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Abstract

If local arterial input function (AIF) could be identified, we present a theoretical approach to
generate a correction factor based on local AlF for the estimation of relative cerebral blood flow
(rCBF) under the framework of early time points perfusion imaging (ET). If C(t), the contrast
agent bolus concentration signal time course, is used for rCBF estimation in ET, the correction
factor for C(t) is the integral of its local AlF. The recipe to apply the correction factor is to divide
C(t) by the integral of its local AIF to obtain the correct rCBF. By similar analysis, the correction
factor for the maximum derivative (MD1) of C(t) is the maximum signal of AIF and the correction
factor for the maximum second derivative (MD2) of C(t) is the maximum derivative of AIF. In the
specific case of using normalized gamma-variate function as a model for AIF, the correction factor
for C(t) (but not for MD1) at the time to reach the maximum derivative is relatively insensitive to
the shape of the local AlF.

Keywords

local arterial input function (local AIF); dynamic susceptibility contrast-enhanced magnetic
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Introduction

What ET can do if local AIF can be found

Dynamic imaging of a bolus of contrast agent passing through the brain’s vascular system is
the basis for the formation of tissue bolus signal time courses and of the arterial input
function (AIF). In routine clinical data analysis, global AIF is assumed even though local
AIF is reasonably expected. Identifying local AIF accurately (Calamante, 2005; Calamante
et al., 2000; Lorenz et al., 2006a; Lorenz et al., 2006b; Willats et al., 2006, 2008) remains a
great technical challenge. Methods to identify local AIF’s will not be investigated in this
manuscript. Instead, we investigate the case of what the early time points perfusion imaging
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(ET) method (Kwong et al., 2011) can do under the condition of local AlF’s already being
identified. In other words, how can ET, which has assumed global AlF previously, utilize
that given local AIF information to make meaningful relative cerebral blood flow (rCBF)
maps? We provide in this manuscript a theoretical recipe to utilize local AIF information to
generate correction factors for rCBF estimation by ET.

It should be mentioned that in ET, the analysis of rCBF given a number of identifiable local
AIF’s in one single individual is equivalent to the analysis of rCBF given different global
AIF’s for different individuals. In ET, AIF is needed for cross-subject comparison but
obtaining global AlF for each individual is straight forward. As long as the problem of local
AIF identification has been solved, whatever results we can learn about rCBF evaluation by
ET from the investigation of the local AIF question of a single individual will be directly
applicable to the question of cross-subject comparison of rCBF. For cross-subject
comparison by ET, we could have also considered a reference based method similar to the
reference-based maximum up-slope (Ref-US) method (Kimura and Kusahara, 2009) which
requires setting a region of interest (ROI) on some referential tissue (e.g. white matter ROI)
but would not require any AIF information. Since the focus of this manuscript is on local
AIF analysis which could not be helped by the reference-based method (except in the
unlikely and inconvenient scenario that one can find a similar reference tissue ROI at each
brain region supplied by a local AIF), we will not pursue the reference-based topic here.

Subtopic: Is the rCBF result obtained by the maximum gradient based method
independent of local AIF?

In the investigation of the myriad ways that can be used to estimate rCBF by ET given
known local AIF information, we also obtained an answer as a byproduct of our correction
factor analysis to the following interesting question: Within the framework of using the
normalized gamma-variate function as a model for AlF, is the rCBF result obtained by the
well established maximum gradient based method (Kimura and Kusahara, 2009; Koenig et
al., 1998; Miles, 1991; Miles and Griffiths, 2003) independent of local AIF?

Different correction factors based on local AIF are required for different types of MR signal
used for rCBF estimation by ET

With global AIF, rCBF can be estimated with ET by simply taking the ratio of MR signals
of early time points of different voxels, eliminating the dependence of AIF altogether. Early
time points are expected to be data points acquired before the tissue mean transit time T
which amounts to a few seconds for gray matter in humans. With local AIF (or in cross-
subject comparison), ET is no longer independent of AIF. If we want to find the relative
flow of two voxels that have different AIF’s, it is necessary to take into account the different
shapes of the two AIF’s. In other words, correction factors which vary according to the
shapes of local AIF would be required for rCBF estimation by ET if local AIF’s are known
in advance. In addition, since ET is known for its flexibility (Kwong et al., 2011) in
allowing many different ways to be used to estimate rCBF, different correction factors are
also required for the many different approaches of employing ET.

Here we will identify and study the correction factors based on local AIF for three different
ways to calculate rCBF with ET, each with its own justification. These three ways include
the use of 1) MR signal intensity (AR2*) of the contrast agent bolus concentration time
course, named C(t) for short, at an arbitrary early time point, 2) maximum derivative of C(t),
named MD.1 for short and 3) maximum second derivative of C(t), named MD2 for short.
With regard to real world experimental data, C(t) is the preferred choice for rCBF evaluation
due to its superior contrast to noise (CNR) but C(t) can be hampered by the need to
accurately identifying a reference time point for ET (Kwong et al., 2011) to correct for the
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time delay of the arrival of the bolus of contrast agent. The main justification of using MD1
and MD2 over using C(t) is that there is less need to accurately and explicitly identify a
reference time point for ET. MD1 is of additional interest because it is linked to the
traditional maximum gradient based method for perfusion analysis. The justification of
using the MD2, despite its lower CNR than MD1, is that the time to reach MD1, named
TMDL1 for short, runs a higher risk of being longer than tissue mean transit time T.
Exceeding T would mean violating ET’s basic assumption of measuring the amount of
contrast agent before any contrast agent leaves the tissue. For convenience in later
presentation, the time to reach the maximum second derivative MD2 is also named TMD?2
which is unlikely to exceed T.

These three selected ways of ET perfusion analysis would encompass a fair representation of
a broad range of approaches to evaluate rCBF using ET. The study of the correction factors
for these three chosen ways would provide useful examples of a recipe to generate
correction factors for rCBF evaluation by ET given local AlF.

The relationship between local AIF and the bolus signal time courses C (t) in ET

The most straightforward way to look at how local AIF can affect rCBF evaluation is to look
at how C(t) needs to be corrected to be used to measure rCBF in ET. For simplicity, let’s
assume that only two local AIF’s, AlF; and AlF,, supply two separate regions of the brain
even though the presentation in this manuscript applies to as many local AIF’s as necessary.
Perfusion information can be obtained from the bolus contrast agent concentration time
curve in the general expression given below:

C(t) ~ f(AIF ® R(1)) Eq (1)

where C(t) is the tissue contrast agent concentration signal (AR2*) time curve, f is the
perfusion term, AIF is arterial input function, ® is the convolution symbol and R(t) is the
residue function which is the probability that a molecule of the agent that entered the
capillary bed at t = 0 is still there at time t (Buxton, 2002; Ostergaard et al., 1996). The ET’s
basic assumption is for the residue function R(t) =1 and t < T, leading to Eq (2) below
(Kwong et al., 2011) which confirms that rCBF (flow ratio) result evaluated by ET is
independent of AIF (global AIF is assumed).

rCBF=ratio of C(t)=ratio of f Eq (2)

In the case of local AlF, Eq (1) can be written as,

Ci(1) ~ fi(AIF; @ R(1)) Eq (3a)

Co(n) = fL(AIF2 ® R(1)) Eq (3b)

where f1 and f, represent different blood flow values and C4(t) and Co(t) are two bolus
signal time courses associated with AlF1(t) and AlF5(t). When ET’s basic assumption (R(t) =
1and t<T) is met, C(t) behaves like the microsphere model and the convolution term (AIF
® R(t)) of Eq (1 and 3) turns into an integral term
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C(t) ~ f [ AIF(t)dT Eq ()

witht<T.

Methods: General Recipe

General recipe for obtaining correction factor for C(t) in the rCBF estimation by ET

From Eq (4), it can be observed immediately that the integral f:)AIF (T)dt can be used as a
correction factor for C(t) given local AIF because

C(r)
[AIF(t)dr

The recipe for the correction factor for each associated AIF is simply dividing each C(t) by
the integral of its local AIF to obtain the correct flow value. The same time point t will be

chosen for both C(t) and f:)AlF(T)dT. All the tissue bolus signal time courses C(t) fed by the
same local AlF; would pick the same time t, say t; to estimate their corrected flow values.
Time courses C(t) fed by a different AlF, are free to pick a different time, say t,. In
choosing the time point for rCBF estimation, it is assumed that the bolus transit delay of
each C(t) and AlF(t) has already been corrected.

Normalization of the measured local AIF

So far the local AIF’s listed in Eq 1, 3 and 4 are the “true” local AIF’s which have assumed
properties that the total integral under the local arterial concentration curve has the same
value for all tissues in the brain (Axel, 1980; Calamante et al., 2004). “True” AIF’s are
unlikely to be measurable in practice. The measured AlF at a local artery is unlikely to be a
duplicate of the “true” AIF due to interference such as vessel orientation, partial volume of
tissues, inflow artifacts, etc. So when we are comparing measured local AIF’s we are not
only measuring the difference among the “true” local AIF’s but also artifact-weighted MR
signal of each local AIF. However, if we make the assumption that the measured AIF at
least keeps the same shape of the “true” AIF, measured AIF will differ from the true AlIF
only by some arbitrary constant value. Taking into account the consideration of the

difference among measured local AIF’s, the integral term [ AIF(t)dr of Eq (4) should be
replaced by a normalized integral, namely an integral normalized by the total area of the
measured AlF as below

[(AIF(t)dr
jf;’AIF(r)dr

Both the numerator (the integral of AIF up to a pre-selected time point t) and the
denominator (total integral of AIF) are measureable. The normalized integral differs from

f:)AIF(T)dT only by a constant, unique to each local AlF.
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With normalization, terms in Eq (4) turn into the normalized integral f ;AIFN(T)dT with

AIF(f)
AIF ()= —————
U [YAIF(dr
and the normalized Cy (t) with
C(t
CWF%
[ AIF (1)dt

Since all future description and discussion of AlIF(t), C(t) and the correction factors in this
manuscript are working only with normalized terms, there is really no need to keep the
cumbersome subscript N to indicate normalization. So for convenience

AIF(t) = = AlFy(t) and C(t) = = Cn(t) from now on and Eq (4) with normalized terms would
be listed again as

C() ~ f [ AIF(1)dT

There shouldn’t be any confusion.

Pre-correction required for ET: bolus transit delay pre-correction using relative time of
arrival (rTOA) of the bolus

Before C(t) and local AlF(t) can be used for rCBF estimation, both of them need to be

corrected for transit delay before the correction term f:)AIF (7)dt can be usefully applied.
Conceptually, obtaining the information of the time of arrival (TOA) (Kwong et al., 2011) of
the contrast agent bolus is the most convenient way for ET to handle the bolus transit delay
correction for C(t) and local AlF(t). However, as shown in the companion paper (Kwong et
al.) the low CNR consideration of TOA encourages the utilization of other reference time
points for ET, time points with superior CNR known collectively as relative TOA (rTOA).
In this manuscript, we will investigate the correction factors given the following rTOA’s: the
time to reach the maximum first derivative (TMD1) and the time to reach the maximum
second derivative (TMD2). For all voxels given a single AlF, each rTOA retains the same
respective time distance from TOA. MD1, the value of the maximum derivative, and MD2,
the value of the maximum second derivative can be taken to estimate flow.

Making correction factors for C (t), MD1 and MD2 at specific rTOA’s which are TMD1 and

TMD2

Flow can be estimated using MD1 and MD2 without the explicit knowledge of TOA.
Utilizing rTOA’s, one can evaluate flow using C(t) at t=TMD1 and at t=TMD2. We are
presenting below the recipe for making the correction factors for C(t) at TMD1 and TMD2
and the correction factors for MD1 and MD2. As mentioned above, the result of MD1 is
translatable identically to the result the maximum gradient based method for perfusion
analysis.
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Making correction factor for C(t) at TMD1

If we take TMD1 of each C(t) to be the time point to apply the correction factor in order to

evaluate rCBF, the upper time limit t for the integral f:)AIF(r)dr would be the relative time
distance between TMD1 and TOA. It is important to recognize that TMD1 of C(t), in terms
of its relative time distance to TOA, is the same as the time to reach the maximum signal
(not the maximum derivative) of the AIF itself. The reason is that

4y GAIF(1)dT=AIF (1)

dt Eq (5)
according to the second fundamental theorem of Calculus. Combining Eq 4 and 5
d . doe oo ,
—CO ~ f— [ AIF(T)dT=FAIF (1) B4 6)

Therefore, relative to TOA, the time to reach the MD1, namely TMD1, is the time to reach
the maximum signal of AlF.

For convenience, the time to reach the maximum signal of AIF is named TMAIF. The
correction factor for the contrast agent signal intensity of C(t) at TMDL1 is therefore

ngDl of C(I)AIF(T)dT: (T)MAIFA]F(T)dT

if we assume that t = 0 is the same as TOA. The correction factor, which is just a constant
value, once found, is applied to all C(t) of a particular brain region at the time point TMD1.

Now we know the upper time setting of the integral ngAIFAIF(T)dT, how do we determine
the lower time setting if we do not know TOA which should be assigned to t=0? Fortunately,
we can take the integral from the time TMAIF backwards. Presumably the part of the
integral that involves the baseline would be averaged to zero because if noise is present, be it
random or physiological, the mean of the baseline should be zero, translating into that part
of the integral becoming zero. So we could generate the correction factor without any
knowledge of TOA.

Making the correction factor for MD1

Using the MD1 to calculate rCBF is simply the classical maximum gradient method for
perfusion analysis and MDL1 is known for its robustness (Kwong et al., 2011) appropriate for

rCBF estimation. In using 4C(r) for rCBF evaluation, we can derive from Eq (6)

d N
. €O
4 [ AIF(t)dr

or,
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4C(1)
. dt
f= AIF (1)

The correction factor is now J—’,f:)AIF(T)dT or equivalently, AIF(t). At TMD1, It simply
means that MD1 of each C(t) should now be corrected by the maximum signal of AIF, or the
value of AIF at TMAIF. Please notice the detail of the current correction factor which is

now the maximum value of AIF, not the integral ngAIFAlF(T)dT listed above which is the
correction factor for C(t). So we have the convenient result that the correction factor for the
maximum derivative is simply the maximum value of AIF.

This maximum value of AIF (also known as the height of AIF) being used for the correction
factor for MD1 at TMD1 is well established in the literature of the maximum gradient based
method (Axel, 1980; Herfkens et al., 1982; Kimura and Kusahara, 2009; Miles, 1991). We
are just recasting it in the framework of ET.

Making the correction factor for C(t) at TMD2 and the correction factor for MD2

We have explored the correction factor for C(t) at TMD1 and the correction factor for MD1
at TMD1. Since TMDLA runs a higher risk of violating ET’s basic assumption (Kwong et al.,
2011) than TMD2 in experimental data, it makes sense to study the correction factor when
TMD?2 is used as rTOA. We will demonstrate how to make the correction factor for C(t) at t
= TMD2 as well as the correction factor for MD2 at TMD?2. Incidentally, since the value of
the second derivative at TMD1 is zero, there is no point of studying the second derivative of
C(t) at TMDL1.

The correction factor for C(t) at TMD?2 is

fTMDZ of C(f)

TMD1 of AIF
) AIF (t)dr= |,

0 AIF(t)dt

because relative to TOA, the time point to reach the maximum derivative of AIF is

equivalent to TMD2 of C(t).

The correction factor for MD2, on the other hand, is the maximum derivative value of AlF.
The explanation is that

d—QC(z) ~ fd—2 [ AIF(t)dT
dr "l drdo Eq (7)

d2

d
= CO = [ AIF()

Eq (8)

Hence,
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p

LAIF (1)

As a generalization, to use the maximum derivative of any order a for rCBF estimation, the
correction factor would be the derivative of order a of the integral of local AlIF or
equivalently the maximum derivative of the order of a — 1 of AIF.

Methods: Specific Modeling of local AIF

The gamma-variate function is used as a model for local AIF to showcase the correction

factors

To illustrate concretely how to make correction factors based on local AlF for the purpose of
evaluating rCBF by ET, we use the popular gamma-variate function as a model for AIF.

Given the gamma-variate function e %t as a model for AIF, the correction factor

f:)AIF(T)dT, after proper normalization of the gamma-variate function, will become the
incomplete lower gamma function

1
P(t,a)=— [ et \dr
['(a) Jo Eq (9)

Different a values in e %21 give us different local AIF’s.
From Eq (4), we obtain

C(1)

'~ 5

The values of incomplete lower gamma function P(t, a) for different values of a can be
obtained by Matlab.

A more general AIF model using the gamma-variate function yields the same results as
P(t, a) at TMD1 and TMD2

Instead of using e t31 as the model for AIF, a more generalized AIF model e ®'2-1 can be

used equally well and now the correction factor f;)AIF (t)dt will become

t broae
f()e brra=lgr

Sta,by=—F5—
f() e~brra-lgr

Eq (10)

For S(t, a, b), 7AD1= <« and TMp2=wu-eT. For comparison, TMD1 =a -1 and

TMD2=(a — 1) — Va - 1 with respect to P(t, a) At t equal to their respective TMD1 or
TMD2, S(t, a, b) = P(t, a). That means whatever we can demonstrate for P(t, a), we obtain
the same answer for S(t, a, b) at their respective TMD1 or TMD2. Varying the b term in
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e -1 s not going to make a difference. Since we are focusing on the results of the
correction factors at TMD1 and TMD2, the study of the properties of P(t, a) is sufficient for
our purpose.

Results from the correction factor P(t, a)

In the simulated time courses of local AlF, the bolus transit delay is assumed to have all
been properly corrected. With future applications for experimental data in mind, we present
the results of the correction factors at the designated rTOA’s of TMD1 and TMD2. We
compared the results of correction factors made from changing the value of a of P(t, a). The
values of a between 3 and 5 fall within the value range normally used for AIF modeling
(Calamante et al., 2000; Wu et al., 2003a; Wu et al., 2003b). We assume that range of a
values reflects what is observed in real world data.

Given a = 3,4,5 for P(t, a), TMD1=a - 1 and TMD2=a — 1 — Va — 1. Hence,

TMDI1=2,3,4
TMD2=2 — V2,3 - V3,4 - V4

P(t, a) and 4 P(t, a) share the interesting and similar results that P(t, a) is relatively
independent of a at t =TMD1 and 4 p(;, ) is relatively independent of a at t =TMD2.
Results of the correction factor P(t, a) at TMD1 or TMD2 with different values of a

To evaluate f with C(t), the correction factor is P(t, a). Given a =3,4,5,

P(t,a)=0.323,0.353,0.371 for t=TMD1 and
P(t,a)=0.0217,0.04,0.0527 for t=TMD2

The example of P(t, a) at t =TMD1 is demonstrated at Fig. 1a which shows that given
different a’s, P(t, a) at TMD1 returns values relatively insensitive to a.

Results of the correction factor 4p(t,q) @t TMD1 or TMD2 with different values of a

To evaluate f with < c(), the correction factor is « p(;, 4). Givena =3,4,5,

%P(I, a)=0.27,0.224,0.195 for t=TMD1 and
I‘J—ItP(t, a)=0.0955, 0.0956, 0.0902 for t=TMD2

The example of « p(;, 4) for t=TMD1 is demonstrated at Fig. 1b which shows that given

different a’s, « p(t ) at TMD1 returns values sensitive to a. « 4 P(z, a) &t TMD1 is just the
correction factor for MD1, so MD1 is sensitive to the shape of the model AIF.

On the other hand, « p(;, 4) at t =TMD2 returns values relatively insensitive to a.

Results of the correction factor 2 P(1,q) @t TMD1 or TMD2 with different values of a

To evaluate f with 2 C(ty the correction factor is 2 P(t, ay Givena =345,
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& P(t, @)=0.0 for ;=TMD1 and
2 p(t,a)=0.2306, 0.1306, 0, 0902 for ;=TMD2

Given different a’s, 2 p(;, 4) at TMDZ2 returns values sensitive to a. 2 p(;, 4) at TMD2 is just
the correction factor for MD2, so MD2 sensitive to the shape of the ‘Model AIF.

Results summarized

Table 1 below summarizes the result of correction factors for the three variants of the
incomplete lower gamma functions at TMD1 and TMD?2.

rCBF result obtained by C(t) at TMD1 is relatively insensitive to local AIF

Fora=3,4,5, P(t, a) = 0.323, 0.353, 0.371 at TMDJ. The difference between P(t, 3) and P(t,
4) at TMDL1 is 8% and that between P(t, 4) and P(t, 5) at TMD1 is less than 5%. That
suggests that the correction factor for C(t) is relatively insensitive to a, or of the shape of the
AIF. That is also the case for the correction factor « p(; 4)at TMD2. The error of « p(;, 4)is
less than 1% for a between 3 and 4 and around 5% for a between 4 and 5. That suggests that
if C(t) is used for rCBF evaluation at TMDL1 or if 4C(1) is used at TMD2, the correction
factor can almost be ignored.

rCBF result obtained by MD1 andMD2 are more sensitive to local AlF

For a=3,4,5, 4 p(¢, 4)=0.27, 0.224, 0.195 for MD1, so the error of the correction factor is
around 17% i!or a between 3 and 4 and 13% for a between 4 and 5. So MD1 can be
considered sensitive to the shape of AIF. The reason is that the correction factor for MD1 is
proportional to the maximum value of AIF and the maximum values of local AIF’s do not
usually have similar values. The same large range of error appears for the correction factors

2 P(1, )t TMD2, which are the correction factors for MD2.

Discussion

The recipe of finding correction factors is evaluating the results of f:)AIF (t)dr. We have
identified the different correction factors required for C(t), MD1 and MD2 at rTOA’s such
as TMD1 and TMD2 and gave specific examples using the gamma-variate function as a
model for AIF. Even though this manuscript presents only theoretical results, we brought up
concerns over problems we might encounter in experimental data (e.g. C(t) vs. MD1 and
MD2 for rCBF estimation) when appropriate to provide an indication of the limitation of the
theoretical model.

Is the rCBF result obtained by the maximum gradient based method relatively insensitive
to local AlF, given the model of the gamma-variate function for AIF?

The relative insensitivity of P(t, a) to a at t = TMD1 and of 4P(t, a) toaatt=TMD2
suggests that under some special conditions of local AIF belng coincidentally similar to
normalized e t21, experimental data of C(t) at TMD1 and 4 () at TMD2 might also show
low insensitivity to local AIF. We do not know how likely such special conditions for AIF
would arise and we leave the question of whether the normalized gamma-variate function is
the appropriate model for experimental AIF to other studies. On the other hand, since MD1
can be considered sensitive to the shape of AlF, the traditional maximum gradient method to
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estimate perfusion, even under the “optimal” condition of AIF modeled by normalized
et21 would be sensitive to the effect of local AIF.

More comment on the generalized gamma-variate function model

In the more generalized gamma-variate function model for AIF, S(t, a, b) yields the same
correction factor of P(t, a) at TMDL1 if a is held constant, no matter how the value of b is
varied. That also means that the results we obtained for P(t, a) at TMDL1 are translatable for
S(t, a, b) at TMD1. Hence we can safely ignore b and limit ourselves to varying the
parameter a of P(t, a) at TMDLJ. It is interesting to note that while the correction factor S(t,
a, b) = P(t, a) at TMD1 and TMD2, the results are however very different for the derivatives

of S(t, a, b) of 45 (t,a,b) and 25 (t,a,b)

45 (t,a,b)=b4% P(t,a) at TMD1 and at TMD2, and
L5 (t,a,b)=b*4 P(t, a) at TMD2

So the correction factors for the generalized gamma-variate function model have a term
dependent on b. Hence, if we pick two different AIF’s which differ on the b value of the
generalized gamma-variate model, correction factors for MD1 and MD2 could potentially be
vastly different for the two AIF’s. This is on top of the results reporting sensitivity for MD1
and MD2 to the variation in the value of a. It is fair to state that in varying either the a or the
b parameters of the generalized gamma-variate model, the maximum gradient based method
would be sensitive to the shape of local AIF. By contrast, estimating rCBF by C(t) at TMD1
is relatively insensitive to both the a and the b parameters of the gamma-variate model of
AlF.

Experimental data vs. simulation data

While we reported theoretical results on correction factors with simulation data, inevitable
noise of experimental data could impose major constraints on the theoretical outcome.
Below we discussed a number of factors likely to occur in experimental data.

A. Effect of miscalculation of rTOA on rCBF evaluation by ET—The proposal to
estimate rCBF using MD1 at TMD1 and MD2 at TMD?2 is a fairly robust way to estimate
flow in ET, relatively independent of the error of estimated rTOA. MD1 remains relatively
stable ranging from TMD1+1 to TMD1-1 while C(t) could vary significantly in the same
time range. Error in estimation of TMD1 could potentially compromise the accuracy of
calculated rCBF more if C(t) instead of MD1 is used for ET. Similar consideration applies to
MD2 vs. C(t). While C(t), under the normalized gamma-variate function for AIF model, was
shown to have some theoretical advantage over MD1 and MD?2 in terms of sensitivity to
local AlF, the robustness of MD1 and MD2 over C(t) in the face of estimation error of
TMD1 or TMD2 could be a more serious concern which must be taken into account in the
application of ET.

How much error can we expect for rCBF given a miscalculation of rTOA if MD1 or MD2
are not used to evaluate rCBF? In the deconvolution literature, flow is known to be
underestimated (Calamante et al., 2000; Ostergaard et al., 1996; Wu et al., 2003a) when time
of arrival (TOA) of the tracer bolus is delayed relative to the arterial input function. The
same type of underestimation in flow also occurs in ET (assuming either global AIF or
known local AIF) when true TOA of the tracer bolus is delayed relative to the estimated
TOA.
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With regard to the degree of error to be expected in rCBF estimation, the proper response
would be slightly more complicated in ET than in the deconvolution model. Since flow in
the ET method can be estimated by a multiple number of ways (Kwong et al., 2011), each
having its own strength and consideration (e.g. one can use the bolus time course C(t), the
integral of C(t), derivative of C(t), fractional derivatives of C(t), etc), it is not possible to
give a single blanket statement on how much mis-estimation of rCBF could occur. In
general, the amount of rCBF error varies with the ET method applied. Specifically, the
amount of rCBF error varies with the shape and size of the selected AIF and on the
particular way AIF is used for the calculation of flow. This statement is true whether AIF is
considered global or local. An explanation is given below.

If we estimate flow by C(t), using TOA as the reference time point for ET, flow f is shown
in Eq (4) of the Introduction Section above to be

C(t) ~ f [ AIF(dT  or

c(t)

f;A[F(_T)dT

The flow ratio of two different pixels in ET is independent of AIF(t) if we assume global
AIF, but the amount of flow error coming from the mis-estimation of TOA, based on Eq (4),
would be dependent on t and on the shape and size of the particular AlF(t). Therefore, one
cannot evaluate “how much effect of the delay of the bolus on rCBF estimate” without a
good knowledge of the specific AIF(t).

Similarly, if flow is estimated by 4C(r) instead,

ENel0))
. dt
U AIF (1)

and the amount of error in estimated f due to error in TOA would be different from the error
obtained using Eq (4), but would still again depend on the shape and size of AlF(t).

In the local AIF model, it means that the assessment of error in flow would depend on the
adequacy of the local AIF identification. The same argument goes with the use of other
forms of derivatives of C(t) to evaluate flow errors associated with misestimated TOA.

B. Effect of contrast agent leakage on rCBF estimation by ET—ET assumes that
the contrast agent has no chance to leave from the tissue. Is there a way to account for
clinical patients who show leakage of contrast agent?

“How much” leakage effect is there on rCBF estimation by ET? The simple answer is: it
could range from none to very little. Below we will give a more detailed answer.

rCBF evaluation by ET (or by deconvolution) is not expected to be affected by leakage in
the following applications: In computed tomography (CT) perfusion analysis with a first
pass bolus (Aviv et al., 2009; Bisdas et al., 2007; Cenic et al., 2000; Koh et al., 2006;
Nabavi et al., 1999), in T1 based MRI Dynamic Contrast-enhanced (DSC-MRI) first pass
study (Larsson et al., 2009), in PET perfusion (Larson et al., 1987) of the distributed
parameter models where radiolabeled water is not 100% freely diffusive and retains a
vascular component. The reason is that given the assumption of R(t) = 1 before the tissue
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mean transit time, the external image detector, as explained by Larson et al. (Larson et al.,
1987) cannot distinguish between tracer extracted into tissue and tracer in blood, but instead
registers a response proportional to the total amount of tracer in the injected bolus.

While the evaluation of relative cerebral blood volume (rCBV) would be affected by the
leakage (Axel, 1980; Cenic et al., 1999), such discussion will be deferred as our current
manuscript is limited to ET on rCBF.

In T2* based DSC-MRI, on the other hand, a model has been presented to correct the bolus
concentration time course of the effects of T1 changes associated with the leaks of gado
agents (Donahue et al., 2000; Quarles et al., 2005; Weisskoff et al., 1994). In principle, once
the experimental bolus concentration time course is successfully modified, corrected rCBF
result can be obtained independent of which perfusion analysis method (e.g. deconvolution
or ET) is employed.

In practice, in the literature of the deconvolution approach, rCBF was rarely corrected in
T2* based DSC-MRI. The correction of the concentration time curve was directed mainly to
the effect on rCBV (Boxerman et al., 2006; Covarrubias et al., 2004; Donahue et al., 2000;
Paulson and Schmainda, 2008; Quarles et al., 2005). The reason is that the T1 effect due to
leakage would be the strongest late at the tail end of the bolus signal, leading to inaccurate
assessment of rCBV values. rCBF results which depend overwhelmingly on the early time
points are hardly affected, a consideration applicable to ET as well as the deconvolution
method. While we can always choose to apply a model to correct any T1 effect on the
experimental T2* based concentration time course, the simple argument is, even without any
modeling, that the total amount of leakage is small at the early time points, leading to a
small T1 effect on the bolus data signal and can be reasonably ignored in ET for rCBF
evaluation.

One may ask whether the range of “early time points” is consistent with the assumption of a
small amount of leakage. What would be an upper time point boundary for “early time
points” of ET? We know, as explained in our companion paper on fractional derivatives,
that ET basic assumption would fail before C(t) reaches its peak (has ET always held, C(t)
would plateau and not turn back at its peak). But that is just the upper limit. Literature shows
(Klotz and Konig, 1999; Miles and Griffiths, 2003) that it is feasible for ET to also fail
before TMD1. So “early time points” consistent with ET really encompass just the early
rising part of the bolus time curve where change of T2* and T1 would be insignificant, as
shown from the lack of difference between the uncorrected and corrected mean rCBF values
given in (Quarles et al., 2005).

Strictly speaking, the T1 effect of leaked gado agents becomes a problem for T2* based

DSC-MRI mainly because the bolus concentration is calculated as AR2*(¢)=7LIn g) where
AR2*(t) is the change in transverse relaxivity for gradient echo, S(t) is the signal intensity of
a single echo MR sequence at time t, Sy is the baseline signal intensity before the bolus
arrives. Had the concentration time course been converted from the difference of R2*(t)
obtained from fitting the signal decay of a multi-echo gradient echo sequence, the T1 effect
would not play a role. Here we assume that AR2*(t) is the same whether the contrast agent is
in the vessels or has leaked out. It is an assumption made by virtually all the current T2*
based DSC-MRI models (Donahue et al., 2000; Johnson et al., 2004) but with the
acknowledgement that details of the assumption remain to be investigated (Zaharchuk,
2007). There is also the first-pass T2* method or first-pass parametric model of Johnson et
al. (Johnson et al., 2004) with the authors claiming that they had never observed any marked
T1 effect in leaky tumors. If one accepts the claim on T1 by Johnson et al. or if AR2*(t) can
be obtained from a multi-echo sequence, the estimation of rCBF by ET using T2* DSC-MRI
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data would again be independent of leakage just like the CT perfusion analysis presented
earlier. Also as mentioned above, leakage does affect the evaluation of rCBV which, while it
is not immediately relevant to our discussion on ET, could be evaluated by a large number
of published methods, including many of citations listed above.

C. Future considerations for a comparison of theoretical model vs.
experimental data—We chose to focus on presenting only a theoretical model here and
not including a comparison of experimental data. Numerous confounding factors of
experimental data such as the effect of the random noise and physiological noise, the
multiple transit times of the partial volumed experimental signal vs. the single transit time
model in simulation, and the additional unknowns of the quality of the local AIF model, are
all considerations that make a non-trivial comparison between the theoretical model and
experimental data beyond the scope of the current manuscript. What is required for setting
up a future comparison of the experimental data with some of the specific claims of the
theoretical model? We can consider the example of one specific claim mentioned in the
manuscript: Is experimental rCBF result obtained by C(t) at TMD1 really (relatively)
insensitive to local AlIF? Before the claim can be evaluated, we need to have a “gold
standard” of perfusion values to identify experimental pixels which have “truly” equal flow
values. Such a “gold standard” can be obtained by measuring flow using a microsphere
model in future animal experiments.

We believe that clarifying the different theoretical aspects of the correction factors in this
current manuscript is of sufficient relevance and utility for the perfusion research
community. Future research will be needed for a more detailed evaluation of experimental
data in the ET context for local AlF.

Second Recipe

We have provided a recipe to find the correction factors based on local AIF. Other recipes
are available but they all depend on the same principle of taking into account the different
shapes of the AIF’s. For reference, a second recipe is also described at the Supplementary
Material section together with the graphical illustration of Fig. S1.

Conclusion

Given the information of local AlF, proper correction factors can be obtained for ET to
evaluate rCBF based on the microsphere perfusion model. If C(t) is used for rCBF
calculation, the correction factor is a normalized integral of the local AlF up to any early
time point of our choice. In the special cases of using MD1 and MD2 for rCBF estimation,
the correction factor is the maximum signal of AlF for MD1 and the maximum first
derivative of AIF for MD2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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C() tissue contrast agent bolus concentration time curve

ET early time points perfusion imaging method

MD1 maximum derivative of C(t)

MD2 maximum second derivative of C(t)

P(t,a) the incomplete lower gamma function

rTOA relative time of arrival of the contrast agent bolus

T tissue mean transit time

TMAIF time to reach the maximum signal of AIF

TMD1 time to reach the maximum derivative

TMD2 time to reach the maximum second derivative

TOA time of arrival of the contrast agent bolus
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Correction Factors P(t,a) for C(t) at TMD1 with a=3,4,5
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Fig. 1.

(a) Graphs of P(t, 3), P(t, 4) and P(t, 5), representing correction factors of C(t) given
different local AIF’s modeled by normalized e t3-1 with parameter a equal to 3, 4, and 5.
Dotted vertical lines highlight the time points of TMD1 of P(t, 3), P(t, 4) and P(t, 5).
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Intersection of dotted vertical lines with graphs of P(t, 3), P(t, 4) and P(t, 5) return
correction factor values of C(t) at TMD1, correction factor values equal to 0.323, 0.353 and
0.371, which are relatively close to each other. (b) Graphs of « p(;, 3), < p(;, 4yand < p(;, 5),
representing correction factors of « 4C(1) and equivalent to the respectlve AlF’s. Dotted
vertical lines highlight the time pomts of TMD1 of P(t, 3), P(t, 4) and P(t, 5) which are
equivalent to the time points of the maximum signal of the respective AIF’s. Intersection of

dotted vertical lines with graphs of « 4P(t,3), L P(t,4) and 4 p(z,5) return the correction factor

values of . 4C(r)at TMD1, or equwalently MDl values equal to0 0.27, 0.224 and 0.195,
which are not as close to each other as those presented in (a).
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Table 1

Correction Factor

The values of correction factors based on P(t, a) are listed for t =TMD1 and t =TMD?2. The correction factor
for C(t) is P(t, a). The correction factor for 4C(r) is 4 P(t, ay The correction factor for 2 (1) is 2 P(t, a) The
following results are reported by Table 1: The correction factors for the signal intensity at TMD1 and for the
first derivative value at TMD2 are relatively insensitive to the value a, or equivalently the shape of the
gamma-variate function AlF. In contrast, correction factors for the first derivative at TMD1 and the second
derivative at TMD?2 are more sensitive to a. The second derivative of C(t) at TMD1 is naturally zero so the
correction factor £ P(t,a) is also zero at TMD1.

Correction Factor P(t, a) for Correction Factor %P(t’ a) for Correction Factor %P(t, a) for
t Valueaof P(t,a)  Signal Intensity of tissue curve first Derivative of tissue curve second Derivative of tissue curve
TMD1 3 0.3233 0.2707 0
4 0.3528 0.2240 0
5 0.3712 0.1954 0
TMD2 3 0.02174 0.0955 0.2306
4 0.04 0.0956 0.1306
5 0.05265 0.0902 0.0902
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