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Abstract In recent years, it has become evident that heart
failure is not solely due to reduced contractile performance
of the heart muscle as impaired relaxation is evident in
almost all heart failure patients. In more than half of all
heart failure patients, diastolic dysfunction is the major
cardiac deficit. These heart failure patients have normal (or
preserved) left ventricular ejection fraction, but impaired
diastolic function evident from increased left ventricular
end-diastolic pressure. Perturbations at the cellular level
which cause impaired relaxation of the heart muscle
involve changes in Ca®'-handling proteins, extracellular
matrix components, and myofilament properties. The
present review discusses the deficits in myofilament
function observed in human heart failure and the most
likely underlying causal protein changes. Moreover, the
consequences of impaired myofilament function for in vivo
diastolic dysfunction are discussed taking into account the
reported changes in Ca”" handling.

Keywords Diastole - Myocardial contractility - Muscle
stiffness - Myofilament - Phosphorylation - Heart

Systolic and diastolic function of the heart:
role of the myofilaments

Every heart beat, the ventricles eject blood into the small
and large circulation to provide organs with sufficient
oxygen. Cardiac output depends on the amount of blood
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ejected per heart beat (i.e., stroke volume) and heart rate.
Although myocardial muscle contraction is indispensible
for proper cardiac output during the systolic (activation)
phase of the cardiac cycle, filling of the ventricles during
the diastolic (relaxation) phase heavily depends on proper
cardiac muscle relaxation. The latter is even more important
during increased cardiac stress as occurs during exercise.
To match cardiac output to increased demands of the body,
heart rate is increased by enhanced sympathetic drive. The
magnitude of contraction is increased by increased Ca”'-
induced Ca*"-release from the sarcoplasmic reticulum (SR)
within the heart muscle cells. To match the increase in heart
rate, a faster relaxation of the heart muscle is required
which is achieved by increased re-uptake of Ca®" into the
SR and desensitization of the myofilaments to Ca** [6, 56].

Upon depolarization of the heart muscle cells, L-type
Ca*"-channels are opened, which causes Ca>" entry into the
cytosol and triggers Ca®" release from the SR via the
ryanodine receptors (RyR2; so-called Ca®'-induced Ca*'-
release). Subsequently, Ca®* binds to troponin C and
initiates myofilament contraction via interactions between
the thick filament myosin heads and the thin filament
component actin. Relaxation of the heart muscle cells
occurs upon detachment of Ca®" from the troponin complex
and subsequent re-uptake of Ca®" into the SR via the SR
Ca®"-ATPase (SERCA2), which activity depends on the
phosphorylation status of phospholamban (i.e., unphos-
phorylated phospholamban blocks SERCA2 activity).
SERCA? is responsible for re-uptake of ~70% of the Ca*"
involved in the Ca?" transient and approximately 30% of
the cytosolic Ca®" is removed out of the cell via the Na'—
Ca®" exchanger (NCX) [6, 7]. Changes in cellular Ca*"
cycling and myofilament properties are under the tight
control of kinases and phosphatases within the heart muscle
cells, which respectively phosphorylate and dephosphory-
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late cellular target proteins that regulate contraction and
relaxation [29, 51]. Upon increased sympathetic activation,
[31-adrenergic receptors are activated which initiates protein
kinase A (PKA)-mediated phosphorylation of proteins
involved in Ca”" handling (RyR2, phospholamban) and of
the myofilament target proteins troponin I (cTnl), myosin
binding protein C (cMyBP-C), and titin [6, 28, 40, 56, 75].
The predominant role of the myofilaments during increased
[3i-adrenergic receptor stimulation is enhancement of
relaxation, which is caused by desensitization of the
myofilaments to Ca’" (Fig. la) and faster kinetics of

A

B-adrenergic receptor-mediated myofilament Ca®*-desensitization
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Fig. 1 Myofilament responses to increased sympathetic activation
and increased left ventricular filling during diastole (Frank—Starling
mechanism). a Activation of protein kinase A (PKA) upon (-
adrenergic receptor stimulation increases phosphorylation of myofil-
ament proteins (troponin I, myosin binding protein C and titin) and
thereby reduces myofilament Ca?*-sensitivity (indicated by the white
arrow), enhances cross-bridge kinetics and lowers passive stiffness.
The PKA-mediated changes in myofilament properties contribute to
enhanced muscle relaxation, which is required for proper filling of the
heart during diastole. b An increase in left ventricular filling
(increased end-diastolic left ventricular volume) increases the maximal
force-generating capacity (black arrow) and myofilament Ca*'-
sensitivity (white arrow) and underlies increased cardiac output during
the subsequent systolic phase
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cross-bridge cycling [17, 77]. The PKA-mediated phos-
phorylation of c¢Tnl is thought to be the major contributor to
myofilament Ca®"-desensitization [56]. More recent studies
have indicated a modulating role for cMyBP-C in the PKA-
mediated reduction of myofilament Ca**-sensitivity [16, 17,
37], although the major effect exerted by phosphorylated
cMyBP-C seems to be enhancement of the rate of
contraction and relaxation [39, 44, 58, 59]. The third
protein phosphorylated upon f3;-adrenergic receptor activa-
tion is the giant protein titin [75], which, upon PKA-
mediated phosphorylation, reduces passive stiffness of
cardiac muscle cells [11, 40, 75]. Overall, the PKA-
mediated enhancement of myofilament relaxation is critical
to maintain proper cardiac performance at increased heart
rates associated with {3-adrenergic stimulation.

Apart from phosphorylation-induced changes in myofil-
ament function, a change in sarcomere length upon
increased filling of the ventricles during diastole increases
the maximal force-generating capacity and the Ca®'-
sensitivity of the myofilaments (Fig. 1b). This length-
dependent activation is called the Frank—Starling mecha-
nism of the heart and underlies increased cardiac output at
increased left ventricular (LV) end-diastolic volumes. The
exact mechanisms underlying the increased force-
generating capacity of the myofilaments at higher sarco-
mere lengths are still controversial and have been exten-
sively discussed in previous reviews [33, 36].

Lastly, changes in heart rate adjust myofilament proper-
ties to cardiac pump performance [2, 42, 43, 69]. Under
physiological conditions, an increase in cardiac stimulation
frequency results in enhanced systolic function (so-called
positive force—frequency relation), which has been
attributed to an increased Ca®" influx into the cardiomyo-
cytes. The increase in Ca®" influx increases SR Ca®"
content and promotes the Ca’*'-induced Ca®-release.
Varian and Janssen [69] observed a decrease in myofila-
ment Ca”’-sensitivity with increased frequency in the
healthy myocardium and suggested that, similar to f3-
adrenergic PKA-mediated Ca®‘-desensitization, the
frequency-induced myofilament Ca*"-desensitization
accelerates relaxation of the heart muscle. The
frequency-mediated alteration in myofilament Ca”"-sensi-
tivity most likely involves changes in protein phosphory-
lation caused by Ca®"-activated kinases [42, 61, 70].

Systolic and diastolic heart failure

The amount of blood ejected as a fraction of total blood in
the ventricles at the end of the diastolic phase is called the
ejection fraction. In clinical practice, LV ejection fraction
(LVEF) is used as a measure to define systolic cardiac
performance. A patient with a LV ejection fraction <45%
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has heart failure with reduced ejection fraction (HFREF)
or systolic heart failure. Over the last two decades, it
became evident that more than 50% of all heart failure
patients suffer of heart failure with normal (or preserved)
ejection fraction (HFNEF) [53]. Compared to HFREF
patients, these so-called HFNEF patients have a higher
mortality and morbidity [1, 8]. The main perturbation in
HFNEF patients is diastolic dysfunction. Moreover,
frequently, patients with systolic dysfunction also show
impaired diastolic function. The epidemiologic evidence
that diastolic rather that systolic dysfunction is a major
cause of cardiac failure in Western society has triggered
scientists to investigate the underlying mechanisms of
diastolic dysfunction in humans.

Perturbations at the cellular level which are thought to
underlie diastolic dysfunction in human heart failure are:
impaired Ca**-handling [7], extracellular matrix modifica-
tions [11, 63], and myofilament dysfunction [29, 30, 67,
73]. In heart failure, the decline in the cytosolic Ca®'-
transient is slowed, which is most likely caused by reduced
re-uptake of Ca?" into the SR due to reduced SERCA2
expression and reduced PKA-mediated phosphorylation of
phospholamban. The reduced Ca*'-transient decline con-
tributes to diastolic dysfunction and hampers ventricular
filling during the relaxation phase of the heart. The reduced
Ca*" re-uptake also lowers SR Ca®>" content and thereby
reduces the amount of Ca*" available for the subsequent
contraction. Thus, perturbations in Ca®" handling contribute
to both systolic and diastolic dysfunction of the heart.
Cardiac dysfunction has been ascribed to alterations in the
extracellular matrix. Stiffness of the extracellular matrix is
largely determined by collagen through regulation of its
total amount, the relative abundance of collagen type I and
the degree of collagen cross-linking. Excessive collagen
type I deposition results from an imbalance between an
exaggerated synthesis and a depressed degradation. Com-
parison of myocardial structure of LV endomyocardial
catheter biopsies from HFNEF and HFREF patients showed
similar increases in collagen volume fraction in both groups
(respectively, 12.2+1.4% and 14.4+1.5%) compared to
normal values (5.4£2.2%)[63]. In the HFREF group,
collagen deposition was significantly enhanced by diabetes
mellitus and associated with increased deposition of AGEs
(advanced glycation end products) [64]. AGEs result from
long-standing hyperglycemia and augment passive stiffness
via cross-linking and enhanced collagen formation. Recent-
ly, Westermann et al. [72] provided evidence that enhanced
deposition and remodelling of the extracellular matrix in
HFNEF patients may involve myocardial inflammation. In
addition to collagen deposition, intrinsic cardiomyocyte
stiffness contributes to LV diastolic dysfunction evident
from the high myofilament passive force observed in
patients with HFNEF and HFREF [63].

Diastolic heart failure: role of the myofilaments

The first studies on myofilament function in membrane-
permeabilized single cell preparations were already
performed more than 30 years ago [22, 26]. Myofilament
function is commonly measured in Triton-permeabilized
cardiac muscle preparations, which allows investigation of
myofilament properties without interference of extracellu-
lar matrix components and under well-controlled condi-
tions (e.g., fixed sarcomere length and calcium
concentration) [65]. Nowadays, single cells can be isolated
from small needle biopsies, which are obtained during
cardiac surgery or cardiac catheterization [11, 18]. The
major limitation of the method may be the small size of
the human cardiac tissue samples available for research, as
throughout the heart, regional and transmural differences
may exist in myofilament properties. Heterogeneity in
myofilament function and protein phosphorylation may be
larger in cardiac disease as the disease trigger may be
localized to a certain area of the heart. Transmural
differences in myofilament properties have been reported
in rodent studies [15, 21]. To assess regional differences in
myofilament properties in the human heart, LV subepi-
and subendocardial biopsies were obtained during valve
replacement surgery from patients with mitral valve or
aortic valve stenosis or insufficiency [66]. In the latter
study, we did not find evidence for regional differences in
myofilament function and protein composition within the
human ventricle. In addition, recent analysis of variability
of the phosphorylation of the PKA target proteins cTnl
and cMyBP-C showed that the intra-patient variability in
protein phosphorylation was comparable between donor
and cardiomyopathy samples [62]. Thus, our data indicate
that within the precision of the measurements small,
biopsy-sized cardiac human tissue samples are represen-
tative for the region of the free LV wall from which they
are obtained.

The initial studies in humans were done in samples
obtained during heart transplantation surgery from end-
stage failing patients with idiopathic (IDCM) or ischemic
(ISHD) cardiac disease [67, 73]. A comparison was made
with cells isolated from non-failing donor hearts. Myo-
filament Ca’®’-sensitivity was increased in end-stage
failing compared to donor hearts as illustrated in Fig. 2a.
The higher sensitivity for Ca®" in end-stage failing hearts
may exert a beneficial effect on systolic cardiac perfor-
mance, but it may limit relaxation during diastole.
Diastolic function may be further impaired by the
combined changes in myofilament properties and pertur-
bations in Ca”" handling as discussed above. The blunted
decline in Ca®"-transient decay in failing myocardium will
increase diastolic Ca®" levels and exaggerate diastolic
dysfunction as shown in Fig. 2b.
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Fig. 2 a Force measurements in single Triton-permeabilized cardio-
myocytes from end-stage failing patients with ischemic and idiopathic
cardiomyopathy showed increased myofilament Ca®*-sensitivity com-
pared to non-failing donor hearts [67]. Translation of the altered
responsiveness to Ca®’ to cardiac pump function suggests that the
force-generating capacity of myofilaments will be higher at systolic
[Ca®"] and improves cardiac output, while the enhanced myofilament
Ca**-sensitivity may impair relaxation of the heart muscle during
diastole. b Taking into account the reported changes in the Ca*"
transient in human heart failure (i.e. reduced systolic peak Ca®>* and
slowed diastolic Ca*" decline [7]) would further worsen diastolic
function. The combination of enhanced myofilament Ca®'-sensitivity
and increased diastolic Ca®" levels is illustrated in b

The enhanced myofilament Ca®'-sensitivity has been
ascribed to defects in the (3-adrenergic receptor pathway as
reduced phosphorylation of the PKA target proteins, cTnl
and cMyBP-C, has been reported in end-stage failing
compared to non-failing donor myocardium [9, 20, 25,
48, 67]. In further support for defective {3-adrenergic
signaling was the observation that myofilament Ca®'-
sensitivity was normalized to donor values after treatment
of cells with exogenous PKA [67]. Enhanced myofilament
Ca**-sensitivity and correction to control values with PKA
treatment have been observed in different animal models as
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tion in different experimental models of heart failure.
Similar to humans, an increased myofilament Ca”*-sensi-
tivity has been observed in pig and mice with a myocardial
infarction [10, 23], while a reduction in Ca®'-sensitivity
was found in rat models with congestive heart failure due to
pressure overload or myocardial infarction [4, 5]. The
direction of the Ca®"-sensitivity shift may involve the stage
of cardiac disease (i.e., period after the initial cardiac
insult). Possible explanations for the opposite changes in
myofilament Ca®’-sensitivity in cardiac disease models
have been discussed in recent papers [30, 47, 57].

Apart from reduced PKA-mediated protein phosphory-
lation other myofilament protein modifications have been
reported which may underlie impaired diastolic function of
the heart. Varian et al. [70] reported a lack of frequency-
dependent Ca®’-desensitization in a rabbit model of
pressure overload, which was attributed to lack of
frequency-dependent ¢cTnl phosphorylation. A reduction in
myosin light chain 2 (MLC-2) phosphorylation has been
reported in human end-stage heart failure [67], while loss of
a transmural MLC-2 phosphorylation gradient has been
described in rodent models [15, 21]. Phosphorylation of
MLC-2 has been shown to enhance cross-bridge kinetics
and force production per unit Ca>* [55], while ablation of
MLC-2 phosphorylation in mice resulted in a blunted
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response to 3-adrenergic receptor stimulation [54]. Specific
and selective proteolysis of cTnl at its C-terminus has been
proposed to play a key role in human myocardial ischemic
disease, including stunning [27, 52]. The C-terminally
truncated cTnl protein has been reported to reduce the
force-generating capacity upon ischemia-reperfusion in
rodent studies. Incorporation of C-terminal truncated cTnl
in rat cardiac muscle depressed maximal force and
increased cross-bridge kinetics [60]. However, exchange
of C-terminal truncated c¢Tnl in human cardiomyocytes had
no effect on maximal force development and increased Ca?

Fig. 3 a Isolation of single
Triton-permeabilized cardio- A.
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Fig. 4 Comparison of passive force measurements in cells isolated
from cardiac biopsies taken during cardiac catheterization (control,
HFNEF, and HFREF) and from heart tissue obtained during heart
transplantation surgery (donor, IDCM, and ISHD) illustrates high
passive stiffness in HFNEF and HFREF patients, similar values in
control and donor hearts, and low passive force in idiopathic and
ischemic end-stage failing cardiomyopathy

hemodynamic data are collected at the time of biopsy
procurement and samples are directly frozen in liquid
nitrogen, which will fix phosphorylation status of the
myofilament proteome. This allowed us to show that the
high intrinsic passive stiffness of the myofilaments corre-
lated well with LV end-diastolic pressure (Fig. 3b) [11],
which indicates that increased passive myofilament stiff-
ness is an important contributor to diastolic dysfunction in
HFNEF patients. Compared to control cells from individ-
uals with normal LVEF and normal LV end-diastolic
pressure, force development by the myofilaments was
higher at low “diastolic” Ca*" concentrations and slightly
lower at higher “systolic” Ca** concentrations in HFNEF as
illustrated in the force-calcium relations in Fig. 3c. Treat-
ment with exogenous PKA significantly reduced passive
stiffness and abolished the difference in myofilament
passive force between HFNEF and control cells (Fig. 3a,
d), while force development at systolic Ca** concentrations

remained somewhat lower in HFNEF compared to the
control group.

Correction of passive stiffness in HFNEF with PKA
indicated that the myofilament dysfunction is caused by
protein hypophosphorylation. As mentioned above, the
main protein involved in myofilament stiffness it the giant
sarcomeric protein titin. Previous studies have shown that
titin is a target of PKA, PKG, and PKC [34, 41, 75].
Phosphorylation by PKA and PKG have been shown to
reduce passive stiffness [41, 75], while PKCx treatment
increased passive stiffness in mouse and pig myocardium
[34]. In addition to reduced ¢Tnl and cMyBP-C phosphor-
ylation, end-stage failing human hearts showed a deficit in
titin phosphorylation compared to non-failing donor hearts
[40]. A study in catheter biopsies from HFNEF and HFREF
patients indicated relative hypophosphorylation of the stiff
N2B isoform compared to control samples [12]. These data
support the hypothesis that hypophosphorylated titin causes
increased passive stiffness in cardiac disease. Until present,
no evidence for a detrimental effect of PKC-mediated titin
phosphorylation has been found in human cardiac samples.
Opposite to the expected increase in passive stiffness, PKC
treatment of end-stage failing cardiomyocytes slightly
reduced passive force [38]. However, the exact modulating
role of PKC-mediated titin phosphorylation on passive
stiffness in human myocardium should be more carefully
assessed in cardiac tissue which is obtained after different
stimuli, e.g., after alpha-adrenergic receptor stimulation,
which is known to activate downstream PKC.

Phosphorylation deficits of titin may be counterbalanced
by adaptations in titin isoform composition possibly aimed
to lower passive myofibrillar stiffness [14, 35]. Titin
isoform switching has been demonstrated in end-stage
failing myocardium: a shift from the stiff N2B isoform to
the compliant N2BA isoform coincided with lower passive
stiffness [46, 50] and may rescue diastolic dysfunction.
Alternatively, a maladaptive shift towards the stiff N2B

Effect B-blocker therapy
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Fig 5 Comparison of heart failure patients with normal (HFNEF) and
reduced (HFREF) left ventricular ejection fraction which received
chronic 3-blocker therapy +BB compared to patients untreated with
[3-blockers —BB showed higher passive stiffness in HFNEF patients
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blockers b. Passive force was higher in HFNEF compared to HFREF
patients, while CVF was higher in HFREF than in HFNEF
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isoform has been reported in human samples from patients
with aortic stenosis and LV hypertrophy [71], which would
exert a detrimental effect on diastolic function.

Figure 4 depicts passive stiffness measured in single
cells isolated from catheter biopsies and from hearts which
were obtained during heart transplantation surgery. Passive
stiffness was highest in HFNEF and HFREF patients which
were classified as relatively moderate forms of heart failure
(NYHA 1I to III). Passive stiffness was lowest in end-stage
failing human hearts classified as NYHA IV. Noteworthy,
passive force development in control cardiac catheter
biopsies and donor hearts are similar. The changes in
passive stiffness in patient groups compared to the control
groups may reflect altered passive stiffness during the
progression of cardiac disease, characterized by an en-
hanced passive stiffness at relatively early stages of the
disease where titin phosphorylation deficits are predomi-
nant, and lower passive stiffness in end-stage failing hearts
in which the shift to more compliant titin balances the
perturbations in titin phosphorylation.

Clinical perspectives

Large clinical trials have convincingly shown that [3-
blocker therapy reduces mortality and improves LV
function in HFREF patients. In HFNEF patients, favourable
effects of [3-blocker therapy on mortality and LV function
have not been convincingly demonstrated. Comparison of
patients who received f-blocker therapy and patients
untreated with (3-blockers showed higher maximal force-
generating capacity of myofilament in patients with 3-
blocker therapy, which may underlie improved systolic
performance [31]. However, 3-blocker therapy increased
passive force in HFNEF patients (Fig. 5a), which may even
worsen diastolic dysfunction. A positive effect of the f3-
blockers was observed on the extracellular matrix as the
collagen volume fraction was significantly lower in HFNEF
with 3-blockers (Fig. 5b). The opposite effects of 3-blocker
therapy on two important determinants of cardiac diastolic
function may partly explain the inconsistent results of (3-
blocker trials in HFNEF patients. Moreover, although
collagen deposition may underlie diastolic dysfunction,
within the physiologic sarcomere lengths, stiffness is
largely determined by titin. In a recent study, Chung and
Granzier [19] have shown that titin is the dominant
contributor to LV passive pressure within physiological
volumes, while the extracellular matrix exerts a dominant
effect on LV pressure at larger volumes. As diastolic
dysfunction is present in both HFNEF and HFREF patients
and is also a major problem in the growing population of
patients with diabetic cardiomyopathy [64], it is of great
relevance to design a targeted treatment to titin-mediated

passive stiffness. Benefits of therapy targeted at myofila-
ment function may depend on the stage of cardiac disease.
In pigs, P-blocker therapy directly initiated after a
myocardial infarction reversed the increased myofilament
Ca”*-sensitivity to values observed in sham animals and
significantly reduced passive stiffness in infarct animals
[24]. The latter observations are in contrast with the data
from our human studies, which showed an increase in
passive force in -blocker treated HFNEF patients (Fig. 5a)
and a minor increase in myofilament Ca**-sensitivity (not
shown) [31]. Although there may be species differences,
these conflicting data may also be explained by timing at
which therapy is initiated. Longitudinal studies in large
animal models [45, 74] are warranted to disentangle
adaptive from maladaptive myofilament protein changes
in the initiation and progression of diastolic dysfunction in
heart failure.
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