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a  b  s  t  r  a  c  t

The  ability  to  regulate  one’s  emotions  is  critical  to mental  health  and well-being,  and  is
impaired  in  a wide  range  of  psychopathologies,  some  of  which  initially  manifest  in  child-
hood or  adolescence.  Cognitive  reappraisal  is  a  particular  approach  to  emotion  regulation
frequently  utilized  in behavioral  psychotherapies.  Despite  a wealth  of research  on  cognitive
reappraisal  in  adults,  little  is  known  about  the  developmental  trajectory  of  brain  mecha-
nisms  subserving  this  form  of  emotion  regulation  in  children.  In this  functional  magnetic
resonance  imaging  study,  we  asked  children  and  adolescents  to up-  and  down-regulate
their  response  to  disgusting  images,  as the  experience  of  disgust  has  been  linked  to  anxiety
disorders. We  demonstrate  distinct  patterns  of brain  activation  during  successful  up-  and
down-regulation  of  emotion,  as well  as  an  inverse  correlation  between  activity  in  ventro-

medial  prefrontal  cortex  (vmPFC)  and  limbic  structures  during  down-regulation,  suggestive
of a potential  regulatory  role  for  vmPFC.  Further,  we  show  age-related  effects  on  activity
in PFC  and amygdala.  These  findings  have  important  clinical  implications  for the  under-
standing  of  cognitive-based  therapies  in  anxiety  disorders  in  childhood  and  adolescence.
. Introduction

Emotion regulation refers to the set of processes
y which we modify the experience and expression of
ur emotions (Gross, 1998b). This ability is critical to
ustained mental health, and impairments in emotion
egulation are observed in a range of psychopathologies
Amstadter, 2008; Beauregard et al., 2006; Campbell-Sills
t al., 2006; Cisler et al., 2010; Gross and Thompson,
007; Hermann et al., 2009; Koenigsberg et al., 2002;

ullin and Hinshaw, 2007; Phillips et al., 2003). Further-
ore, cognitive-based psychotherapies (Campbell-Sills

nd Barlow, 2007; Linehan et al., 2007; Taylor and Liberzon,
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2007) utilize cognitive reappraisal in their approach to
modulating pathological emotional tendencies. The emo-
tion regulatory resources at an individual’s disposal change
across development commensurate with the refinement
of processes including working memory, response inhi-
bition, and self-reflection (Calkins and Hill, 2007; Stegge
and Terwagt, 2007; Stuss, 1992; Zelazo and Cunningham,
2007). Many mental illnesses characterized in part by
impairments in emotion regulation often manifest initially
in childhood or adolescence (Davidson and Slagter, 2000).
Thus, from a clinical perspective, a comprehensive explo-
ration of the mechanisms underlying emotion regulatory
processes requires a developmental approach.

An extensive literature has focused on the neural

mechanisms subserving emotion regulation in adults (e.g.,
Beauregard et al., 2001; Blair et al., 2007; Kim and Hamann,
2007; Mak  et al., 2009; Ochsner et al., 2004; Phan et al.,
2005; Urry et al., 2006; see Ochsner and Gross, 2007;
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Phillips et al., 2008 for review). Most studies rely partially
or exclusively on cognitive reappraisal, which involves
reinterpreting an emotion-eliciting stimulus in order to
modify one’s emotional response (Gross, 1998a; Ochsner
and Gross, 2005). Regions of prefrontal cortex (PFC) have
been consistently implicated in the implementation of reg-
ulatory processes that in turn modulate activity in limbic
regions such as the amygdala, which exhibits increased or
decreased activity in accordance with the direction of reg-
ulation (e.g., Eippert et al., 2007; Harenski and Hamann,
2006; Kober et al., 2008; Koenigsberg et al., 2010; McRae
et al., 2010; Ochsner et al., 2002; Ohira et al., 2006; Schaefer
et al., 2002). The notion that PFC activity modulates the
amgydala is supported by anatomical data in monkeys
showing direct connections between the amygdala and
regions of PFC (Amaral and Price, 1984; Ghashghaei et al.,
2007). Medial PFC (mPFC) has also been linked to the
down-regulation of amygdala activity (Phelps et al., 2004;
Quirk et al., 2003). Additionally, human studies have found
inverse correlations between activity in the amygdala and
ventromedial PFC (vmPFC) during emotion regulation and
have demonstrated that the vmPFC serves as a mediator
between lateral PFC (lPFC) and the amygdala (Johnstone
et al., 2007; Urry et al., 2006). One study identified a func-
tionally connected network of brain regions associated
with amygdala activation during reappraisal, including
dorsolateral PFC (dlPFC), dorsomedial PFC (dmPFC), ante-
rior cingulate cortex (ACC), and orbitofrontal cortex (OFC;
Banks et al., 2007). Finally, the degree of success of reap-
praisal has been variably correlated with activity in regions
of PFC (Eippert et al., 2007; Kober et al., 2008; Levesque
et al., 2003; Wager et al., 2008), ACC (Phan et al., 2005), and
amygdala (Eippert et al., 2007; Phan et al., 2005), as well as
with the degree of correlation between the amgydala and
PFC (Banks et al., 2007).

Despite the wealth of neuroimaging studies of cogni-
tive reappraisal in adults, few studies have addressed the
neural mechanisms of cognitive reappraisal in children.
One study using event-related potentials demonstrated
a reduction of the late positive potential, a marker of
attention to emotional stimuli which is reduced in adults
following reappraisal, after neutral relative to negative
interpretations of negatively valenced images, suggesting
commonalities in the neural markers of emotion regu-
lation between children and adults (Dennis and Hajcak,
2009). In the only fMRI study to date to examine the neu-
ral correlates of cognitive reappraisal in children, Levesque
et al. (2004) showed sad film clips to girls aged 8–10
years and instructed them to decrease their emotional
response. Consistent with the adult literature, they demon-
strated reappraisal-related activity in bilateral lPFC, OFC,
and mPFC, right ACC and right ventrolateral PFC (vlPFC).
They noted a greater number of prefrontal loci than previ-
ously identified in an identical study performed in adults
(Levesque et al., 2003), which they interpreted as indica-
tive of immaturity of the prefrontal–limbic circuitry. The
authors examined a priori defined regions of interest lim-

ited to prefrontal cortex and ACC, and therefore were not
able to explore modulation of other brain regions, includ-
ing the amygdala, during reappraisal. Additionally, with the
use of a narrow age range they were unable to examine
e Neuroscience 1 (2011) 324– 337 325

changes in the neural mechanisms of cognitive reappraisal
across development.

The prefrontal cortex is one of the last cortical struc-
tures to reach maturity, developing through adolescence
and into early adulthood with a more complicated trajec-
tory than phylogenetically older structures such as limbic
and visual cortices (Casey et al., 2000; Gogtay et al.,
2004; Marsh et al., 2008; Shaw et al., 2008; Toga et al.,
2006). Emotion regulation shifts from dependence on care-
giver support during infancy (Rothbart et al., 1992) to the
development of self-regulatory processes in school age
children (Denham, 1998). These self-regulatory abilities,
prerequisite for successful cognitive reappraisal, develop
in tandem with PFC (Stuss, 1992). Thus, we  posit that the
neural mechanisms of such regulatory processes should
exhibit change across development. The objectives of the
present study were to clarify the neural circuitry under-
ling cognitive reappraisal in children, and to explore its
developmental trajectory using a cross-sectional design. To
this end, we asked children to view disgusting images and
to either up- or down-regulate their emotional responses.
We chose disgust over other negatively valenced emotions
because the experience of disgust has been linked to anx-
ious psychopathologies (Davey et al., 2006; Olatunji and
Sawchuk, 2005), including obsessive–compulsive disorder
(Berle and Phillips, 2006; Schienle et al., 2005), specific pho-
bias (Davey, 1994; Mulkens et al., 1996; Tolin et al., 1997;
Woody and Teachman, 2000), and health anxiety (Davey
and Bond, 2005). For example, disgust induction has been
shown to lead to a negative interpretation bias similar to
that caused by anxiety induction (Davey et al., 2006). More-
over, it has been argued that disgust may  play a causal
role in the development and maintenance of anxiety disor-
ders via attentional or interpretation biases (Olatunji et al.,
2010). Therefore, an investigation of cognitive reappraisal
of disgust in children has potential clinical implications for
psychotherapeutic approaches to anxiety disorders.

2. Methods

2.1. Participants

We studied a group of 24 typically developing children
and adolescents. Prior to group analyses, participants were
excluded if, after removing volume acquisitions where
movement between two volumes or integrated movement
over 4 volumes exceeded 1 mm,  more than 25% of the data
was removed from the entire experiment or one experi-
mental condition. This excluded 7 participants with a mean
age of 11.5 years. Of these participants, 6 had insufficient
data in the decrease-gross condition, 6 had insufficient
data in the increase-gross condition, 5 had insufficient
data in the look-neutral condition, and 3 had insufficient
data in the look-gross condition. Two  additional partici-
pants were excluded; one because professional assessment
raised concern for a neuropsychiatric clinical diagnosis,
and the other for outlying data in all of the contrasts

of interest which raised serious concern that the partici-
pant did not perform the task correctly. Specifically, the
participant showed significantly greater activation during
decrease trials versus both increase and look-negative tri-
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ls throughout the brain. Thus our final sample consisted
f 15 participants (7–17 years, mean 13.03 ± 2.20, 9 male).
ritten assent was obtained for each participant in addi-

ion to informed parental consent according to a protocol
pproved by the Yale School of Medicine Human Investi-
ations Committee.

.2. Experimental design

Participants viewed neutral and disgust-inducing
mages drawn from the International Affective Picture Sys-
em (Lang et al., 2008) and supplemented from an in-house
et of images that were selected to be appropriate for
iewing by children, such as images depicting moldy food,
eople vomiting, and roadkill. Prior to picture presentation,
articipants were provided an instruction (“Look”, “More
ross”, or “Less gross”) as well as a specific strategy for the
egulate conditions (i.e., “Pretend it’s right in front of you”
r “Pretend it’s fake”). The instruction and strategy were
resented in white text on a black background simultane-
usly with an audio recording by one of four actors (two
ale, two female), with a combined duration of 6 s. Images
ere displayed for 4 s and followed by an affect scale in
hich individuals were instructed to rate their degree of
isgust on a 1-to-5 Likert scale with the prompt “How
rossed out are you?”. Responses were selected via an MRI-
ompatible trackball mouse. The affect scale was presented
or 6 s, followed by a “Relax” instruction for 2 s. Thus, each
rial lasted 18 s. There were 4 conditions: look-neutral,
ook-gross, decrease-gross, and increase-gross. Each image

as viewed only once by each participant, and the pairing
f disgust-inducing images with trial type (look, decrease,
ncrease) was counterbalanced across participants. Nine
rials of each condition were presented in an event-related
esign with a jittered intertrial interval (ITI) of 2, 4 or 6 s.
ixation consisted of a white cross on a black background
nd was present during each ITI and for 12 s prior to the first
rial and 10 s after the last, for a total experiment duration
f 13:34 min.

.3. Pretask training

All participants received one-on-one task training con-
ucted by trained personnel prior to completing the
xperiment. First, participants were shown some sample
isgust-inducing images and asked to verbally describe
heir response in order to confirm the experience of disgust.
econd, participants were asked to provide the strategies
hey might use to increase or decrease their emotional
esponse to the pictures. This was done to ensure that
articipants understood the concept and were not simply
choing instructions. Next, specific strategies for cognitive
eappraisal were provided and discussed with the par-
icipant. For trials on which participants were instructed
o increase their emotional response (“More gross”), we
ncouraged them to imagine themselves right in front of
he contents of the disgusting image, rather than viewing it

s a picture (“Pretend it’s right in front of you”). For decrease
rials, participants were instructed to pretend the contents
f the image were fake, for example, props on a televi-
ion show (“Pretend it’s fake”). Participants were instructed
e Neuroscience 1 (2011) 324– 337

in the use of the affect scale and given the opportunity
to practice using the trackball mouse. To reduce demand
effects, they were instructed explicitly to respond to the
prompt “How grossed out are you?” with their actual emo-
tional response to the image, irrespective of whether they
were successful in increasing or decreasing their response.
Finally, participants completed 3 practice trials with the
experimenter and then 9 practice trials on their own.

2.4. Imaging protocol

Images were collected on a Siemens 3T Tim Trio scan-
ner located in the Yale University Magnetic Resonance
Research Center. High-resolution T1-weighted anatom-
ical images were acquired using an MPRAGE sequence
(TR = 1230 ms;  TE = 1.73 ms;  FOV = 256 mm;  image matrix
2562; 1 mm × 1 mm × 1 mm).  Whole-brain functional
images were acquired using a single-shot, gradient-
recalled echo planar pulse sequence (TR = 2000 ms;
TE = 25 ms;  flip angle = 60◦; FOV = 220 mm;  image
matrix = 642; voxel size = 3.4 mm × 3.4 mm × 4.0 mm;
34 slices) sensitive to BOLD contrast. Runs consisted of the
acquisition of 407 successive brain volumes.

2.5. Data analysis

Data were preprocessed and analyzed using the Brain-
Voyager QX 2.0 software package (Brain Innovation,
Maastricht, The Netherlands). Preprocessing of the func-
tional data included slice time correction (using sinc
interpolation), 3-dimensional rigid-body motion correc-
tion (using trilinear-sinc interpolation), spatial smoothing
with a FWHM 4-mm Gaussian kernel, linear-trend removal,
and temporal high-pass filtering (fast-Fourier transform
based with a cutoff of 3 cycles/time course). The func-
tional data sets were coregistered to high-resolution,
within-session, T1-weighted anatomical images which
were in turn normalized to Talairach space (Talairach and
Tournoux, 1988), to create 4-dimensional data sets. While
it is possible that this normalization process could differen-
tially affect younger participants whose brains may  differ
more from the Talairach template than the brains of older
participants, it was nevertheless important to ensure that
participants’ data could be effectively combined and sta-
tistically assessed. Additionally, normalizing to Talairach
space allows comparison of the present findings to prior
adult studies. Kang et al. (2002) provided an empirical val-
idation of normalization for analysis of fMRI data from
children. They found very small differences (relative to
the resolution of fMRI data) in the spatial correspon-
dence among several brain loci between young children
and adults after a standard, nonlinear transformation that
warped child and adult fMRI data into a common adult
Talairach space. These and other similar findings (Burgund
et al., 2002) support the use of a common, adult stereotactic
space in this study. An in-house script was  used to identify
(and exclude) participants for whom, after removing vol-

ume  acquisitions where movement between two  volumes
or integrated movement over 4 volumes exceeded 1 mm,
more than 25% of the data was removed from the entire
experiment or one experimental condition.
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To confirm that participants understood and performed
the task, behavioral ratings grouped by experimental
condition (look-gross, look-neutral, decrease-gross, and
increase-gross) were averaged in each participant. These
average ratings were then compared in group-wise paired-
samples t-tests. The first t-test compared ratings for
look-gross to ratings for look-neutral in order to confirm
that participants responded to the emotional nature of
the stimuli. Additional t-tests compared ratings for look-
gross to ratings for decrease-gross and increase-gross,
respectively. These two t-tests were performed in order
to confirm that participants experienced a change in their
emotional reactions to the stimuli when instructed to mod-
ulate their reaction to the gross pictures.

To investigate brain regions modulated during
the experimental paradigm, a random-effects multi-
participant general linear model (GLM)-based analysis was
performed. Regressors were defined as boxcar functions
peaking during each of the four experimental conditions
(predictors of interest), as well as three additional boxcar
functions peaking during instruction, affect rating, and
“relax” periods (predictors of no interest). These boxcar
functions were convolved with a double-gamma hemody-
namic response function (HRF) time-locked to the onset
of the 4-s image display for the experimental conditions,
and to the 6-s instruction period, the 6-s affect rating,
and the 2-s “relax” period, respectively. To additionally
account for motion during each scan, functions of all of
the 3 directions and 3 translations of movement from each
participant were included in each single-participant GLM-
based analysis as additional predictors of no interest. In all
whole-brain analyses, a mask was used to restrict analyses
to only voxels located within the brain, determined by the
extent of the MNI  brain normalized to Talairach space.

To identify brain regions modulated by the emotional
nature of the stimuli, brain activation in the contrast
of look-gross > look-neutral was assessed at a statistical
threshold of p < 0.05, corrected for multiple comparisons
with a cluster threshold of 34 contiguous functional voxels
(Forman et al., 1995; Xiong et al., 1995). This cluster thresh-
old was calculated by the BrainVoyager cluster-threshold
estimator plugin performing 1000 iterations of a Monte-
Carlo simulation to correspond to  ̨ < 0.05.

To identify brain regions modulated by efforts to
emotionally regulate (increase and decrease), a random-
effects analysis was performed on the conjunction of
both regulation contrasts (decrease-gross > look-gross and
increase-gross > look-gross). This conjunction analysis was
assessed at a statistical threshold of p < 0.05, corrected to

 ̨ < 0.05 with a cluster threshold of 34 contiguous func-
tional voxels.

To identify regions modulated by each emotion regula-
tion strategy individually, brain activation in the contrasts
of decrease-gross > look-gross and increase-gross > look-
gross were assessed separately, each at a statistical
threshold of p < 0.05, corrected to  ̨ < 0.05 with a cluster
threshold of 41 contiguous functional voxels. To explore

the effects of each emotion regulation task specifically on
regions responsive to gross pictures, a region of inter-
est (ROI) mask was created using regions identified as
more active to gross (versus neutral) pictures (identi-
e Neuroscience 1 (2011) 324– 337 327

fied in this same participant group, in the contrast of
look-gross > look-neutral in the multi-participant random-
effects GLM analysis at a statistical threshold of p < 0.05,
k = 34). Restricting the analyses to only voxels in the ROI
mask, the same contrasts of decrease-gross > look-gross
and increase-gross > look-gross were assessed at the same
statistical threshold as the whole-brain analyses.

More specific ROI analyses were performed in the
bilateral insula and amygdala, regions of a priori interest
because of their implicated roles in processing negative
(and particularly gross) stimuli. Specifically, we chose
to investigate the insula given its role in the process-
ing of disgust and our focus on disgust-inducing images
(Calder et al., 2000; Ibañez et al., 2010; Lane et al.,
1997; Phillips et al., 1997; Schafer et al., 2005; Wicker
et al., 2003). We  selected the amygdala because prior
studies have consistently demonstrated that activity in
the amygdala is modified by cognitive reappraisal efforts
(e.g., Eippert et al., 2007; Harenski and Hamann, 2006;
Kober et al., 2008; Koenigsberg et al., 2010; McRae et al.,
2010; Ochsner et al., 2002; Ohira et al., 2006; Schaefer
et al., 2002). These ROIs were functionally defined from
the multi-participant random-effects GLM analysis in the
contrast of look-gross > look-neutral at a more stringent
threshold of p < 0.01 which allowed us to discriminate
these specific ROIs. Average difference beta values in
the contrasts decrease-gross > look-gross and increase-
gross > look-gross were calculated for each of the four ROIs
and statistically tested in their variance from zero (rep-
resenting no modulation by emotion regulation) using
one-sample t-tests.

In the two regions we found to be significantly
decreased by down-regulation (right insula, left amygdala),
we used difference values (decrease-gross − look-gross)
calculated for each participant as an index of successful
down-regulation. We  used these values as a covariate in
the whole-brain analysis of decrease-gross > look-gross to
identify regions where activation significantly correlated
with the degree of successful regulation in each partici-
pant. Specifically, we looked for regions showing an inverse
correlation with the covariate, indicating that increased
activation in these regions predicted a larger decrease
in insula or amygdala activation during regulation. This
covariate analysis was  assessed at a statistical threshold
of p < 0.05, with a cluster threshold of 10 contiguous func-
tional voxels. We used a more liberal cluster threshold as
the low number of active voxels in this analysis precluded
the use of BrainVoyager’s cluster-threshold estimator plu-
gin.

The age range in the current study’s participant sample
allowed for the examination of brain regions in which acti-
vation correlated with age while viewing gross pictures, as
well as during emotion regulation. To this end, whole-brain
voxel-wise analyses were performed with chronological
age as a covariate in each of the three contrasts of inter-
est (look-gross > look-neutral, decrease-gross > look-gross,
increase-gross > look-gross). These covariate analyses were

assessed at a statistical threshold of p < 0.05, with a cluster
threshold of 34 contiguous functional voxels.

To further elucidate the nature of the age correla-
tions identified in whole brain covariate analyses, we
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Fig. 1. Mean affect ratings as a function of condition. Error bars represent
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tandard error of the mean (SEM). Single asterisk reflects significance at
 threshold of p < 0.01; double asterisk reflects significance at a threshold
f  p < 0.001.

erformed similar correlations in anatomically defined
egions which overlapped with areas we found to signif-
cantly correlate with age and for which we had a priori
ypotheses about their importance in the current study,
pecifically the amygdala and insula. We  visualized age cor-
elations with activation in the contrast of decrease-gross
ersus look-gross in the left amygdala, and increase-gross
ersus look-gross in the left insula in two separate scatter
lots. The left amygdala ROI was defined by the Talairach
atabase (Lancaster et al., 1997, 2000), while the left insula
OI was defined by manually drawing insular gray matter
n the Montreal Neurological Institute (MNI) 152 standard
rain and then converted to Talairach space by normalizing
he MNI  brain, as previously described (Deen et al., 2010).
ifference beta values for increase-gross − look-gross and
ecrease-gross − look-gross were calculated for the left

nsula and left amygdala, respectively, and plotted against
ge to visually inspect the correlation patterns for outliers
r binary grouping patterns.

. Results

.1. Behavioral data

Behavioral results revealed that average disgust ratings
f gross pictures were significantly higher than disgust
atings of neutral pictures (t = 12.30, p < 0.001). Further,
isgust ratings were significantly lower for gross pic-
ures when participants were asked to decrease (t = −6.06,

 < 0.001), and significantly higher for gross pictures when
articipants were asked to increase (t = 2.82, p = 0.01)
ersus look (Fig. 1).

.2. Imaging data

.2.1. Main effect of image valence
To identify brain regions modulated by looking at
isgusting versus neutral pictures, we conducted a
hole-brain contrast of look-gross > look-neutral. Regions

hat showed greater activation while viewing disgusting
ictures included bilateral insula, hippocampus, supra-
e Neuroscience 1 (2011) 324– 337

marginal gyrus, and occipital cortex. Additionally, regions
of the striatum, thalamus, right temporal pole, and right
dlPFC and dmPFC were active to disgusting images. Regions
that showed greater activation while viewing neutral pic-
tures included right precuneus and bilateral retrosplenial
cortex (Table 1, Fig. 2).

3.2.2. Regions associated with cognitive reappraisal
In order to identify regions associated with emotion

regulation (increase and decrease), we  did a whole-
brain conjunction analysis of the contrasts decrease-
gross > look-gross and increase-gross > look-gross. The one
region that showed greater activation in both regula-
tion conditions compared to look was left angular gyrus.
Regions that showed greater activation to look conditions
versus emotion regulation included bilateral posterior
insula extending into superior temporal gyrus, bilat-
eral lingual gyrus, bilateral parahippocampal gyrus, left
cerebellum, and right middle occipital cortex (Table 1,
Fig. 2).

In a separate analysis of each regulation instruction,
brain regions that showed decreased activation when
participants were instructed to feel “less gross” (versus
look) included bilateral occipital cortex extending into
hippocampus, bilateral insula, thalamus, right dlPFC and
postcentral gyrus, left precentral gyrus, and dACC. Regions
that showed increased activation during decrease versus
look trials included right occipital cortex and left superior
frontal gyrus (Table 1, Fig. 2).

Regions that showed increased activation when partic-
ipants were instructed to feel “more gross” (versus look)
included bilateral intraparietal lobule and putamen, right
lateral occipital cortex, and precuneus. In contrast, regions
that decreased activation during increase versus look tri-
als included bilateral posterior insula and right superior
temporal gyrus (Table 1, Fig. 2).

To specifically examine modulation of the brain
response to disgusting pictures in each regulation condi-
tion, we investigated each of the emotion regulation con-
trasts (decrease-gross > look-gross, increase-gross > look-
gross) in regions that showed activation to disgusting
(versus neutral) pictures identified in our first whole-brain
analysis. Regions responsive to disgusting pictures that
decreased activation when participants were prompted to
feel “less gross” included bilateral insula, dACC, right occip-
ital cortex and precentral gyrus, right superior parietal
lobule, thalamus, and left parahippocampal gyrus. None of
the regions responsive to gross images showed increased
activation when participants were instructed to feel “less
gross”, and none of these regions were modulated by the
“more gross” instruction at the same threshold (Table 2,
Fig. 3).

3.2.3. Region of interest analyses
Region of interest analyses in four functionally defined

regions responsive to disgusting pictures at p < 0.01 (bilat-
eral insula and amygdala) revealed significant modulation

of only two  of these regions during the decrease condition
(Fig. 2). The right insula and left amygdala showed signifi-
cant decreases in activation in the “less gross” instruction
condition (right insula: t = −2.50, p = 0.03; left amygdala:
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Table  1
Brain regions modulated in each of the three contrasts look-gross > look-neutral, decrease-gross > look-gross, increase-gross > look-gross, as well as the
conjunction of the two regulation contrasts. Results for the contrasts look-gross > look-neutral and regulate > look were obtained at a statistical threshold of
p  < 0.05 with a cluster threshold of 34 contiguous voxels. Results for the contrasts increase-gross > look-gross and decrease-gross > look-gross were obtained
at  a statistical threshold of p < 0.05 with a cluster threshold of 41 contiguous voxels. All coordinates reported are in standard Talairach space, oriented in
radiological convention.

Brain region X Y Z Size t p

Disgusting > neutral
Right supramarginal gyrus 27 −67 37 20,900 7.92 0.000002
Left  supramarginal gyrus −24 −52 37 9447 5.63 0.000062
Striatum/thalamus −12 −22 −8 11,098 5.49 0.00008
Left  hippocampus −18 −4 −11 1965 4.86 0.000252
Right  hippocampus 21 −28 4 3543 5.21 0.000132
Right  occipital cortex 36 −43 −20 42,562 9.00 <0.001
Left  occipital cortex −42 −55 −8 30,436 10.36 <0.001
Right  insula/amygdala/TP 36 −7 7 13,419 7.35 0.000004
Left  insula/amygdala −36 −7 10 4692 4.68 0.000353
Right  dlPFC 45 5 28 11,520 5.53 0.000074
dmPFC  12 17 31 15,509 7.06 0.000006
Left  IFG −33 23 19 1270 3.50 0.003503
Left  dlPFC −51 5 28 2018 5.60 0.000065
Neutral > disgusting
Right retrosplenial cortex 6 −43 −2 1923 −4.56 0.000445
Right  precuneus 15 −46 28 1159 −4.65 0.000377
Left  retrosplenial cortex −9 −70 −5 2679 −5.47 0.000083
Decrease > look
Right occipital cortex 18 −100 1 1286 4.42 0.000583
Left  SFG −15 11 52 1459 4.43 0.000571
Look  > decrease
Thalamus 9 −25 −8 6341 −4.93 0.000223
Bilateral occipital cortex/hippocampus 39 −19 −14 50,616 −6.27 0.000021
Right  insula 45 −31 13 18,489 −8.25 0.000001
Left  insula −45 −28 10 11,176 −5.51 0.000077
Right  dlPFC 39 −4 43 2197 −5.08 0.000168
Right  postcentral gyrus 27 −61 37 5988 −4.67 0.000363
Left  precentral gyrus −39 −10 40 1438 −4.07 0.001144
Dorsal  ACC −3 8 40 1414 −4.33 0.000692
Increase > look
Right IPL 67 −28 34 2063 4.18 0.000925
Left  IPL −42 −64 16 16,293 6.60 0.000012
Right  LOC 42 −73 28 2450 4.32 0.000709
Right  putamen 18 2 −5 1111 4.04 0.001215
Left  putamen −21 −7 7 1252 3.96 0.001416
Precuneus −3  −64 58 2103 6.81 0.000009
Look  > increase
Right posterior insula STG 51 −31 13 5483 −5.28 0.000117
Left  posterior insula −39 −19 10 3557 −4.70 0.000339
Regulate > look
Left angular gyrus −54 −52 25 3570 3.75 0.002175
Look  > regulate
Right posterior insula/STG 51 −31 13 8886 −4.85 0.00026
Left  posterior insula/STG −42 −16 10 7431 −4.63 0.000391
Right  MOC  39 −52 1 2302 −3.97 0.001392
Left  lingual gyrus −18 −64 1 3336 −4.02 0.001266
Right  lingual gyrus 18 −67 4 1263 −3.67 0.002498
Brainstem 12 −25 −17 993 −4.03 0.00123
Right  PHG 30 −28 −20 1825 −4.43 0.000568
Left  PHG −36 −31 −17 1322 −7.17 0.000005
Left  cerebellum −48 −52 −32 1252 −3.37 0.00459

Abbreviations: ACC, anterior cingulate cortex; dlPFC, dorsolateral prefrontal cortex; dmPFC, dorsomedial prefrontal cortex; IFG, inferior frontal gyrus; IPL,
cortex; 
intraparietal lobule; LOC, lateral occipital cortex; MOC, middle occipital 

temporal gyrus; TP, temporal pole.

t = −2.20, p = 0.04). When we examined how individual dif-
ferences in the amount of right insula and left amygdala
down-regulation correlated with whole-brain activation,

we identified regions that showed inverse correlations
with activation in these two ROIs during the decrease
condition. Regions showing a negative correlation with
left amygdala activation included right angular gyrus, pre-
PHG, parahippocampal gyrus; SFG, superior frontal gyrus; STG, superior

cuneus, mPFC, left posterior superior temporal sulcus, left
posterior middle temporal gyrus, and left inferior occip-
ital gyrus. Regions showing a negative correlation with

right insula activation included mPFC, medial OFC, and
left fusiform gyrus. A region of mPFC inversely correlated
with both left amygdala and right insula activation during
the decrease condition (Talairach coordinates: 3, 50, 1; 40
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Fig. 2. Brain activation in each of the three contrasts look-gross > look-neutral, decrease-gross > look-gross, increase-gross > look-gross, as well as the
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onjunction of the two regulation contrasts. Orange indicates positive-go
f  p < 0.05. Images are displayed in radiologic convention. Talairach coord
he  right apply to the right-most column.

oxels). Modulation of right insula did not correlate with
odulation of left amygdala during decrease-gross > look-

ross (p > 0.05) (Table 3, Fig. 4).

.2.4. Effects of age on brain mechanisms for reappraisal
In our exploration of developmental changes in brain

ctivation in our three contrasts of interest, we identi-
ed regions that significantly correlated with chronological
ge. While viewing disgusting (versus neutral) pictures,

ctivation in bilateral inferior parietal lobule positively cor-
elated with age. Regions that negatively correlated with
ge in this contrast included bilateral ACC and right ante-
ior insula extending into superior temporal gyrus. In the

able 2
rom the areas which showed increased activation in the look-gross > look-neutral
ross  > look-gross). Results were obtained at a statistical threshold of p < 0.05 with
n  standard Talairach space, oriented in radiological convention.

Brain region X Y 

Look > decrease
Right insula 39 2 

Left  insula −33 6 

Right  occipital cortex 39 −19 

Right  precentral gyrus 39 −5 

Right  superior parietal lobule 27 −61 

Thalamus 9 −25 

Dorsal  ACC −3 7 

Left  PHG −36 −31 

bbreviations: ACC, anterior cingulate cortex; PHG, parahippocampal gyrus.
vation; blue negative-going activation. All activations are at a threshold
isplayed to the left apply to the first three columns; those displayed on

decrease-gross > look-gross contrast, no regions positively
correlated with age. Regions that negatively correlated
with age in this contrast included right medial OFC, mPFC,
left parahippocampal gyrus, left inferior frontal gyrus,
and left amygdala. Finally, in the increase-gross > look-
gross contrast, regions that positively correlated with
age included dACC, left insula extending into putamen,
medial frontal gyrus, right posterior cingulate gyrus, and
left middle frontal gyrus. Only right inferior parietal

lobule negatively correlated with age in this contrast
(Table 4, Fig. 5).

Using anatomically defined ROIs to visualize the age
correlations in left amygdala and left insula yielded non-

 contrast, regions that were modulated by the down-regulation (decrease-
 a cluster threshold of 41 contiguous voxels. All coordinates reported are

Z Size t p

−14 3873 −7.00 0.000006
13 1136 −4.93 0.000223

−14 17,117 −6.27 0.000021
43 1009 −5.08 0.000168
37 2123 −4.67 0.000363
−8 5114 −4.93 0.000223
40 1227 −4.33 0.000692

−17 3540 −5.96 0.000035
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Fig. 3. Top: Activation modulated by decrease-gross > look-gross in regions that were responsive to disgusting images. Blue indicates negative-going
activation. All activations are at a threshold of p < 0.05. Bottom: Functionally defined ROIs in the right insula (yellow) and left amygdala (orange). Images
are  displayed in radiologic convention. Bar graph: y-axis represents differences in beta weights between the conditions of interest (decrease − look and
increase − look).

Table 3
Regions that inversely correlated with left amygdala and right insula activation in the contrast decrease-gross > look-gross. Results were obtained at a
statistical threshold of p < 0.05 with a cluster threshold of 10 contiguous voxels. All coordinates reported are in standard Talairach space, oriented in
radiological convention.

Brain region X Y Z Size r p

Left amygdala correlation
Right angular gyrus 45 −55 28 374 −0.70 0.003791
Precuneus −6 −76 19 1381 −0.72 0.002432
mPFC  −9 50 1 366 −0.70 0.003919
Left  pSTS −63 −55 10 626 −0.77 0.000744
Left  posterior MTG  −60 −55 −2 461 −0.82 0.000162
Left  IOG −39 −82 −17 3199 −0.85 0.00005
Right  insula correlation
mPFC 3 50 1 994 −0.66 0.007426
mOFC −13  47 −8 562 −0.42 0.115795
Left  FFG −30 −88 −20 524 −0.75 0.001326

Abbreviations: FFG, fusiform gyrus; IOG, inferior occipital gyrus; mOFC, medial orbitofrontal cortex; mPFC, medial prefrontal cortex; MTG, middle temporal
gyrus;  pSTS, posterior superior temporal sulcus.
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Fig. 4. Activation inversely correlated with left amygdala and right insula activation in the contrast decrease-gross > look-gross. Orange indicates regions
o are at a t
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f  inverse correlation with seed regions, depicted in blue. All activations 

ignificant results, however, this analysis allowed for the
isual inspection of meaningful correlation findings in our

hole brain analyses to ensure they were not driven by

utliers or binary groupings of older versus younger par-
icipants. In the structurally defined left insula, activation
o increase-gross (versus look-gross) increased with age

able 4
egions that correlated with age in each of the three contrasts look-gross > look-neu
ere  obtained at a statistical threshold of p < 0.05 with a cluster threshold of 34 co

riented in radiological convention.

Brain region X Y 

Look-gross > look-neutral
Right IPL 42 −55 

Left  IPL −51 −52 

Right  anterior insula/STG 54 12 

Right  ACC 15 26 

Left  ACC −12 23 

Decrease > look
Right mOFC 18 20 

mPFC  −9 53 

Left  PHG −21 −61 

Left  amygdala −27 −7 

Left  IFG −52 29 

Increase > look
Right posterior cingulate gyrus 6 −28 

Dorsal  ACC −3 14 

Medial  frontal gyrus −3 −7 

Left  insula/putamen −33 2 

Left  MFG  −36 32 

Right  IPL 45 −61 

bbreviations: ACC, anterior cingulate cortex; IFG, inferior frontal gyrus; IPL, intrapa
ortex;  MFG, middle frontal gyrus; PHG, parahippocampal gyrus; STG, superior te
hreshold of p < 0.05. Images are displayed in radiologic convention.

(r = 0.28, p = 0.155, one-tailed). In the structurally defined
left amygdala, activation to decrease-gross (versus look-

gross) decreased with age (r = −0.19, p = 0.25, one-tailed).
These correlations suggest that outliers or binary group-
ing were not driving our whole brain correlation effects
(Supplemental Fig. 1).

tral, decrease-gross > look-gross, and increase-gross > look-gross. Results
ntiguous voxels. All coordinates reported are in standard Talairach space,

Z Size r p

46 4951 0.76 0.001125
37 2589 0.72 0.002457

−17 1926 −0.82 0.000184
16 3353 −0.83 0.000117
16 2608 −0.74 0.001687

−14 1205 −0.90 0.000005
−8 1296 −0.84 0.000101

−14 4089 −0.83 0.000123
−17 1151 −0.85 0.000066
−2 1233 −0.80 0.000308

46 1275 0.90 0.000005
28 1090 0.86 0.000034
58 1628 0.71 0.003096

4 2910 0.84 0.000077
28 989 0.77 0.00071
34 1166 −0.78 0.000651

rietal lobule; mOFC, medial orbitofrontal cortex; mPFC, medial prefrontal
mporal gyrus.
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gross > lo
s region
ight dem
Fig. 5. Activation correlated with age in each of the three contrasts look-
Orange indicates regions that positively correlate with age; blue indicate
p  < 0.05. Images are displayed in radiologic convention. The graph to the r

4. Discussion

4.1. Behavioral effects of cognitive reappraisal

Comparison of self-report ratings confirms that chil-
dren and adolescents experienced more disgust in response
to disgusting versus neutral images. Furthermore, partic-
ipants were successful in regulating their self-reported
emotional responses in accordance with instructions as
evidenced by significantly lower ratings on decrease-gross
trials and higher ratings on increase-gross trials relative
to look-gross trials. None of these behavioral effects were
significantly modulated by age.

4.2. Brain effects of cognitive reappraisal

4.2.1. Brain mechanisms for processing disgust
We  identified brain regions involved in the pro-

cessing of disgust-inducing images, including regions
previously implicated in the processing of disgust such
as insula, amygdala, mPFC, thalamus and striatum (Calder
et al., 2000; Lane et al., 1997; Phillips et al., 1997;
Schafer et al., 2005; Wicker et al., 2003). These regions
show significant overlap with those identified in a prior
study of emotion regulation of disgust-inducing film
clips in adults (Goldin et al., 2008), suggesting similari-
ties in the neural circuitry underlying disgust processing
between children and adults. However, secondary anal-
yses revealed that activation to disgusting pictures in

bilateral intraparietal lobule increased with age, and acti-
vation in ACC and right anterior insula decreased with
age, demonstrating the presence of age-related differ-
ences in the neural network underlying the processing of
disgust.
ok-neutral, decrease-gross > look-gross, and increase-gross > look-gross.
s that negatively correlate with age. All activations are at a threshold of
onstrates the age distribution of the participants.

4.2.2. Brain mechanisms for cognitive reappraisal
Next, we demonstrated significant modulation of brain

activity by engaging in cognitive reappraisal in gen-
eral as well as up-regulation and down-regulation of
emotion individually. Taken together with our behav-
ioral findings, this suggests that our participants were
responsive to the task in general, and differentially respon-
sive when increasing and decreasing. The one region
with increased activation to regulating in general (con-
junction of increase and decrease) was  the left angular
gyrus. The cognitive reappraisal strategies we  provided
instructed participants to “pretend it’s fake” or “pre-
tend it’s right in front of you”. Angular gyrus has been
implicated in out of body experiences, potentially relat-
ing to failures to integrate somatosensory information
(Blanke et al., 2002, 2004). Similar processes of dissociat-
ing oneself from sensory inputs might underlie regulatory
strategies induced by our prompts. In addition, adjacent
temporoparietal regions have been implicated in the use
and observation of pretense (German et al., 2004; Lewis
and Carmody, 2008). Thus, the left angular gyrus activity
observed in our participants during cognitive reappraisal
may  reflect the use of pretense in the task. Alternatively,
adjacent temporoparietal junction (TPJ) has been impli-
cated in mentalizing, or reasoning about others’ mental
states (Aichhorn et al., 2006; Gallagher et al., 2000; Krach
et al., 2008; Saxe and Kanwisher, 2003; Saxe et al., 2006;
Saxe and Powell, 2006; Saxe and Wexler, 2005). Saxe
et al. (2006) specifically demonstrated the role of TPJ in
reflecting on others’ mental states, but not during self-
reflection. It is conceivable that, in manipulating one’s

own mental states during cognitive reappraisal, partic-
ipants experienced a degree of detachment which led
to the recruitment of structures necessary for reflect-
ing on another person’s thoughts. While intriguing, this
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ossibility is speculative and would require further inves-
igation to confirm.

By performing the contrast of each regulation type sep-
rately over a whole-brain mask of the gross > neutral
ontrast, we were able to identify task-related modula-
ion of regions involved in the processing of disgusting
ictures. When participants engaged in decreasing their
motional responses, we observed down-regulation of
ctivity in regions including bilateral insula, thalamus, and
ACC. The thalamus has been implicated in the process-

ng of emotion in general, regardless of type (Lane et al.,
997). Moreover, of the regions implicated in the process-

ng of disgust, the insula has most classically been identified
s involved not merely in the observation of disgust, but
n the experience of disgust as well (Calder et al., 2000;

icker et al., 2003). Therefore down-regulation of these
egions in response to decreasing one’s emotional response
o disgusting images may  reflect a reduction in emotional
xperience. This interpretation is further supported by
ur behavioral data which show decreased disgust ratings
fter down-regulation of emotion. Surprisingly, despite
ehavioral reports of increased emotional responses on
he increase trials, we did not see modulation of disgust-
pecific regions during up-regulation of emotion. It is
ossible that these regions were already maximally acti-
ated to disgusting pictures, such that they could not be
easurably up-regulated, despite the participants’ efforts

o increase their emotional responses. It is also possible
hat differences in the difficulty of up- and down-regulation
nderlie this null finding.

.2.3. Modulation of insula and amygdala activity
Region of interest analyses of bilateral insula and amyg-

ala revealed down-regulation of right insula and left
mygdala during decrease trials, consistent with prior
eports in adults of decreased activity in the insula (Goldin
t al., 2008; Harenski and Hamann, 2006) and amygdala
Blair et al., 2007; Eippert et al., 2007; Goldin et al., 2008;
im and Hamann, 2007; Kober et al., 2008; Koenigsberg
t al., 2010; McRae et al., 2008, 2010; Ochsner et al., 2002,
004; Ohira et al., 2006; Phan et al., 2005; van Reekum
t al., 2007; Walter et al., 2009; Winecoff et al., 2010)
uring emotion down-regulation. Furthermore, the degree
f decreased activation in both of these regions corre-
ated with increasing activation in vmPFC. Prior studies
f emotion regulation in adults have similarly shown an
nverse correlation between vmPFC and amygdala, and
ave further demonstrated that the vmPFC mediates a top-
own influence of lateral PFC on the amgydala (Johnstone
t al., 2007; Urry et al., 2006). These findings are in line
ith evidence of anatomical connections between vmPFC

nd amygdala (Amaral and Price, 1984; Ghashghaei et al.,
007) as well as connections between vmPFC and dor-
al and lateral PFC (Barbas, 1995; Ongur and Price, 2000).
onversely, our finding of an inverse correlation between
mPFC and insula has not been previously reported in the
motion regulation literature. However, Hermann et al.

2009) demonstrated that in spider phobic individuals,
here was increased insula and decreased vmPFC activity
hen viewing pictures of spiders relative to other aversive

mages. They interpreted this as evidence for a deficit of
e Neuroscience 1 (2011) 324– 337

automatic emotion regulatory processes in specific pho-
bia. Our findings suggest the possibility that the vmPFC
exhibits top-down inhibitory modulation of insula activ-
ity similar to its effect on the amygdala, a phenomenon
evident in this study likely due to our use of exclusively
disgust-inducing images. Alternatively, prior research has
suggested that the insula both receives input from and
sends output to the central-executive network and the
default mode network (including vmPFC), serving as a
hub enabling switching between these networks (Menon
and Uddin, 2010; Sridharan et al., 2008). Thus, it is also
conceivable that the inverse correlation between vmPFC
and insula demonstrated here is reflective of a regulatory
role for the insula on vmPFC. Ultimately, in the absence
of statistical assessments of causality we cannot draw
conclusions regarding the directionality of the inverse rela-
tionships between vmPFC and the amygdala and insula.
Future research will benefit from investigating the causal-
ity of such correlations.

4.2.4. Developmental changes
Secondary analyses exploring the developmental tra-

jectory of brain mechanisms for each emotion regulation
condition revealed that the magnitude of activation in pre-
frontal cortex regions during down-regulation decreases
with age. In a prior fMRI study of cognitive reappraisal
in children, Levesque et al. (2004) compared their results
with a separate but identical study performed in adults
(Levesque et al., 2003) and suggested a decrease in the
number of prefrontal loci of activation between child-
hood and adulthood. The authors hypothesized that this
age difference reflects a developmental maturation of the
prefrontal regulatory system, implying greater regulation
efficiency. However, while prior research has pointed to
greater volumes of prefrontal activity in younger children
and equated this with immaturity of prefrontal circuitry
(i.e., Casey et al., 1995; Tamm et al., 2002), other stud-
ies have shown that the strength of prefrontal activity
increases with age, a process known as frontalization
(Lewis et al., 2006; Rubia et al., 2000; Yurgelun-Todd and
Killgore, 2006). It is possible that decreased PFC activ-
ity with age in combination with our concurrent finding
that left amygdala activation decreased with age reflects a
reduction in the effort required to downregulate emotion
and greater success in down-regulation of the amygdala.

This same decrease in prefrontal regulatory activation
was  not seen in the emotional up-regulation condition.
Group analyses suggested that as a whole, participants’
psychological up-regulation of emotion was not coupled
with enhanced activation in regions responsive to gross
pictures. Thus, the lack of evidence for increasing pre-
frontal efficiency in this condition is not surprising. Instead,
insula and dACC activation increases with age. Both of these
regions were responsive to viewing disgusting pictures in
the absence of the regulatory task, suggesting that success-
ful enhancement of brain responses to gross pictures may
develop later in adolescence. Further, the increasing acti-

vation in more lateral frontal regions with age may  account
for this increasing up-regulation success.

Given that the age range of our sample encompasses
the typical onset of puberty and that puberty brings with
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it associated changes with respect to brain and behavior
(Dahl, 2004), it is worth noting that in addition to age,
pubertal stage could play a role in the development of emo-
tion regulatory processes observed in our participants. As
we did not collect data on the pubertal development of our
participants, we are unable to investigate the differential
contributions of age and puberty.

4.3. Departure from prior studies

The present study differs from past studies of cognitive
reappraisal, particularly in terms of increases in prefrontal
activity during emotion regulation as observed in the prior
literature (e.g., Beauregard et al., 2001; Goldin et al., 2008;
Kim and Hamann, 2007; Ochsner et al., 2004; Urry et al.,
2006). In an effort to make the cognitive reappraisal task
more accessible to children, we instructed participants to
engage in pretend. Studies utilizing variations on emo-
tion regulation strategies, such as distraction (McRae et
al., 2010) and distancing (Koenigsberg et al., 2010), have
yielded differing results from more classical approaches
to cognitive reappraisal. For example, the distancing reg-
ulation strategy recruited loci of activity in parietal and
temporal cortex as well as posterior cingulate cortex, but
no prefrontal cortical activation was observed in the main
effect of instruction type (Koenigsberg et al., 2010). As
mentioned previously, the use of pretense as a reappraisal
strategy recruited a temporoparietal region in our partici-
pants. The recruitment of variable networks for differing
reappraisal strategies is a likely explanation for the dis-
crepancy between our findings and some of the existing
literature. Furthermore, secondary analyses revealed pre-
frontal effects with age, suggesting that differences in
prefrontal activation between our study and others may
also be secondary to age differences in the participant sam-
ples.

Most prior studies have not exclusively focused on the
cognitive reappraisal of disgust (but see Goldin et al., 2008).
While the study of disgust may  have important implica-
tions for understanding anxiety disorders, it is not clear to
what extent these findings reflect the brain mechanisms of
emotion regulation of negatively valenced stimuli in gen-
eral. A study comparing cognitive reappraisal of disgust to
another negative emotion, such as fear, could clarify this
point.

5. Conclusions

This is the first study to our knowledge to examine
developmental trends in the neural mechanisms of cog-
nitive reappraisal in children and adolescents. We  have
demonstrated that children and adolescents are able to suc-
cessfully regulate their emotional responses to disgusting
images utilizing pretense as a cognitive reappraisal strat-
egy. Our results suggest a regulatory effect between vmPFC
and the amygdala and insula during down-regulation of
emotion. Further, we show age-related effects on activity in

PFC and amygdala suggestive of decreased regulatory effort
and increased success across development. These findings
have important clinical implications for the understand-
ing of processes relevant to cognitive therapies in anxiety
e Neuroscience 1 (2011) 324– 337 335

disorders in childhood and adolescence, in particular, the
extent to which changes in emotion regulation relevant
circuitry may  predict and track clinical outcomes. Future
studies may  further our understanding by exploring the
neural and behavioral effects of cognitive reappraisal in
pediatric clinical populations.
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