
Applying these observations from greatly reduced systems to
the topic at hand leads to the prediction that putative strain
injury thresholds must vary with flow, respiratory rate, and most
importantly with end-expiratory lung volume. In fact, the classic
experiments of Webb and Tierney, which underscored the lung-
protective effects of PEEP, are entirely consistent with this
prediction (14). Mechanical ventilation produced much less
injury in anesthetized rats, when FRC was raised with PEEP,
even though the lungs were inflated to similar end-inspiratory
volumes. Lung-protective effects of PEEP (and consequently
of increased FRC) are commonly attributed to prevention of
so-called ‘‘atelect-trauma’’ resulting from injurious interfacial
stresses (15, 16). However, given the effects of strain-amplitude
on cell and tissue mechanics, it is quite possible that reductions
in VT per se, irrespective of the average volume about which
lungs are oscillated, account for lung protection (14). Hager and
colleagues’ post hoc analysis of ARMA data, which suggested
benefit of low-tidal-volume ventilation across all Pplat quartiles,
may be interpreted in that context (17).

In summary, then, it seems inescapable that the risk of lung
damage from mechanical ventilation, even when applied to
healthy lungs, is multifactorial and cannot be linked to a single
variable. As far as the strain-injury threshold is concerned it is
conditional on PEEP and probably on flow and rate settings as
well. This is not to distract from the conceptual advantage of
quantifying lung deformation in terms of strain as opposed to
VT normalized by predicted body weight (PBW), because strain
accounts for disease-related unit loss (18). Protti and colleagues
appropriately caution against the uncritical application of a
porcine model–derived strain threshold to patient care, but their
message is unmistakable: a normal lung can tolerate fairly large
tidal volumes for fairly long periods of time!
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Nitrogen Balance in the Ecosystem of the Cystic
Fibrosis Lung

In this issue of the Journal, Grasemann and coworkers (pp. 1363–
1368) report that levels of asymmetric dimethyl arginine
(ADMA) are increased in cystic fibrosis (CF) airways (1). ADMA
inhibits cellular arginine uptake and nitric oxide (NO) synthase
(NOS) activity. Levels of ADMA decrease during antibiotic
therapy in association with improved lung function. This obser-
vation may prove to have therapeutic relevance. However, it is

important to note that increased ADMA in CF airways may be
both beneficial (through inhibition of NO production) and harm-
ful (through inhibition of S-nitrosothiol production).

Nitric oxide in the concentrations measured in exhaled air
(parts per billion) is generally irrelevant to normal lung physi-
ology (2). However, NO can be relevant to lung pathology. It
interacts with oxygen, superoxide, and other molecules to injure
airway epithelium. Products of these reactions, such as nitrous
acid and peroxynitrous acid, are potent cytotoxins downstream
of inducible NOS activity (3).
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Nitric oxide can also affect bacteria in the CF airway (4, 5).
Indeed, the CF airway is a complex ecosystem in which nitrogen
oxides, oxygen, protons, and more complex chemical species are
exchanged between prokaryotic and eukaryotic cells (Figure 1;
4–7). For example, levels of NO are lower than normal in the
CF airway, in part because NO is consumed by Pseudomonas,
Aspergillus, and other denitrifying organisms (4). NO can serve
both as an electron acceptor (dissimilatory denitrification,
ultimately forming ammonia) and as a precursor for amino acid
formation (assimilatory denitrification). Airway NO levels rise
and NH3 levels fall with antibiotic therapy in CF (4). Levels of
oxidized NO in the form of nitrate are high in the CF airway (6);
and nitrate, like NO, can feed denitrifying organisms. Together,
the effects of NOS products to cause cytotoxicity and promote
prokaryotic growth suggest that the high levels of ADMA
should be advantageous for patients with CF, and that a de-
crease in ADMA levels with antibiotic therapy might be
disadvantageous.

However, NOS also produces S-nitrosothiols in concentra-
tions two log orders higher than NO (8–10). S-nitrosothiols are
antimicrobial. They augment ciliary beat frequency (2). They
relax human airway smooth muscle and prevent tachyphylaxis
to b2-adrenergic agonists (2, 10, 11). They inhibit amiloride-
sensitive sodium transport (12). They augment expression, mat-
uration and function of delF508 CF transmembrane conductance
regulator through inhibition of the expression of Hsp70/Hsp90-
organizing protein (13). S-nitrosothiol levels are decreased in the
CF airway (14), consistent with high ADMA levels (1); indeed,
S-nitrosothiol replacement therapy improves oxygenation in CF
(9). Prevention of S-nitrosothiol formation is therefore likely to
be an important disadvantage of having high levels of ADMA in
the CF airway (1).

We do not know why ADMA levels are high in CF. One
possible mechanism is based on what we know about the CF
airway ecosystem. Anti-pseudomonal therapy decreases ADMA
levels in patients with CF (1). Biochemically, ADMA levels
are decreased by dimethylarginine dimethylaminohydrolases
(DDAHs). DDAHs are inhibited by S-nitrosylation, or physi-
ological protein modification by NO (15). S-nitrosylation is

driven both by NOS activation and—in relatively acidic condi-
tions in the CF airway ecosystem (5)—by nitrite protonation; at
baseline, this should increase ADMA levels. Antimicrobial
therapy can decrease bacterial conversion of abundant airway
nitrate to nitrite. Nitrite depletion would decrease DDAH S-
nitrosylation, thereby increasing ADMA breakdown during the
course of therapy. However, this proposed mechanism is specu-
lative. Much work remains to be done.

The CF airway is dark, damp, and largely anaerobic (7). It is
also surprisingly well-suited to denitrifying prokaryotic species,
given that NOS expression is decreased and ADMA levels are
increased. To understand why—and to learn how to use ni-
trogen oxide redox ecology to therapeutic advantage—we need
to get beyond simply modeling NO radical diffusion (2, 3). The
Cystic Fibrosis Foundation has shown the benefit of promoting
interactions among scientists across disciplines. The work of
Grasemann and coworkers suggests that there might be much to
gain by organizing a small working group to bring together
nitrogen balance ecologists, biochemists, CF airway epithelial
biologists, and mathematicians experienced in biochemical
modeling. This group could model prokaryotic and eukaryotic
outcomes of specific CF interventions to identify strategies to
optimize therapeutic development in CF. The elegant insights
of Grasemann and coworkers serve to alert us that both the
benefits and toxicities of airway nitrogen oxides need to be
better understood to improve clinical outcomes in CF.
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The Brain in Sleep-Disordered Breathing
A Vote for the Chicken?

Structural brain changes in patients with obstructive sleep
apnea (OSA) were first described in the Journal almost 10
years ago (1). Macey and colleagues used voxel-based mor-
phometery (VBM) to detect diffuse reductions in gray matter
across the brain, including the frontal and parietal cortex,
temporal lobe, anterior cingulate, hippocampus, and cerebel-
lum. Although interpretation of these data is somewhat con-
founded by the inclusion of patients with known co morbidities,
they did lead to the interesting speculation that primary neural
deficits may cause OSA, rather than OSA producing deficits—the
so-called ‘‘chicken and egg’’ debate that remains unresolved (1, 2).
They also raised the questions: What (if any) are the functional
consequences of the neural deficits in OSA, and does treatment
reverse the deficits and improve cognitive function?

In this issue of the Journal, Canessa and colleagues (pp.
1419–1426) make advances in answering these questions (3).
They found that reduced gray matter volume in the left
hippocampus, left posterior parietal cortex, and right superior
frontal gyrus was associated with cognitive dysfunction. More-
over, continuous positive airway pressure (CPAP) treatment
resulted in increases in gray matter in the hippocampus and
frontal brain regions that were correlated with improvements in
executive function and short-term memory. The changes in
brain morphology are consistent with some, but not all, previous
imaging studies using VBM (Table 1).

The discrepancies between the studies listed in Table 1 are
most likely due to differences in statistical thresholds and the
development of imaging software over the years. The appar-
ently conflicting results of Macey and coworkers (1) and
O’Donoghue and colleagues (4) highlight the impact of choos-
ing different thresholds. In the former study, the VBM analysis
was uncorrected for multiple comparisons at P , 0.001, whereas
the latter study found no significant gray matter loss at a
threshold of P , 0.05 corrected for multiple comparisons. Thus,
while opinions differ regarding statistical adjustments, what is
clear is that those citing these studies should understand the
limitations of the technique. VBM is an automated process, but
the pre-processing and choice of thresholds can influence the
results obtained. Canessa and colleagues have admirably ad-
dressed this issue by repeating the analysis of their data using
the older techniques of O’Donoghue and coworkers (4). No
significant differences in gray matter concentration were
detected between patients with OSA and control subjects, nor
pre- and post-CPAP, when the more stringent threshold of
O’Donoghue and colleagues was employed. If the presence of

neural lesions can be altered by changing a statistical threshold,
perhaps refocusing attention on examining the functional
consequences of the structural deficits may be of more value.

Patients with OSA often report mild cognitive deficits (5–7)
that can cause difficulties in work efficiency and performing
tasks such as driving (8, 9). The Canessa study makes the link
between reductions in performance, disease severity, and brain
structure prior to treatment. In the left parahippocampal gyrus,
the reduction in gray matter volume was associated with errors
on the Stroop executive function test, and in the left posterior-
parietal cortex deficits were correlated a reduction in the Raven
abstract reasoning test. These reductions in cognitive function
may be due to reduced attention, or an inability to process
external information (e.g., sensory input) to form a neural
representation (encoding). Alternatively, patients with OSA
may experience difficulty with processing information to form
memories during sleep. It is still questionable whether inter-
ruption of these processes is related to sleep deprivation or
intermittent hypoxia (10). The Canessa study supports a re-
lationship between loss of gray matter volume and hypoxia, as
does the compelling study of Gozal and colleagues, which
demonstrated that intermittent hypoxia induces oxidative stress
and cell apoptosis in the C1A hippocampal region, an area
associated with spatial memory (11).

VBM analysis attained notoriety in 2000 with the publication
of the Ig Nobel–winning study by Maguire and colleagues (12).
This study showed that London taxi drivers who had taken ‘‘the
knowledge’’—a test that involves several years of preparation to
memorize the streets of London—had increased hippocampal
gray matter volume compared with drivers who had not taken
the test. Notably, the study showed that brain plasticity could
occur in focal areas of a healthy adult human brain in response
to environmental stimuli. Juggling also increases gray matter
proportional performance (13). Importantly, this latter study
also showed that removal of the stimulus for 3 months led to
a reduction in the brain gray matter.

Whether treatment of OSA can reverse the neurodegenera-
tion reported in VBM studies is unclear. The data from Canessa
and colleagues imply that this is indeed the case, with CPAP
treatment resulting in an increase in gray matter volume in the
hippocampus and frontal cortex. In the left hippocampus the
increased volume was correlated with an increase in perfor-
mance on the Stroop test. In the right enthorinal cortex the
increase in volume was also correlated with improved neural
function. Thus, CPAP treatment may reduce oxidative stress in
the systemic circulation, since increased expression of neuronal
progenitors and mature neurons in the hippocampus have been
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