the extrastriate cortex61.

This integrated approach has also been used to create cytoarchitectonic probability maps of
the human cortex22,34-36,40,52,53,56,58,62-70. The resulting probability maps have been
used for the anatomical interpretation of functional imaging observations40,41,45,52,70-75.
For example, it has been shown that left area 45 is more involved in semantic processing
than left area 44 (REF. 71). So, schematic drawings of maps and areal borders have been
replaced with probability and maximum probability maps55 (FIG. 3). This allows the
visualization of the intersubject variability in cytoarchitecture and quantitative definition of
the presence and extent of cytoarchitectonic borders and cortical areas in all voxels of the
reference brain or space.

Architectonic probability maps from a number of post-mortem brains can be spatially
warped onto an individual or ‘average’ brain (represented by a high-resolution MRI volume)
as a common spatial reference system. This provides a powerful tool for the anatomical
interpretation of functional imaging data, which can also be developed into a
topographically organized multimodal database of the human brain.

Molecular architectonics
Histochemical and immunohistochemical methods have greatly improved our knowledge of
the regional chemoarchitecture of the cerebral cortex, mainly in animals. However, the often
demanding requirements of these methods regarding tissue preservation and fixation have
limited their application in human post-mortem brains. Moreover, a large-scale analysis of
serial sections of whole human brain hemispheres is hampered by the time-consuming
procedures, regionally unequal staining quality, lack of precise reproducibility and high
costs. However, analysis of large brain sections is a necessary prerequisite in many mapping
projects. Recent developments in the detection of neurotransmitter receptors have overcome
this limitation and allowed the molecular mapping of human brains22,34,76-80.
Neurotransmitter receptors are important for signal transduction in the brain; many types of
receptor are expressed in any given cortical area, and even within a single neuron or glial
cell22. So, information on regional differences in receptor density (receptor architecture) is
an important feature of a modern brain atlas.

The distribution patterns of neurotransmitter receptors can be assessed using quantitative in
vitro receptor autoradiography. This method is based on the binding of radioactively labelled
ligands selective for binding sites of a defined receptor type or subtype, and subsequent
analysis of binding site densities. The analysis of numerous receptor types in the same brain
region is also feasible, and allows insight into the balance of neurotransmitter systems.
Receptor autoradiography has numerous advantages. Most importantly, it is possible to
study brain tissues without major loss in binding properties, up to a maximum post-mortem
delay of approximately 18–28 hours (depending on the post-mortem conditions and receptor
types). It also yields strictly quantifiable results, and allows analysis of large serial sections
through complete, undissected hemispheres. Finally, it is possible to label numerous
different receptors in immediately adjacent cryostat sections (10–20 μm thick), and to match
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cytoarchitectonic and myeloarchitectonic data derived from alternating sections of the same
brains that have been used for receptor labelling.

Receptor autoradiography has been used to study the regional distribution patterns (that is,
differences between brain areas) and laminar distribution patterns (that is, differences
between cortical layers) of selected neurotransmitter receptor types and subtypes in the
human cortex22,34,40,69,70,79-82. It has been shown that localized changes in the laminar
distribution patterns and/or mean densities (which are averaged over all cortical areas) of
receptor binding sites resemble cytoarchitectonic borders22,34. For example, the border
between the primary (V1) and secondary (V2) visual cortices is clearly visible due to the
considerably higher muscarinic M2 receptor density in V1 than in V2 (REFS 22,34) (FIG.
4a,b). The V1/ V2 border is also visible in myelin-stained sections owing to the unique
presence of a heavily myelinated sublayer (Gennari's stripe) in area V1 (REFS 22,34).
Compared with V2, α2-adrenergic, GABAA (γ-aminobutyric acid type A) and serotonergic
5-HT2 receptors are also present at a higher density in V1, whereas glutamatergic kainate
and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors are present
at a lower density in V1. Such receptor architectonic features have led to the discovery of
cortical areal borders and intracortical areal subdivisions that had not previously been
detected in cytoarchitectonic or myeloarchitectonic studies. These include the subdivision of
the primary motor area 4 (REF. 40), as well as the TE1.0 and TE1.1 (temporal cortex82)
subdivisions of the primary auditory cortex, which were revealed by the distribution pattern
of receptors (FIG. 4c). So far, this receptor autoradiography approach has also been used to
examine various neurotransmitter receptors in more than 50 different cyto architectonically
defined cortical areas. Receptor mapping not only adds multimodal data about the molecular
basis of their areas and nuclei to brain atlases, but it is also a powerful tool for the
identification of cyto- or myeloarchitectonically undetectable borders of cortical areas.
Finally, as receptors have a key role in neurotransmission, receptor mapping enriches brain
atlases with functionally relevant data that are directly related to anatomical criteria such as
cyto- or myelo-architecture.

White matter maps
In the past, most atlas efforts have focused on grey matter structure and function.
Multimodal atlases, however, are incomplete without information about white matter. The
white matter has an important role in connecting different regions of the brain. Perhaps
surprisingly, our understanding of human brain connectivity is still limited. One possible
reason for this is that it is extremely complex: given a specific number, n, of distinct
functional locations in the cortex, there are as many as n2 possibilities for the presence or
absence of interconnections (as connections can be intraregional and be in either direction
between two regions). Another reason is that the available tools to investigate brain
connectivity in vivo are inadequate, as most existing methods are based on invasive
techniques such as chemical tracers and lesion-based studies, which are less practical for
population-based studies and inappropriate for humans. In addition, conventional MRI has
also been powerless on this front. As shown in FIG. 5a, the white matter seems to be
homogeneous in T1-weighted images. Even using relaxometry to derive quantitative
measures that depend on tissue type, conventional MRI has been unable to provide sufficient
contrast to decipher fibre tract organization in the white matter.

However, this situation has changed since DTI was developed in the mid-1990s (REF. 83).
The contrast of this MRI technique is based on directionality of water motion (random
Brownian diffusion) in the brain, and it can provide two types of information. First, it can
generate a so-called anisotropy map83-86 (FIG. 5b). If the fibre architecture surrounding
water molecules has a coherent orientation, as in the case of axonal bundles, water tends to

Toga et al. Page 6

Nat Rev Neurosci. Author manuscript; available in PMC 2011 June 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



diffuse preferentially along that orientation, in a process called anisotropic diffusion. If the
molecular environment is random, water motion is also random, yielding isotropic diffusion.
Therefore, the anisotropy map can reveal which brain regions have a more orderly structure
(high diffusion anisotropy). Not surprisingly, many regions of the white matter have
coherent fibre orientation with respect to the image resolution, and so have high anisotropy,
as can be seen in FIG. 5b. The second type of information obtainable from DTI is the
orientation of these ordered structures83,87-91; colour is often used to symbolize this
information. In FIG. 5c, red, green and blue colours represent fibres running along the right–
left, anterior–posterior and superior–inferior axes, respectively. The rich anatomical and
spatial information conveyed by this orientation map can be clearly appreciated. Pixel-by-
pixel information on fibre orientation can also be extrapolated to reconstruct three-
dimensional trajectories of prominent fibre tracts based on a fibre-tracking approach92-98 or
a probability-based approach99. FIGURE 6 shows examples of such a three-dimensional
fibre-tract reconstruction based on DTI data, which is remarkably similar to known white
matter anatomy based on post-mortem samples100.

The orientation information from DTI provides essential contrast in the white matter and
opens up new opportunities for brain mapping and atlasing. Just as the cortical folding
pattern provides clues to identify anatomical locations and map functions, the orientation
contrast can be used to identify various functional units in the white matter. Combined with
three-dimensional reconstruction, coordinates of specific white matter tracts can also be
mapped. FIGURE 7 shows several examples of DTI-based white matter maps. Using a high-
quality single-subject dataset, various white matter tracts have been identified and a white
matter atlas generated85,90,101-105. By normalizing DTI data from multiple subjects into a
common template coordinate system, a probabilistic map of white matter anatomy can be
created for normal and diseased patient populations, allowing for quantitative comparisons
of white matter anatomy106-108 (FIG. 7b). FIGURE 7c,d show a manually reconstructed
map with parcellated white matter tracts based on DTI data. Once the white matter is
parcellated into different tracts, these can serve as a valuable framework to map anatomical
and functional information. If one is interested in the shape and size of a specific white
matter tract, the fibre-tracking approach can be applied to create population-based maps103
(FIG. 7e). Using these mapping techniques, axonal degeneration after stroke or surgery can
be followed in a tract-specific manner and these changes can be correlated with functional
outcomes109. Therefore, we can investigate such questions as ‘which white matter tracts are
affected by stroke?’110,111, or ‘what is the functional outcome of degeneration in a specific
white matter tract?’112. DTI can also be used to generate connectivity maps (FIG. 7f) by
identifying brain regions associated with a specific white matter tract113. Such connectivity
maps could provide important clues to deduce which cortical areas are likely to be affected
when white matter injuries occur.

Although DTI is a powerful technique for brain mapping, it has several limitations. First, it
generates tensor-valued information at each pixel, accumulating large amounts of
complicated anatomical information. Data analysis methodology is not yet sufficiently
developed to harness this detail, making it challenging to quantify morphology from these
datasets. Second, with current imaging resolution (2–3 mm), only the macroscopic anatomy
of large white matter tracts can be studied. For example, the notion of ‘fibre orientation at
each pixel’ is based on the assumption that there is only one fibre bundle with the same
orientation in a given pixel. Currently, many new approaches alternative to the tensor-based
method are being proposed, which can extract more anatomical information (such as
identifying multiple fibre populations) from each pixel114-117. Although these approaches
have successfully demonstrated their effectiveness, with current imaging resolution, the
information inherent in diffusion measurement is macroscopic and there is no way to obtain
cellular-level or even synaptic connectivity information.
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This resolution issue is also related to the validity of DTI-based tract reconstruction results.
Although good overall agreement has been reported between the three-dimensional
reconstruction results and existing anatomical knowledge, there are frequent false-negative
and false-positive results due to noise and partial volume effects. In the future, it will be
important to develop approaches to reliably extract anatomically and clinically valuable
information from such contaminated data. Although this is a challenging task, several
effective approaches have been suggested, such as knowledge-based tract reconstruction
(namely, reconstructing only anatomically known fibres)92, probabilistic tracking99 and
population-average approaches103.

Nevertheless, DTI can advance our knowledge of the correlations between white matter
anatomy and function by providing a refined white matter map to which we can register
various experimental findings. Finally, macroscopic DTI information can be compared
directly with microscopic post-mortem data on fibre tracts118-120, yielding an integrative
atlas system that evaluates both methods with considerable synergistic effects.

Multimodality and population-based atlases
Multimodal mapping

Before the advent of brain mapping methods1, atlasing efforts of various research groups
were typically independent of one another. Most atlases had a different spatial scale and
resolution, utilized different data structures, described different structural or functional
characteristics and were inherently incompatible with the others. Although each of those
brain mapping strategies has its unique advantage, the brain atlases that are derived from a
single method will be limited, unless certain integrative approaches such as spatial
normalization are implemented. An integrated, comprehensive approach requires these
diverse mapping methods to be combined and correlated.

Characterizing a single subject with multiple imaging devices clearly combines the strengths
of each imaging modality. Data from single subjects, pre-mortem and post-mortem, provide
a unique view of the relationship between in vivo imaging and histological assessment. For
example, Mega et al.121 scanned patients in the terminal stages of Alzheimer's disease using
both MRI and PET. These data were combined with a stain of neurofibrillary tangles and
post-mortem three-dimensional histological images that show the gross anatomy122. This
multimodal, but single-subject, atlas of Alzheimer's disease relates the anatomical and
histopathological underpinnings to in vivo metabolic and perfusion maps of this disease.
Recent work on neurodegenerative diseases has also warped histological data into MRI
scans to better identify regions (such as the CA fields of the hippocampus and the basal
nucleus of Meynert123) that are relevant to understanding the pathology.

Population-based atlases
Modern atlases not only incorporate information from multiple modalities — they also
incorporate information from multiple members of a population. Normal anatomical
complexity and variability between human brains are so great that group-specific patterns of
anatomy and function are often obscured. Reports of structural differences in the brain
linked to gender, IQ and handedness are a topic of intense controversy124,125, and it is
even less clear how these factors affect disease-specific abnormalities. The importance of
these linkages has propelled computational anatomy to the forefront of brain imaging
investigations. In particular, population atlases can be compiled into subpopulations to
represent specific disease types, and subsequently stratified by age, gender, handedness or
genetic factors.
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To distinguish abnormalities from normal variants, a realistically complex mathematical
framework is required to encode information on anatomical variability in homogeneous
populations126. Warping algorithms can be used to equate individual brain datasets with an
atlas template, and the applied transformations can be studied to examine patterns of
anatomical variation and detect pathology. Cortical anatomy is altered in schizophrenia127,
Alzheimer's disease128,129 and in various developmental disorders, including fetal alcohol
syndrome130, autism131 and Williams syndrome132. By using specialized strategies for
averaging anatomy across individuals, specific features of anatomy emerge that are not
observed in individual representations due to their considerable variability; population-
specific patterns of cortical organization or asymmetry can then be mapped and
visualized124.

Population-based brain atlases54,133 provide an expandable framework to synthesize the
results of disparate imaging studies. These atlases use novel analytical tools to combine data
across subjects, modalities and time and to detect group-specific features not apparent in
individual scans. A notable example is the pattern of anatomical asymmetry in the major
cortical gyri and sulci, such as the prominent asymmetries in the perisylvian language-
related cortices, which are well known134 but not easily discernible in individual brain
scans. The average patterns clearly emerge after averaging computational models of the
cortical sulci across a population124. So, a computational framework can be used to answer
neuroscientific questions regarding the development of these asymmetries135, and how they
are modulated by gender136, aging or in psychiatric illnesses such as
schizophrenia37,137,138. Furthermore, population-based atlases can be stratified into
subpopulations to reflect a particular (clinical or demographic) subgroup1. Design of
appropriate reference systems for brain mapping data presents considerable challenges, as
these systems must capture how brain structure and function vary in large populations,
across age and gender, in different disease states, across imaging modalities and even across
species139.

As imaging data from different studies can now be compared in a common coordinate
system, large databases of functional imaging data — and associated meta-data on
experimental paradigms and findings — are now beginning to be assembled, along with
tools developed to interact with them140. Notable examples of these neuroinformatics
efforts include the ICBM53 (see International Consortium for Brain Mapping in Online
links box), the ADNI (see Alzheimer's Disease Neuroimaging Initiative in Online links box)
consortium project to build a data repository of MRI, PET and other clinical and biomarker
data on aging and Alzheimer's disease, the NIMH paediatric imaging study (which is
scanning nearly 1000 children every 2 years for 10 years141,142), and the Finnish twin
registry, whose scans have been used to identify genetic influences on brain
structure125,143,144. Over the next decade, population-based atlases are also likely to gain
widespread applicability in genetic studies. In an exciting development, genetic linkage data
have been incorporated into brain imaging studies to discover previously unknown effects
on the brain of variations at specific genetic loci145 (FIG. 8e). Given their power to store
and compute statistics on expected rates of brain development and degeneration for different
clinical populations, dynamic brain atlases are also likely to be used in drug trials or studies
of factors that influence disease expression and therapeutic response146, and studies on the
effects of specific medications such as antipsychotics or mood stabilizers147-149.

Image processing algorithms are also making digital brain atlases more versatile. For
example, probabilistic atlases retain information on cross-subject variations in brain
structure and function. These atlases are powerful new tools with broad clinical and research
applications52,124,150,151. Deformable brain atlases, which are essentially labelled
templates of anatomy that can be locally dilated, stretched and scaled to match scans from
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new subjects152, are adaptable in that they can be individualized to reflect the anatomy of
new subjects. The deformation can transfer all the accumulated data in the atlas onto the
new subject's scan, thereby quantifying the degree of deviation in their anatomy, relative to a
normative population153-155.

Box 1

Statistical parametric mapping

Initially proposed as a method to analyse functional or metabolic images from multiple
subjects in a common coordinate space161,192, statistical parametric mapping (SPM) is
now widely used by the brain mapping community to detect and identify activated brain
regions in functional imaging studies. SPM relates patterns of activation to experimental
or subject-specific parameters, and can be used to infer patterns of functional
connectivity from time-series data, or to analyse anatomical images193. Atlasing efforts
in the early 1990s pointed to the value of registering data from multiple subjects to a
common coordinate space. Once aligned, imaging signals could be combined across
subjects for statistical analysis, producing a statistic (for example, expressing a group
difference) at any given voxel location in the canonical space. Because many millions of
voxels are typically tested in a brain mapping study, statistical solutions to the multiple
comparisons problem were developed based on the mathematical likelihood that clusters
of certain sizes and magnitudes would occur by chance when no signal was present. SPM
rapidly became a widely used software package for collating and analysing brain imaging
data (see Statistical Parametric Mapping in Online links box), partly because it
implemented powerful mathematical formulae — based on new findings in the theory of
Gaussian random fields194 — for inferring whether functional activations were present
in multisubject studies. The SPM approach shares some affinity with atlasing efforts in
that it reports statistical findings in a common coordinate space. In contrast to SPM,
which typically analyses registered images on a voxel-by-voxel basis, computational
atlasing efforts can also include computational anatomical work that models individual
brain structures as geometrical surfaces and curves, such as cortical surface modelling
and fibre tract modelling. Ultimately these approaches are complementary.

Finally, dynamic brain atlases can also be used to reference and analyse dynamic, time-
varying data. Recent studies have analysed longitudinally collected MRI scans to compute
probabilistic information on growth rates156-158 (FIG. 8a), lifelong normal changes130
(FIG. 8a) or normative statistics on rates of degenerative tissue loss in drug abuse (FIG. 8d),
aging and dementing diseases149,159-161 (FIG. 8c). A complementary development, which
has advanced the power of multi-subject atlasing projects, is the widespread use of analysis
techniques such as statistical parametric mapping (SPM) (BOX 1).

Disease-specific atlases
Surprisingly few atlases of neuropathology use a standardized three-dimensional coordinate
system to integrate data across patients, techniques and acquisitions. Atlases with a well-
defined coordinate space54,163, together with algorithms to align data with them21, have
enabled the pooling of brain mapping data from multiple individuals and sources, including
large patient populations. Automated algorithms can then utilize atlas descriptions of
anatomical variance to guide image segmentation164-166, tissue classification167,168,
functional image analysis169,170 and pathology detection171. An obvious challenge in
integrating pathological data from tissue specimens results from the destructive sectioning
and histological staining procedures. Even so, the advent of whole human head
cryosectioning techniques (in which the intact blockface is imaged photographically) allows
spatially coherent three-dimensional volumetric images to be acquired. Stained pathological
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material could, in principle, be aligned with these canonical volumes using three-
dimensional image deformation strategies that have proven useful in creating
cytoarchitectural atlases.

Statistical representations of anatomy resulting from the application of atlasing strategies to
specific subgroups of diseased individuals have revealed the profile of structural brain
deficits in a number of diseases. These include studies of Alzheimer's disease161, HIV/
AIDS132,172, epilepsy172,146, unipolar depression173, childhood and adult-onset
schizophrenia174-177, attention-deficit/hyperactivity disorder178, fetal alcohol
syndrome179, Tourette's syndrome180, bipolar disorder181,149, autism131,149, Williams
syndrome132 and methamphetamine abusers182. Findings from these population atlases
have often led to unexpected neuroscientific findings, such as a spreading wave of cortical
changes in schizophrenia176,177.

Without methods to overcome the problems of anatomical variability, the statistical power to
resolve disease and treatment effects is seriously undermined. First, owing to normal
anatomical variation, diseased and healthy individuals overlap on most anatomical
measures. Second, these difficulties are exacerbated by disease-related change such as
atrophy128,149,159,183,184 or other progressive and dynamic anatomical changes. To fully
capitalize on neuroimaging data from the diseased brain, an appropriately complex
mathematical framework is needed to address these challenges. Only then can brain maps be
compared across patients and across time133,160,182,184,185.

Atlases have also revealed how single genes can affect brain structure186. When they have
supported existing models of disease, such as the sequence of spreading pathology in
Alzheimer's disease, atlas-based descriptions of variance offer statistics on degenerative
rates and can elucidate clinically relevant features at the systems level. Atlases have
identified differences in atrophic patterns between Alzheimer's disease and Lewy Body
dementia187, and differences in atrophic rates between clinically-defined subtypes of
psychosis188-190.

Based on well-characterized patient groups, population-based atlases contain composite
maps and visualizations of structural variability, asymmetry and group-specific differences.
Pathological change can be tracked over time, and generic features resolved, allowing these
atlases to offer biomarkers for a variety of pathological conditions, as well as morphometric
measures for genetic studies or drug trials.

Conclusions and perspectives
The evolution of brain atlases has seen tremendous advances; they can now accommodate
observations from multiple modalities and from populations of subjects collected at different
laboratories. The probabilistic systems described here show promise for identifying patterns
of structural, functional and molecular variation in large image databases, for pathology
detection in individuals and groups and for determining the effects of age, gender,
handedness and other demographic or genetic factors on brain structures in space and time.
Integrating these observations to enable statistical comparison has already provided a deeper
understanding of the relationship between brain structure and function. Importantly, the
utility of an atlas depends on appropriate coordinate systems, registration, and deformation
methods to allow the statistical combination of multiple observations in an agreed, but
expandable, digital reference framework.

In this review, we highlighted two sources of data that will have an increasingly important
role in integrative brain atlases: molecular architectonics and DTI. Once stored in a
population-based atlas, information from these techniques can help to interpret more
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conventional functional and structural brain maps by integrating them with data on
molecular content, physiology and fibre connections — a development that can help to
formulate and test new types of neuroscientific models. A goal of systems neuroscience is to
establish brain systems that underlie cognitive processes and the factors that influence them.
DTI data on fibre connectivity, stored in an atlas coordinate system, can offer a rigorous
computational basis to test how identifiable anatomical systems (for example, visual, limbic
or corticothalamic pathways) interact. This atlas information can be invoked as regions of
interest that are incorporated into the statistical design of functional brain mapping studies
(for example, with fMRI or electroencephalography), even when underlying fibre
connections are not evident in the data being collected for a particular study. Molecular
architectonic mapping also provides a complementary perspective in which known
neurotransmitter and receptor pathways — the physiology and molecular features of which
are now well understood — can be associated with functional subdivisions of the cortex,
identified with tomographic imaging. For example, an fMRI study of inhibitory cognitive
processes in drug abusers might be informed by other modalities of data on limbic–
prefrontal connectivity (from DTI), or on cortical monoamine receptor distributions (from
architectonic mapping). In each of these contexts, the coordinate system of the atlas, and the
transformations that equate different modality data in the same reference frame, provide the
means to build and test systems-level models of cognition or disease, incorporating data
from traditionally separate domains of neuroscience.

As brain atlases begin to incorporate data from thousands of subjects, new questions in basic
and clinical neuroscience can be addressed that were previously out of reach. For example,
quantitative genetic studies are underway to link functional, structural and connectivity
information with variations in candidate genetic polymorphisms that could influence them.
As polygenic disorders involve the interaction of multiple genetic variations, each with a
small effect on the overall phenotype, digital atlases provide the ideal setting to mine large
numbers of images computationally with hybrid techniques from computational anatomy
and quantitative genetics (such as linkage and association studies in which a statistic is
computed at each voxel location in the brain191).

Another area of expansion is in the processing of clinical data from therapeutic trials, to
determine factors that combat or modify disease progression. Statistical atlases, containing
time-varying data, have revealed unforeseen but characteristic brain changes in several
dementias and neuropsychiatric illnesses. The population-based atlases of the future will
provide the necessary statistical power to identify demographic, genetic and environmental
factors that influence therapeutic response. Most important of all, brain atlases are now
being enriched with data from newer technologies, such as DTI, fMRI and modern high-
throughput cytoarchitectural methods. These efforts are yielding whole new avenues of
research into the functional organization of the brain that will be of interest not just to
specialists in neuroimaging, but to all basic and clinical neuroscientists.
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Glossary

Cartographic
approaches

Approaches that place brain images from multiple subjects and
devices into an anatomical reference system with standardized
three-dimensional coordinates (for volumetric images) or two-
dimensional spherical or planar coordinates (for cortical
regions).

Cytoarchitecture Subdivisions (named or numbered) of the cerebral cortex, called
cytoarchitectonic maps, based on cellular features (size and
shape of cells, cell packing density in different cortical layers,
width of layers) and identified in cell body-stained specimens.

Magnetic resonance
imaging

(MRI). A non-invasive method to obtain images of living tissue.
It uses radio-frequency pulses and magnetic field gradients; the
principle of nuclear magnetic resonance is used to reconstruct
images of tissue characteristics (for example, proton density,
water diffusion parameters).

Multispectral
characterization

Multispectral imaging devices measure multiple features of an
object at each spatial location, such as optical reflectance at
different wavelengths, or different relaxometric decay constants
(T1 and T2) in MRI.

Chemoarchitectural
maps

Differences in the molecular composition of cortical and
subcortical brain regions can be assessed using enzyme- or
immunohistochemistry, in situ hybridization, receptor
autoradiography and so on, revealing subdivisions with
distinctive distribution patterns, such as expression of
transmitter receptors.

Diffusion tensor
imaging

(DTI). A technique developed in the mid-1990s, based on MRI
in which diffusion constants of water molecules are measured
along many (>6) orientations and diffusion anisotropy is
characterized. It is used to visualize the location, orientation and
anisotropy of the brain's white matter tracts, and is sensitive to
directional parameters of water diffusion in the brain.

Myeloarchitecture Subdivisions (numbered or named) of the cerebral cortex, called
myeloarchitectonic maps, based on features (for example, stria
of Gennari in the visual cortex) of myelinization (differential
density of myelinated fibres and fibre bundles in different
cortical layers), and identified in myelin-stained histological
specimens.

Stereotaxic system A technique or apparatus used in neurosurgery or brain imaging
studies to localize a specific anatomical locus using
standardized three-dimensional coordinates; used, for example,
for directing the tip of a surgical instrument (such as a needle or
electrode) to a known location.

Functional imaging Distinct from structural imaging techniques such as
computerized tomography or MRI that assess anatomical
structure, functional imaging techniques (for example, positron
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emission tomography, functional MRI and
electroencephalography) are sensitive to physiological
processes such as neuronal activation, electromagnetic
properties of living tissue, blood flow or metabolism.

Multimodal
association cortices

The multimodal association cortices of the parietal and frontal
lobes integrate somatosensory, auditory and visual information
for higher-order cognitive processing.

Positron emission
tomography

A medical imaging technique that uses injected radiolabelled
tracer compounds in conjunction with mathematical
reconstruction methods to produce a three-dimensional image or
map of functional processes in the body, such as glucose
metabolism, blood flow or receptor distributions.

Multimodal
microstructural
approach

An approach to characterize fine-scale anatomy using multiple
histological and neurochemical techniques, revealing different
aspects of cellular organization or molecular composition.

Fibre-tracking
approaches

Using this approach, three-dimensional trajectories of white
matter tracts can be reconstructed. The algorithm is based on
fibre orientation information obtained from diffusion tensor
imaging.

Probability map A map that depicts the likelihood of a particular feature. It can
be used to show how frequently, in percentage, a given
anatomical structure is found in a specific location across a
population of subjects.

Cytoarchitectonic
probability maps

Based on a sample of brains that have been parcellated using
cytoarchitectonic criteria; they display the statistical likelihood,
or relative frequency, that a particular voxel in stereotaxic space
contains a given cytoarchitectonic unit (for example, a cortical
area, or a subcortical nucleus).

Maximum probability
maps

Summary maps in which each voxel of the three-dimensional
space has been assigned to the cytoarchitectonically defined
unit with the highest probability. They are calculated on the
basis of probability maps, such as cytoarchitectonic probability
maps, to generate a map with unambiguously defined borders.

Voxel The three dimensional equivalent of a pixel. A pixel is a picture
element, and a voxel is a volume element.

T1-weighted images One of most widely used MRI methods, in which the contrast is
based on a selection of MRI acquisition parameters, producing
an image that weights signal by the relaxometric parameter, T1,
of each tissue (that is, the longitudinal relaxation time). In the
brain, T1-weighting causes fibre tracts (nerve connections) to
appear white, cortex and basal nuclei to appear grey, and
cerebrospinal fluid to appear dark.

Relaxometry The measurement of relaxation parameters in nuclear MRI, such
as the longitudinal (T1) or transverse (T2) decay constants that
characterize signal decay from excited nuclei. By detecting
subtle differences in relaxation times, relaxometry is capable of
differentiating various tissue types in the brain.
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Anisotropy map The directional dependency of water diffusion at each point in
the brain can be summarized using measures such as fractional
anisotropy. High anisotropy values indicate heavily myelinated
white matter, whereas decreased anisotropy is often a sign of
disease.

Anisotropic diffusion Diffusion of a substance (for example, water) that is greater in
certain preferred directions, such as along the axons of a fibre
tract.

Isotropic diffusion Diffusion of a substance (for example, water) that is uniform in
all directions.

Tensor-valued
information

Information that can be modelled mathematically as a matrix, or
tensor, at each location in an object. Diffusion tensor imaging
produces signals with at least six independent parameters at
each anatomical point (the diffusion tensor); tensor calculus can
then be used to estimate diffusion parameters in any specific
direction.

Partial volume effects This refers to the blurring of intensity differentiations used to
classify contributing tissue types (grey matter, white matter and
cerebrospinal fluid). It is the results of pixels placed over a
region that contains multiple tissue types. The smaller the pixel
size the less frequently this is problematic.
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Figure 1. Observer-independent procedure for cytoarchitectonic parcellations
a | Two mean cortical profiles (red and blue curves in the insets) sampled from the grey-
level index (GLI) image of a cell body-stained histological section (coronal plane) through
the superior and the middle temporal gyri of a human brain. Each mean profile is the
average of 20 equally spaced, individual profiles (red lines in panel b, top), which were
sampled from the rectangular regions of interest (boxes centred around the red or blue
arrows). The shape of each profile is described as a feature vector46, and is a measure of the
cytoarchitecture of the area. High GLI values indicate high volume densities of cell bodies.
b | Top panel shows the sliding window procedure used to establish the distance function
(bottom panel). The cortical region of interest is divided into a set of profiles (positions
shown in red). The positions of the profiles are consecutively numbered starting from n = 1
(at left margin) to k. A sliding window consists of two cortical segments (yellow, to the left
and to the right of a central profile) made up of two neighbouring groups of n individual
profiles. As an example, sliding windows are shown at positions n = 21 and n = 180. When a
certain profile position has been analysed, the sliding window is moved one step (profile) to
the next position. The red arrows indicate the direction of the movement of the sliding
window across the cortical ribbon. The blue and black arrows indicate positions where the
feature vectors show significant changes. TE1.0, TE1.1 and TE2 are distinct
cytoarchitectonic areas of the human auditory cortex64,82. Bottom panel shows the
Mahalanobis distance, which indicates the dissimilarity in laminar pattern between two
cortical segments and can be calculated from the feature vectors from each profile. The
Mahalanobis distance at each position of the sliding window is plotted. Significant maxima
at positions n = 40 (blue arrow), n = 97 (black arrow), n = 305, n = 497 and n = 586 indicate
the positions of putative areal borders. Performing this procedure in serial histological
sections of several (usually ten) brains, three-dimensional reconstructed histological data
sets of post-mortem brains and their areas are registered to common standard reference
space, and cytoarchitectonic probability maps are calculated for each area.
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Figure 2. Summary of procedures for generating a multimodal probabilistic atlas.
Probabilistic atlases are generated by entering cytoarchitectonic, receptor architectonic and
functional imaging data into a common spatial reference system.
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Figure 3. Cytoarchitectonic probability maps of the cortex.
a | Probability maps of the primary visual cortex V1 in a sagittal section (left) and the rostral
part (Brodmann's area 45 (BA45); right) of Broca's speech region in a coronal section. x and
y refer to the spatial location of the sections in Montreal Neurological Institute (MNI)
space54. The colour scale indicates the probabilities that the areas are present in a certain
voxel of the reference space. b | Right lateral and occipital views of the maximum
probability map in which each voxel of the three-dimensional space has been assigned to the
cortical area with the highest probability. Cortical areas shown include areas 44 and 45
(Broca's region), primary motor (4) and premotor (6) areas, the somatosensory cortex (areas
3a, 3b, 1 and 2), inferior posterior parietal association areas (PFt, PFop, PF, PFm, PGa,
PGp), parietal opercular areas (OP 1–4), mesial superior parietal area (7mes), auditory areas
(TE 1–3) and visual areas (V1, V2 and V5/MT).
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Figure 4. Correlation between receptor autoradiography and myeloarchitectonic borders.
The regional and laminar distribution patterns of muscarinic cholinergic M2 receptors (a)
and myelin fibres (b) were visualized in neighbouring coronal sections through the human
occipital cortex. The borders (arrows) between the primary visual cortex V1 and the
adjacent secondary visual cortex V2 are visible by considerable differences in receptor
densities (a) and the abrupt disappearance of Gennari's stripe (b, asterisk) at the border. The
regional and laminar distribution patterns of muscarinic cholinergic M2 receptors were
visualized in a coronal section through a human hemisphere by agonist ([3H]oxotremorine-
M) binding (c). Area 3b is the primary somatosensory cortex63 and areas TE1.0 and TE1.1
(REF. 64) are subdivisions of the primary auditory cortex. Arrows show the borders with
adjacent areas. Considerable regional and laminar variations in binding site densities are also
visible in the other cortical regions. The colour scales in panels a and c indicate the M2
receptor binding site densities in fmol mg−1 protein.
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Figure 5. Comparison of a conventional T1-weighted image and DTI-based contrasts.
These images show the same slice level from the same subject. a | The T1-weighted image
shows the detailed anatomy of the cortex but the white matter appears homogeneous. b | The
anisotropy map shows the regions that have high diffusion anisotropy, a hallmark of axonal
fibres with a coherent orientation within a pixel. c | For high anisotropy regions, we can map
the fibre orientation using colours. In this map, red, green and blue represent fibres running
along the right–left, anterior–posterior and superior–inferior axes, respectively. Fibres
running along oblique angles are represented by a mixture of the three principal colours.
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Figure 6. Comparison between a post-mortem brain sample and the results of DTI-based three-
dimensional tract reconstruction.
a | Post-mortem sample showing 4 main association fibres: the superior longitudinal
fasciculus (SLF), inferior longitudinal fasciculus (ILF), inferior fronto-occipital fasciculus
(IFO) and uncinate fasciculus (UNC). b | These tracts can be reconstructed from in vivo
human DTI data and presented with different colours. There is excellent agreement between
the two. Panel a reproduced, with permission, from REF. 196 © (1997) Univ. of Iowa.
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Figure 7. Examples of various methods of mapping the white matter based on DTI.
a | For each individual dataset, many white matter structures can be discretely identified and
anatomical labels can be assigned to them. b | Normal or abnormal variability of white
matter anatomy can be investigated by using a pixel-based population-averaging approach.
This image was created using data from 30 healthy volunteers normalized to a common
template using a 12 parameter affine transformation. c | Various structures are parcellated
manually or by using three-dimensional tract reconstruction into individual tract families
based on orientation (colour) information. d | This parcellation/reconstruction allows a three-
dimensional white matter parcellation map to be created. e | The morphology of a specific
white matter tract can be investigated, based on a three-dimensional tract reconstruction
technique followed by group averaging. Here, the inferior fronto-occipital fasciculus (IFO)
was reconstructed from the normal population and mapped onto a common template. f | This
approach can also be used to identify cortical regions associated with a specific tract, where
the trajectory of the IFO is extrapolated to identify associated cortical regions, and a
probabilistic cortical map is created from the 30 subjects. These kinds of map pave the way
to investigate white matter anatomy and function in a systematic and quantitative manner.
ACR, anterior corona radiata; ALIC, anterior limb of internal capsule; ATR, anterior
thalamic radiation; CC, corpus callosum; CG, cingulum; CPT, corticopontine tract; CST,
corticospinal tract; EC, external capsule; Fmajor, forceps major; Fminor, forceps minor; FX,
fornix; GCC, genu corporis callosi; ILF, inferior longitudinal fasciculus; PLIC, posterior
limb of internal capsule; PTR, posterior thalamic radiation; RLIC, retrolentricular part of
internal capsule; SCC, splenium corporis callosi; SFO, superior fronto-occipital fasciculus;
SLF, superior longitudinal fasciculus; SS, sagittal striatum; ST, stria terminalis; TAP,
tapetum. Panel a modified, with permission, from REF. 20 © (2005) Elsevier Science.

Toga et al. Page 31

Nat Rev Neurosci. Author manuscript; available in PMC 2011 June 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8. Brain atlases that represent specific subpopulations.
Population-based atlases can be stratified to compare various populations, revealing the
impact of development or disease on specific features of the brain. a | Statistical maps show
the changing distribution of cortical grey matter (over the human lifespan (n = 176; data
from Sowell et al. (2003)130). b | Based on longitudinal MRI scans of children developing
normally, dynamic maps can show the rate and anatomical sequence of cortical grey matter
maturation by fitting an age-adjusted mean to these trajectories154. c–d | Such maps can be
used to reconstruct time-lapse sequences that visualize the spread of cortical atrophy at
different stages of Alzheimer's disease (c), changes associated with chronic drug abuse (d,
top), or in the course of infectious illnesses such as HIV/AIDS (d, bottom) 161,182,195.
Atlases could provide statistical measures of disease burden for drug trials, offering insight
into the systems involved and factors that influence them. e | Individual deviations from
these average patterns can also be analysed: twin studies have revealed aspects of brain
structure (such as frontal grey matter) that are under extremely strong genetic control188. In
the new field of imaging genomics, genetic linkage studies have been extended to brain
mapping data to identify the statistical linkage between specific genetic variations (single
nucleotide polymorphisms) and anatomical variations in the form of a statistical map186.
DISC1, disrupted in schizophrenia 1; rs229, denotes a single nucleotide polymorphism
marker (rs751229) located in DISC1. The colour bar denotes the correlation between
intrapair differences in brain matter density with the number of alleles in common at this
genetic marker locus in twins discordant for schizophrenia.
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