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Abstract: We present a full field laser Doppler imaging instrument, 
which enables real-time in vivo assessment of blood flow in dermal 
tissue and skin. This instrument monitors the blood perfusion in an area 
of about 50 cm

2
 with 480 × 480 pixels per frame at a rate of 12–14 

frames per second. Smaller frames can be monitored at much higher 
frame rates. We recorded the microcirculation in healthy skin before, 
during and after arterial occlusion. In initial clinical case studies, we 
imaged the microcirculation in burned skin and monitored the recovery 
of blood flow in a skin flap during reconstructive surgery indicating the 
high potential of LDI for clinical applications. Small animal imaging in 
mouse ears clearly revealed the network of blood vessels and the 
corresponding blood perfusion. 

©2011 Optical Society of America 

OCIS codes: (170.1650) Coherence imaging; (170.3340) Laser Doppler velocimetry; 
(170.3890) Medical optics instrumentation; (170.4580) Optical diagnostics for medicine. 
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1. Introduction 

Laser Doppler imaging (LDI) started with scanning LDI instruments [1,2]—these 
instruments are commercially available for research, medical diagnosis and follow-up of 
surgery, e.g., monitoring of wound healing. These instruments assess blood perfusion 
over large areas >1000 cm

2
 and find widespread application in burn assessment and 

wound healing [3–6]. LDI is a non-invasive imaging modality compatible with classical 
medical instrumentation, where discomfort and risk to patients is minimized. However, 
mapping the blood flow with a scanning LDI instrument typically takes minutes; often 
requiring the subject to be stabilized during the imaging process. Laser speckle contrast 
imaging (LSI) is closely related to LDI and extracts information on blood flow by 
observing the variations in speckle contrast [7]. With increasing flow speed the observed 
speckle contrast reduces due to averaging over more speckle variations during the 
exposure time. In contrast to the technical challenges for real-time LDI, LSI requires only 
a moderately fast camera capable of acquiring images at exposure times in the millisecond 
range. However, for assessing blood perfusion with LSI, the velocity distribution has to 
be known in principle [8]. Several reviews on LDI and LSI instrumentation are given in 
[9–11]. 

Full field LDI of dermal blood flow has gained much interest in recent years, because 
anomalously altered peripheral blood flow provides an easily accessible indicator for 
various health disorders [12], e.g. altered vasodilation in the case of diabetes [13], reduced 
blood flow in the case of smokers [14], inflammatory responses in the case of rheumatic 
diseases [15] or, presumably, altered perfusion in the brain due to Alzheimer disease 
which might be evidenced in the retina [16,17]. An array based LDI approach using a fast 
CMOS camera for full field perfusion imaging was introduced in 2002 by Serov et al. 
[18]. This initial work triggered the development of several full field LDI instruments 
with ever increasing performance [19,20]. These full field LDI instruments have allowed 
mapping the perfusion with 256 × 256 pixels over an area of ~50 cm

2
 every few seconds. 

Adapted to a surgical microscope, it has already proved useful in mapping active brain 
regions when the subject performed specific tasks [21]. In 2009, Draijer et al. [22] 
presented the Twente optical perfusion camera, which represented a further essential step 
towards real-time full field LDI. This camera acquired images with a size of 128 × 128 
pixels at a frame rate of 0.2 frames per second (fps) when analyzed online. If analyzed 
offline, the camera can acquire perfusion maps (raw data) at up to 26 fps for a few 
seconds. Recently, the first integrated real-time full field LDI instruments became 
available as a research instrument in 2010, as well as a fully equipped instrument for 
medical applications in 2011. These LDI instruments were developed by the authors in 
close cooperation between academia and industry (Aïmago [23]). The instruments 
incorporate a high-speed CMOS camera chip and a powerful FPGA chip for controlling 
the CMOS sensor and for real-time (online) processing of the captured images. The 
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resulting blood perfusion, erythrocyte concentration and intensity maps are then sent to a 
host computer for further analysis. The performance of the instrument allows continuous 
videos of blood flow at more than 12 fps to be acquired whilst covering an area of ~50 
cm

2
 with 480 × 480 pixels. 
In the following article, we recall briefly the underlying principles and outline the 

salient features of this LDI instrument. Finally, we present a selection of perfusion images 
and a video (online) for a few applications. 

2. Laser Doppler imaging 

An LDI instrument consists of a coherent light source, typically a monochromatic laser 
with a long coherence length, a fast detector and a hard- and software unit for recording 
and analyzing the detected signal. The laser illuminates the tissue which scatters the laser 
light. Part of the light is scattered at static structures of the tissue; part of it is scattered by 
dynamic components—typically moving red blood cells. The dynamically scattered light 
incurs a small wavelength shift due to the Doppler effect. Upon detection of the 
coherently mixing static and dynamic light fields, the interference of both fields produces 
a detectable beating of the intensity with a frequency in the kHz range for typical blood 
cell flow speeds of a few mm/s. Instead of following the time-course of the detected 
intensity I(t) directly, its dynamics is usually analyzed in frequency space by evaluating 

the power spectrum  
2

( ) ( )S I t  , where υ is the beat frequency and  denotes the 

Fourier transform. The average intensity (0)I S  and the n
th

 moments 

0

( )dn

nM S


  




   are then readily obtained. It has been shown [2,8,24,25] that the 

concentration c of moving red blood cells is proportional to the zero moment, 

0 / (0)c M S , and that the perfusion P is proportional to the first moment, 

1 / (0)P M S . Normalization by the average power (0)S  reduces the influence of the 

back-scattering efficiency of the tissue. 

 

Fig. 1. Outline of the LDI instrument and the signal processing. The research instrument is 
controlled via a notebook whereas the embedded instrument integrates the user interface. 

Figure 1 outlines the LDI instrument and the signal processing. In this full field real-
time LDI instrument, a 150 mW near infrared (NIR) laser (wavelength λ = 808 nm) and 
an engineered diffuser illuminate an area of ~8 × 8 cm

2
 at a typical distance of ~25 cm, 

providing an illumination of a field size well suited for medical applications. The back-
scattered NIR light is imaged by a video objective on a customized CMOS sensor. A 
digital camera registers a larger visible field in parallel and allows an intuitive navigation 
over an extended skin surface. The NIR light is spectrally separated from the visible light 
by a dichroic mirror. The CMOS sensor features a pixel size of 14 × 14 μm

2
 with a 
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quantum efficiency of 18%   taking into account the fill factor. A column-wise fixed 

pattern noise (FPN) correction is integrated in hardware. At the end of the exposure time, 
the accumulated charges are memorized and the pixels cleared. The pixel values are then 
read during the integration of the next frame, which allows nearly uninterrupted exposure 
whilst capturing the images. The instrument records stacks of 128 raw images with a rate 
of up to ~20 kfps, resulting in a raw data rate of up to 700MB/s. These image stacks are 
subsequently processed according to the mentioned power spectrum analysis [19,20,22]. 
The memory holds two stacks of a total of up to 2

22
 pixels each (9 bits/pixel). During the 

acquisition of an image stack, the previous stack is processed and the results are written to 
an output buffer. This high-speed calculation of the moments is solely done by the FPGA 
as it reduces the amount of data by nearly two orders of magnitude. The resulting average 
image intensity, the concentration map and the perfusion map are sent via an external PCI 
Express link to the host computer for further analysis and display. Because the CMOS 
sensor cannot register the full image at the required frame rate, the image is split into 
smaller windows for high-speed acquisition and processing of the raw data window per 
window [19]. Overall, the full field flow maps (480 × 480 pixels) can be acquired with a 
rate of 12–14 fps, which is sufficiently fast to monitor the heartbeat and to recognize 
motion artifacts. The LDI instrument can be configured for smaller observation areas if a 
higher frame rate is required, e.g. for perfusion monitoring in small animals (for example 
mice, having a heartbeat rate of ~10Hz). Table 1 exemplifies some configurations and the 
resulting image frame rates. Flow maps of a single window can be obtained at more than 
100fps. 

Table 1. Image sizes and corresponding frame rates achieved with our LDI 
instrument 

Image (window) size 
[pixels] 

Window frame rate 
[kHz] 

Exposure time τ 
[μs] 

Image frame rate 
[fps] 

480 × 480 (480 × 60) 14.9 58.2 14.6 
360 × 360 (360 × 60) 17.6 48.5 22.9 
360 × 360 (360 × 90) 12.4 72.5 24.1 
240 × 180 (240 × 90) 15.2 57.8 59.2 

It is worth noting that full field illumination leads to a back-scattered speckle field, 
which has to be resolved in time and, more relaxed, in space to detect its intensity 
fluctuations [11,26]. Detecting the Doppler beating requires a window frame rate of at 

least twice the maximum beat frequency, i.e. a frame rate f 10–20kHz is required to 
detect the Doppler signal from red blood cells moving at a speed of 2–3mm/s. In order to 
reduce white noise (e.g. read-out noise), we apply a soft threshold Swn on the raw power 
spectrum [20,22]. During the exposure time τ, an integrating detector averages the signal 
I(t), which damps the detected intensity fluctuations. Therefore, we applied a correction 
factor to obtain an unbiased power spectrum. The factor 

  
/2

/2

1
sinc cos(2 )dt t





 




    (1) 

yields the reduced peak amplitude of a sinusoidal signal with frequency υ measured 
within a time interval τ. The flow maps are then estimated using the corrected power 
spectrum 

    2

wn'( ) max 0, ( ) sincS S S    ,  (2) 

from which the moments are obtained by integrating over the available frequency range, 

 

/ 2

/128

'( )d

f

n

n

f

M S    .  (3) 

Although LDI does not strictly require a spatial speckle resolution, we took into account 
the number of speckles per pixel for the overall instrument design. The average speckle 

area  
2

s /A NA , where λ = 808 nm is the laser wavelength and NA the numerical 

aperture at the image side. With appropriately short exposure times, the speckle contrast 
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is given as  
1/2

s p s(2 ) 1 /C A A 


   , where γ 0.1 is the fraction of Doppler shifted 

light [22,27] and Ap 80 μm
2
 the active area of pixels. The speckle contrast, i.e. the 

visibility of speckles, is maximal for 
p sA A , drops by 30% for 

p sA A  and decreases 

further with the square root of the number of speckles per pixel. Hence, the contrast is 
maximized for large speckles obtained with small NA, which translates into low image 
intensity and modest signal-to-noise ratio (SNR). At high frame rates an optimized 

contrast with a reduced intensity has been chosen (cf. [27].). We chose NA 0.11 roughly 
yielding two speckles per pixel, which decreased the speckle contrast by ~40%. This low 
NA allows sharp imaging over a depth range of ~6 mm. 

Following the calculation of Draijer et al. [22], the SNR has been estimated. 
Assuming a homogeneous illumination and a depolarized, homogeneous and isotropic 
scattering from the tissue, an upper bound of the SNR can be estimated as 

 

 

 
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2

s DC

2 2 2
AC p s p t

2
pe DC d qnoise

2
2 2

SNR
4 42

A i

i A k M

f Aq i i i fi

 
  







  
 

,  (4) 

which is obtained without dark noise id and quantization noise iq. Here, qe is the 

elementary charge, p  is the available photon flux per sensor pixel, ks 0.5 is the 

scattering efficiency of the tissue and Mt is the lateral magnification of the imaging optics. 
Equation (4) clearly shows that the magnification of the optical system is a key parameter 
to improve the SNR. By decreasing the working distance as compared to other LDI 

instruments, we obtained 
t 0.18M    and improved both the image brightness and the 

SNR even though we opted for a smaller number of speckles per pixel. We measured a 
SNR of 2–5 on finger tips, which depends on the local scattering properties (γ, ks) of the 
tissue. 

A noise floor of ~15 (arbitrary units) was measured on white paper with a scaling that 
yielded ~230 (same units) on finger tips, i.e. the dynamic range of perfusion maps 
covered about one order of magnitude. For all applications presented in the following, we 
adjusted the full scale (255) such that the perfusion maps essentially covered the dynamic 
range from 0 to ~200 at display. 

3. Case studies 

This section presents a selection of results from several LDI case studies. Figure 2 and 
Fig. 3 summarize the results of an experiment on the fingers of a volunteer subjected to an 
arterial occlusion using a blood pressure cuff. Figure 2 shows a color-coded LDI 
perfusion map; blue denoting low and red, high perfusion levels. We selected four circular  
 

 

Fig. 2. Color image of fingertips and color-coded blood perfusion map. (Media 1: 
captured video sequences showing the start of the arterial occlusion and the overshoot 
after release. The video frames were resized to 50% of the captured images to reduce the 
file size.) 
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Fig. 3. Blood perfusion in the encircled regions on the fingers (14 fps; see Fig. 2). During 
the arterial occlusion, the blood perfusion drops and motion artifacts (spikes) become 
more clearly visible. The heartbeat is shown for a 10 s interval when the blood perfusion 
returned to normal. 

regions for which Fig. 3 shows the average perfusion values plotted over time. The upper 
arm was occluded with a pressure of ~150 mmHg during the time interval indicated by 
the black lines, i.e. during ~70 s. During occlusion, the perfusion quickly dropped to a low 
level and stayed there. A transient increase after ~10 s was probably due to the 
counteraction of the cardiovascular system, as the occlusion pressure was only slightly 
higher than the normal blood pressure of the volunteer. Short spikes are due to motion 
artifacts, which are more pronounced during an occlusion of long duration. On releasing 
the occlusion, the perfusion increased by ~10% at the fingertips (region 1 + 2) and by 
~30% at the mid-fingers (region 3 + 4) above the pre-occlusion level during ~10 s before 
returning to normal. This is a typical outcome and can be expected for occlusion–
reperfusion experiments due to vasodilation. However, it is worth noting that we 
frequently observed locally differing behaviors after releasing the occlusion. In regions 
showing immediately after the occlusion release a clear heartbeat signature (1 + 2) the 
perfusion increased less and returned more promptly to normal than in regions with hardly 
observable heartbeat (3 + 4). 

Figure 4 shows a clinical case of a patient who burned the skin of the abdominal wall 
with hot water. On the third day after injury, the burn wound showed areas of superficial 
and deep burn. Deep burns are indicated by low perfusion levels (areas B and C). Due to 
the wound healing process, the perfusion was elevated in the lesser affected areas. The 
perfusion was particularly high at the periphery of the burned area in relation with the 
inflammatory reaction associated to the normal wound healing process. 

 

Fig. 4. Hot water burn on the skin of the abdominal wall of a patient on the third day. 
Outline of the burn wound (A) and deep burned areas showing low perfusion (B and C). 
Image area ~50 cm2. 

In a next clinical case, we used LDI to monitor the reperfusion of a free flap during 
reconstructive surgery. During the microsurgical intervention, an Antero lateral thigh flap 
was harvested and transferred to reconstruct the inner right foot of a young patient. A full 
thickness skin defect had to be reconstructed after a malignant tumor excision. In the case 

#143526 - $15.00 USD Received 22 Mar 2011; rev. 6 May 2011; accepted 6 May 2011; published 9 May 2011
(C) 2011 OSA 1 June 2011 / Vol. 2,  No. 6 / BIOMEDICAL OPTICS EXPRESS  1475



of complications, the surgeons would have had to amputate the big toe and a significant 
portion of the patient’s foot. During the surgery, an artery and two veins supplying the 
flap were anastomosed under microscope magnification to the flap vessels, thereby 
reestablishing blood flow and ensuring tissue survival. Once transplanted the tissue was 
molded and shaped to cover the skin defect. Figure 5 shows a time series of color-coded 
perfusion maps over a period >40 s and the corresponding images of the flap. During 
surgery, the blood flow had been interrupted for transplanting the flap. At time zero, the 
arterial blood flow was restored and blood injected in the center of the flap, where the 
perforator vessels are located. The LDI maps clearly show that the perfusion was restored 
within a few seconds at the injection site and within ~30 s over the entire central region. 
In the peripheral areas of the flap, the restoration of the blood flow took a few minutes, 
most likely due to a lower blood pressure. In this case study, LDI perfusion imaging 
allowed the surgeon to verify the reestablishment of blood supply during surgery, this 
means at the earliest possible stage when surgical correction is still possible. In such 
cases, LDI perfusion monitoring helps avoid medical complications and proves to be a 
valuable instrument to limit risk and enhance the quality of the surgical outcome. 

 

Fig. 5. Reperfusion of a free flap of ~40 cm2 area. The image center corresponds to the 
perforator location, where arterial blood flow was reinitiated at time point zero. Within 
~30s the microcirculation in the central region was restored. A final check after 15 min 
showed that the entire flap was sufficiently well perfused for the final flap insertion. The 
least-perfused region in the bottom-center of the perfusion maps corresponds to the 
position of a staple holding the tissue in place. 

In a more life science oriented case, we looked at blood flow in a mouse ear, where 
the thin internal ear skin layer was removed surgically (Fig. 6). To reduce motion 
artifacts, mainly due to breathing, we fixed the earlap by gently retaining it between a 
microscopy slide and a cover slip (top). In the fixed region, the perfusion map clearly 
shows the arterial and venal vessel systems of the ear. Due to the heart rate of mice (~10 
Hz), the heartbeat was hard to resolve and the perfusion map shows an average perfusion 
level rather than an instantaneous value. 

 

Fig. 6. Blood perfusion shows the vessel network in a mouse ear. The ear had been 
slightly fixed to suppress motion artifacts due to breathing that show up in the free region 
of the ear. 

4. Conclusions 

We have presented our research LDI instrument capable of continuously monitoring 
blood perfusion over an area of up to ~50 cm

2
 in real time. The flow maps presented 

clearly show regions of distinctive perfusion and/or microcirculatory responses. Future 
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developments aim to improve the SNR in the flow maps, detect and possibly reduce 
motion artifacts and to cover a larger field of view. Improvements in the available laser 
power and further improvements in the photo-sensitivity of high-speed CMOS sensors 
will support these targets. Meanwhile, handling the instrument like a photo or video 
camera allows the rapid and interactive assessment of blood perfusion over extended 
areas of the body by sequentially observing different locations. 

Across the selected case studies, LDI was used to visualize vascularization and to 
monitor blood flow in small animals and in clinical studies. These initial results of LDI 
blood flow monitoring over large areas in real-time indicate clinical applications with 
unforeseeable potential. Disturbances in perfusion in general or alterations in blood flow 
dynamics point to dysfunctions of the affected tissue or the microcirculation. For instance, 
live observation of the perfusion changes due to the cardiac cycle enables the extraction 
of additional parameters such as the dynamic range, e.g. peak-to-peak amplitude. LDI 
blood flow monitoring complements optical coherence tomography (OCT) or photo-
acoustic tomography (PAT) imaging of vascularization and blood flow. However, OCT 
and PAT operate over smaller areas with a shorter working distance than LDI but with a 
three-dimensional imaging of vascularization and blood flow. We are convinced that real-
time full field perfusion imaging improves the assessment of health issues related to 
microcirculation due to its simplicity and intuitive interpretation. 
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