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Abstract: Segmentation of anatomical structures in corneal images is 

crucial for the diagnosis and study of anterior segment diseases. However, 

manual segmentation is a time-consuming and subjective process. This 

paper presents an automatic approach for segmenting corneal layer 

boundaries in Spectral Domain Optical Coherence Tomography images 

using graph theory and dynamic programming. Our approach is robust to 

the low-SNR and different artifact types that can appear in clinical corneal 

images. We show that our method segments three corneal layer boundaries 

in normal adult eyes more accurately compared to an expert grader than a 

second grader—even in the presence of significant imaging outliers. 
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1. Introduction 

Spectral domain optical coherence tomography (SDOCT) has become an important diagnostic 

imaging modality in clinical ophthalmology [1–4] for the examination of both the retina 

[1,2,17–21,28] and cornea [2–16,25–27,29]. SDOCT imaging can provide information about 

the curvature and thickness of different layers in the cornea, which are important for clinical 

procedures such as refractive surgery. To determine the required anatomical parameters, 

corneal layer boundaries must be reliably and reproducibly segmented. A corneal 

segmentation error of a several micrometers can result in significant changes in the derived 

clinical parameters [22]. Unfortunately, the large volume of data generated from imaging in 

settings such as busy clinics or large-scale clinical trials makes manual segmentation both 

impractical and costly for the analysis of corneal SDOCT images. 

To address this issue, several different approaches for segmenting corneal layer 

boundaries have been proposed with varying levels of success. One of the earliest reports by 

Li et al. proposed a combined fast active contour (FAC) and second-order polynomial fitting 

algorithm for automatic corneal segmentation [12–14]. Eichel et al. implemented a semi-

automatic segmentation method by utilizing Enhanced Intelligent Scissors (EIS), a user 

interactive segmentation method that requires minimal user input, and an energy minimizing 

spline [15,16]. Despite the successful demonstrated accuracy in segmenting high-quality 

corneal images (e.g., Fig. 1.a), none of these techniques have demonstrated sufficient 
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accuracy for fully automatically segmenting low-SNR images or those corrupted by different 

sources of artifacts (e.g. Figs. 1.b-d, Fig. 2), which are inevitable in large scale clinical 

imaging. 

In a closely related problem, utilizing graph theory in retinal SDOCT segmentation has 

been proven successful [17–21]. The hybrid graph theory and dynamic programming retinal 

segmentation approach introduced by Chiu et al. has been shown to be especially flexible for 

handling different sources of artifacts [21]. 

In this paper, we use a customization of the hybrid graph theory and dynamic 

programming framework introduced by Chiu et al. for a fundamentally novel application that 

deals with unique imaging artifacts in corneal SDOCT images. Our method automatically 

segments three corneal layer interfaces: the epithelium-air interface (an interface between air 

and the tear film on the epithelium), the epithelium-Bowman’s layer interface, and the 

endothelium-aqueous interface as shown in Fig. 2. This robust segmentation method is 

capable of handling varying degrees of SNR and artifacts in corneal images. Illustrative 

examples of images used in our study are shown in Fig. 1. Note that while many SDOCT 

corneal images have high SNR (Figs. 1a-b), low-SNR images with artifacts are not 

uncommon in a clinical setting (Figs. 1c-d). The anatomical features of interest, the key 

regions, and different types of imaging artifacts often seen in corneal SDOCT images are 

labeled in Fig. 2. Variable SNR in SDOCT corneal images results from differences in patient 

alignment, corneal hydration, tear film status, and patient motion during imaging. A central 

saturation artifact at the corneal apex and lower SNR in the periphery results from the 

telecentric (parallel) scan pattern used by most SDOCT corneal imagers. The horizontal line 

artifacts seen in Fig. 2 result from interaction of the central saturation artifact with the DC 

subtraction algorithm applied to all SDOCT A-scans. All corneal images considered in this 

study were obtained using OCT systems manufactured by Bioptigen, Inc. and processed with 

Bioptigen software (InVivoVue Clinic v1.2), although similar artifacts are observed in 

corneal images obtained by instruments from other vendors. 

The organization of this paper is as follows: Section 2 discusses layer segmentation using 

graph theory and dynamic programming, Section 3 shows an implementation of our robust  

 

 

Fig. 1. Corneal images of varying SNR and artifacts used in this study. (a) Corneal image with 

minimal artifacts. (b) Corneal image with prominent central and horizontal artifacts (see Fig. 2 

for the visual description and annotation of these artifacts). (c) Corneal image with low-SNR, a 
prominent central artifact, and a hyporeflective region between the epithelium surface and the 

Bowman’s layer. (d) Corneal image with low-SNR, prominent central and horizontal artifacts, 

and other vertical artifacts. 
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Fig. 2. An example low-SNR corneal image (same OCT data as in Fig. 1.c) in which key 

regions and different types of imaging artifacts are labeled. Since SNR decreases with depth in 
SDOCT images, the regions of high and low-SNR also change. Some features, such as the 

hyporeflective region, appear in only a small subset of our corneal image database. 

algorithm for segmenting three corneal layer boundaries in images of varying quality and 

artifacts, Section 4 compares our automated results against expert manual segmentation, and 

concluding remarks are given in Section 5. 

2. Review: layer segmentation using hybrid graph theory and dynamic programming 

In this section, we briefly review the general framework behind graph theory and dynamic 

programming [21] in the context of corneal layer boundary segmentation. In this framework, 

images are viewed as a graph of nodes (representative of each pixel on the image) that are 

connected by edges, or pathways, between nodes. By assigning weights to each of the edges, 

the possible pathways between two nodes are given preferences. The pathway with the 

highest preference is then found using an appropriate dynamic programming algorithm, which 

generally searches for a path with the lowest cumulative weight. This resulting pathway is the 

segmentation, or cut, that separates the image into two meaningful regions. 

To segment corneal images, we utilize the vertical intensity difference (gradient) between 

layers to generate edge weights that create a pathway preference along the layer boundaries as 

follows: 

 2 ( )
ab a b min

w g g w     (1) 

wab is the weight assigned to the edge connecting nodes a and b, 

ga is the vertical gradient of the image at node a, 

gb is the vertical gradient of the image at node b, 

wmin is the minimum weight in the graph, a small positive number added for system 

stabilization. 

In this equation, ga and gb are normalized to values between 0 and 1 with respect to the 

maximum and minimum gradient values within the image, and wmin = 1 × 10
5

. These weights 

are further adjusted to account for the directionality of the gradient. To segment the air-

epithelial layer boundary, for instance, it is known that the boundary consists of a darker 

region (air) above a brighter region (cornea), whereas the endothelial-aqueous layer boundary 
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has a light-to-dark (cornea-to-aqueous) layer change. Thus, convolution with directional 

filters such as [1;-1] and [-1; 1] (MATLAB notation) can be used when calculating the 

gradient to extract the appropriate layers. Figure 3 shows two complementary gradient images 

used for calculating edge weights. 

 

Fig. 3. Gradient images of Fig. 1.b. (a) Dark-to-light gradient image for segmenting the air-

epithelial layer boundary. (b) Light-to-dark gradient image for segmenting the endothelial-
aqueous layer boundary. 

It is often the case that the layer boundary to be segmented is near the presence of 

unrelated structures or artifacts with similar characteristics. For example, oftentimes the 

gradients within the stroma in the light-to-dark gradient image are of similar magnitude to the 

desired endothelium-aqueous interface gradient. To prevent the algorithm from segmenting 

these structures in place of the target feature, it is beneficial to restrict the graph to a search 

space that leaves out the unrelated structures. In graph theory, this means that the weights of 

edges that lie outside the restricted search region are removed prior to cutting the graph. For 

instance, after segmenting the air-epithelium boundary, we declare all nodes belonging to this 

boundary or regions above it as invalid, when searching for the epithelium-Bowman’s layer 

border. More detail in the implementation of search region limitation for corneal images 

follows. 

3. Methods: segmentation of three corneal layer boundaries 

This section details a corneal layer boundary segmentation algorithm based on the framework 

described in the previous section. The bulk of these modifications aim to correct for artifacts 

or regions of low-SNR often found in corneal SDOCT images. 

The data to be segmented consists of raster scanned images of a 6 mm region of the 

cornea sampled by 1000 A-scans in the lateral (B-scan) dimension. Each B-scan is segmented 

independently from the other images within the same volume, and is assumed to be roughly 

centered at the apex of the cornea. Figure 4 shows an outline of our algorithm, and the 

following subsections discuss each of the steps. 

3.1. Artifact removal 

In corneal SDOCT images, there are two main types of artifacts that often interfere with 

accurate automatic segmentation. We have termed these artifacts as the ―central artifact‖ and 

the ―horizontal artifacts‖. Because these artifacts resemble or overcast corneal boundaries, 

diminishing their effects is essential for the success of any segmentation algorithm. As 

illustrated in Fig. 2, the central artifact is the vertical saturation artifact that occurs around the 

center of the cornea due to the back-reflections from the corneal apex, which saturates the 

spectrometer line camera. The periodic pattern of the central artifact is a result of the Fourier 

Transform utilized for reconstructing SDOCT signals. Thus, the sharp-edged saturation 

signals at the corneal apex appear as sinc functions in the reconstructed images. This central 

artifact indirectly causes the horizontal artifacts to appear due to the automatic DC subtraction 

algorithm implemented in the SDOCT imaging software from Bioptigen. 
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Fig. 4. Outline of the corneal segmentation algorithm. 

3.1.1. Reduction of the horizontal artifact 

Rows that are corrupted by the horizontal artifact have higher mean intensities than other 

rows. To mitigate the horizontal artifacts within corneal images, we implemented a simple 

method based on reducing the DC signal in the horizontal direction. Specifically, we find the 

mean intensity across each row of the image and subtract it from each pixel within that row of 

the image. While the location of the horizontal artifacts might still be detectable via visual 

inspection, this subtraction significantly diminishes the horizontal artifact (and the 

corresponding erroneous vertical gradients) with minor changes to the anatomically relevant 

vertical gradients. Figure 5 shows the processed image in Fig. 1.b once it has undergone mean 

intensity subtraction. Horizontal artifacts running through the cornea are not as mitigated as 

those above the cornea because the mean intensities of the rows intersecting the cornea 

include a significant amount of signal from the cornea. 

 

Fig. 5. Reduction of the horizontal artifact. (a) Unprocessed corneal image (Fig. 1.b). (b) 
Corneal image (Fig. 1.b) with mitigated horizontal artifacts due to mean intensity subtraction 

from each row in the image. 

3.1.2. Central artifact detection & removal 

The central artifact also produces unwanted gradients that affect the segmentation of corneal 

layer boundaries. Due to the non-uniformity of the central artifact (Figs. 1.b-d), the approach 

used for horizontal artifact removal is not adequate to address this problem. Thus, we 

#143850 - $15.00 USD Received 8 Mar 2011; revised 6 May 2011; accepted 10 May 2011; published 12 May 2011
(C) 2011 OSA 1 June 2011 / Vol. 2,  No. 6 / BIOMEDICAL OPTICS EXPRESS  1529



implemented an alternate, yet effective way to remove the central artifact that is robust to the 

variations in width, relative intensity, and location of the central artifact. Our algorithm is 

implemented in two steps: central artifact detection followed by removal via graph weight 

alternation. 

The key feature of the central artifact is its relatively high intensity in a selected number 

of neighboring vertical columns (A-scans). Among different subjects, the central artifact 

varies in levels of intensity, ranging from very prominent to almost nonexistent (Fig. 1.a). To 

detect the central artifact region, we first accentuate the central artifact by zero padding and 

median filtering the image with a [40x2] kernel and then search for abrupt changes in the 

average intensity of the neighboring A-scans. To define an abrupt change, we break the image 

into three equal width regions (Regions I, II, and III in Fig. 6) in which only the central region 

(Region II) is assumed to contain the central artifact. This simple ad hoc assumption has been 

sufficient for the 60+ volumes of corneal SDOCT data captured with our system. In order to 

find the central artifact in Region II, we first estimate the average intensity of the A-scans 

without the central artifact by calculating the average intensity (µ) of the A-scans in Regions I 

and III. Next, in Region II we search for the leftmost and rightmost A-scans which have 

average intensities greater than (4/3 × µ). We interpret the absence of an abrupt change as the 

lack of a central artifact, as in Fig. 1.a. The detection of the central artifact in the corneal 

image in Fig. 1.b can be visualized in Fig. 6, in which the plot on the bottom indicates the 

average A-scan intensity as a function of lateral position. Once the central artifact is detected, 

we nullify its effect on segmentation by reducing the weights of the edges within the central 

artifact to near zero. Therefore, the shortest-path would no longer be influenced by gradients 

within the central artifact. In Section 3.3 we attain more reliable estimates of the layer 

boundaries obscured by the central artifact from the neighboring regions. 

 

Fig. 6. Comparison of A-scan mean intensities to detect the central artifact in Fig. 1.b. The plot 

below the image shows the A-scan mean intensities of the image with the different regions 
denoted by red, dotted vertical lines. The horizontal red line is 4/3 times the mean value of the 

mean intensity per A-scan in Regions I and III (the vertical axis on the bottom plot does not 

start at zero). The black dotted lines denote the central artifact as detected by our algorithm. 
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3.2. Pilot air-epithelium layer boundary estimation 

After nullifying the effect of the nodes corresponding to the central artifact, we proceed to 

attain a pilot estimate of the air-epithelium layer boundary. We utilize Dijkstra’s method [23] 

and the dark-to-light weights to find the lowest-weighted path initialized at the upper left and 

the bottom right pixels of the image. The resulting cut is a pilot estimate of the air-epithelium 

layer boundary. 

3.2.1. Extrapolation into low-SNR regions 

In this section, we address the problem of segmenting corneal layer boundaries in regions of 

low-SNR (Figs. 1.c-d), which can be common in clinical settings. The pilot estimate of the 

epithelium layer boundary is often inaccurate in the critically low-SNR regions since the 

estimated image gradients (Figs. 1.c-d) are not reliable in the critically low-SNR regions of 

the image (Fig. 2). Thus, we determine the location of the epithelium layer boundary by 

extrapolating from the adjacent, more reliable high-SNR regions. In the following Subsection 

3.2.2, we explain our method for detecting these low-SNR regions, and in Section 3.3 we 

describe the extrapolation algorithm. 

3.2.2. Detection of low-SNR regions 

We detect the critically low-SNR regions of the cornea, and corresponding segmentation 

errors, based on three a priori assumptions. Our first assumption, which is well established in 

previous literature [12–14], is that a second order polynomial approximates corneal layers’ 

two-dimensional profile. Thus with high confidence, we may assign deviations 

uncharacteristic of this simplified profile as outliers. Our second assumption is that Dijkstra’s 

algorithm in the critically low-SNR regions prefers the shortest geometric path. Our rationale 

for this assumption is that the corresponding weights in regions with pure noise are   

 

 

Fig. 7. Corneal image (Fig. 1.c) with the smoothed pilot epithelial layer boundary overlaid. 

The second derivative plot of the pilot epithelial layer boundary is used to detect the regions of 
low-SNR for the epithelium excluding the center half of the image (Region B). A second 

derivative below 0 indicates that there is a positive inflection in the second derivative, which 

should not occur for normal cornea and thus indicates that the SNR may be low at this 
location. A second derivative below 0 in Region B often occurs near the central artifact due to 

the central artifact removal step which results in a linear interpolation between both sides of 

the central artifact. 
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independent and identically distributed random variables. In such regions, the shortest 

geometric path between two nodes of the graph has the highest probability to accumulate the 

least amount of edge weights. Thus, while Dijkstra’s algorithm follows the epithelium layer 

curvature in the high-SNR regions, often in the critically low-SNR regions it tends to follow a 

straight line towards the edge of the image. Thus, we can use these deviations and detect 

regions of low-SNR based on points in which the erroneous pilot layer boundary experiences 

an abnormally positive inflection (Fig. 7). To exploit these two a priori assumptions, we first 

smooth the layer boundaries. Then, we calculate the second derivative of 40 equally 

distributed points, 10 in each quarter of the image, along the smoothed pilot layer boundaries 

to estimate large-scale inflections. 

Our third assumption is that the SNR will always be relatively high in the middle half 

(Region B in Fig. 7) of the image for the epithelium so we only search for low-SNR regions 

in the outer portions (Regions A and C in Fig. 7). Thus, for the epithelial layer boundary, we 

only detect positive inflections within the first and last fourths of the image. Figure 7 shows 

an illustrative example in which the pilot epithelial layer boundary is found and smoothed and 

the critically low-SNR region is correctly delineated by the dotted green lines. 

3.3. Interpolation and extrapolation into low-SNR regions 

In the previous subsections, we located the corneal regions with unreliable gradients; namely, 

the central artifact and the low-SNR regions. This subsection presents the interpolation and 

extrapolation strategy for determining the epithelial layer boundary in these regions. 

Specifically, we use the local second order polynomial model to interpolate and extrapolate in 

the low-SNR regions. For the left and right regions with low-SNR, the parabolic fitting 

functions extrapolate based on the outer halves of the left and right regions of the high-SNR 

region, respectively (see Fig. 2). The central artifact region was interpolated based on the 

inner halves of the high-SNR regions. 

To create smooth junctions between the epithelial layer boundary segments, we used the 

grassfire transform, also known as feathering, to blend together the extrapolated/interpolated 

regions and the non-interpolated region [24]. The blending region consists of |β-α| pixels with 

the grassfire transform defined in the following formula: 

 
( α ) ( α)

( ) ( )  
( ) ( )

pilot extrap
i

i i
layer i layer i

 





 





  
    (2) 

α is the pixel from which interpolation or extrapolation begins 

β is the amount of pixels from α until the pixel immediately prior to the low-SNR or 

central artifact region 

Figure 8 illustrates the effectiveness of this technique for segmenting the epithelium layer 

boundary of Fig. 1.c. 

 

Fig. 8. Blending mechanism smoothens the transition between extrapolated and non-
extrapolated segments of the image in Fig. 1.c. (a) Segmented epithelium boundary without the 

blending mechanism. (b) Segmented epithelium boundary with the blending mechanism. 
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3.4. Augmented segmentation of the air-epithelium interface 

The pilot epithelium layer boundary estimate described in Section 3.2 was created based on 

the dark-light gradient image. This estimate does not exactly match the expert grader’s 

manual segmentation (see Section 4.1). Note that in corneal images, the boundary between air 

and epithelium appears blurry due to the point spread function (PSF) of the SDOCT system. 

While the gradient is most prominent in the outer boundary, the actual position of the 

epithelium layer boundary is the center of the bright epithelium band visualized on raw 

images, assuming the PSF is symmetric and that the boundary signal is bright compared to its 

immediate surroundings. Such disagreement is illustrated in Fig. 9.a. Therefore, we use the 

raw image intensities instead of gradient values for determining the graph weights in the final 

step of the segmentation [28]. Based on the observed spread of the PSF in the training set (see 

Section 4.1), the actual epithelium boundary position does not appear to vary by more than 10 

µm from the pilot epithelium boundary location. Thus, to detect the actual corneal surface, we 

find the lowest cumulative weight path in a 20 µm wide search region centered at the pilot 

epithelium boundary estimate. 

 

Fig. 9. Mismatch between the pilot and the actual position of the epithelium layer boundary 

(manually segmented by a cornea specialist) in the original and dark-to-light gradient image 

(Fig. 1.c). (a) Pilot epithelium boundary (yellow) and the actual location of the epithelium 
boundary (blue) delineated over the original image. Note that the actual epithelium goes 

through the center of the brightest region of the original image. (b) Pilot and the actual 

epithelium boundary from (a) delineated on the gradient image. Note that the brightest region 

in the gradient image (b) is not the same as in (a), which results in mismatch between the two 

lines. 

3.5. Segmentation of the endothelium-aqueous interface 

The endothelium-aqueous interface is the second-most prominent boundary in SDOCT 

corneal images. Our method for segmentation for the endothelium-aqueous interface is a 

modified reiteration of the steps taken for the air-epithelium interface segmentation. Due to 

the loss of SNR in the axially lower section of the SDOCT images, the extent of the low-SNR 

regions across the endothelium is larger than those of the epithelium (see Fig. 2). To reduce 

the effects of gradients in the stroma for obtaining the pilot endothelium-aqueous interface 

segmentation (see Fig. 3.b), we developed a method to reduce the search region. 

3.5.1. Reduction of search region for endothelium-aqueous interface 

To attain a tight valid search region, we assume that the thickness of the cornea at the apex 

approximates the minimum thickness of the cornea. To get a more accurate measurement of 

the central corneal thickness, we first flatten the image based on the segmentation of the air-

epithelium boundary segmentation. The flattening algorithm works by circularly shifting the 

positions of pixels in the image matrix according to an input vector of shift values. This can 

be visualized in Fig. 10, which has the air-epithelium boundary segmentation set as the input 

vector. 

We estimate the thickness of the apex region of the cornea by estimating the vertical 

gradients in the Regions X and Y, which are denoted by the regions between the red, dotted  
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Fig. 10. Method for flattening corneal images based on the air-epithelium boundary 

segmentation. The corneal image is circularly shifted either up or down depending on the 

position of the air-epithelium boundary segmentation in relation to the mean position of that 
segmentation. The red arrows indicate the direction and relative amount of the circular shift of 

each A-scan. 

lines in Fig. 11. The central artifact generally saturates the apex region, which has the 

smallest thickness of the cornea. Thus, Regions X and Y were chosen to be directly to the left 

and right of the central artifact to best estimate the minimum corneal thickness. Within these 

regions, the bottom of the cornea can be found by detecting the greatest decrease in intensity, 

which should occur at the endothelium-aqueous interface. We chose to search for the largest 

decrease in the mean intensity of adjacent rows over the region 400 – 800 µm below the air-

epithelium interface to avoid interference from large intensity gradients caused by the 

hyporeflective region as seen in Fig. 2 or other gradients in the stroma that are similar to that 

of the endothelium-aqueous interface (Fig. 3.b). The 400 - 800 µm search region is denoted 

by the green, dotted horizontal lines in Fig. 11. To increase the likelihood of detecting the 

bottom border of the cornea, we first denoise the region of the cornea between the red lines 

with a [2x20] median kernel and followed by low-pass filtering via a [5x100] Gaussian kernel 

with a sigma of 100 to accentuate the vertical gradients (see Fig. 11). Once the border is 

detected, the minimum difference between the air-epithelium interface and the detected 

border is used for limiting the search region for the endothelium-aqueous interface. Based on 

corneal thickness data from prior literature [5–7,10,11,13,14,25–27,29], our limited search 

region should encompass the entire range of physiologic corneal thicknesses in the central 

6mm of the cornea. 

 

Fig. 11. Flattened version of Fig. 1.c based on air-epithelium interface. We approximate the 
thickness of the center of the cornea by searching for the largest decrease in mean intensity of 

adjacent rows within the range of 400 – 800 µm below the air-epithelium interface (green 

dashed line). The differences between the mean intensity of adjacent rows in central Regions X 
and Y are plotted in blue on the left and right of the image, respectively. Note that Regions X 

and Y are denoised with predominately horizontal filters to remove noise and accentual the 

vertical gradients. 
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3.6. Segmentation of the epithelium-Bowman’s layer interface 

The epithelium-Bowman’s layer boundary is the third-most prominent layer boundary in 

SDOCT corneal images. Our method for segmentation for the epithelium-Bowman’s layer 

boundary is similar to the steps taken for the air-epithelium and endothelium-aqueous 

boundary segmentation after artifact removal. The major differences are in algorithms used 

for detecting the low-SNR region, the extrapolation into the low-SNR region, and the limited 

search region used. The low-SNR region for the epithelium-Bowman’s layer boundary is 

determined to be similar to that of the air-epithelium boundary (see Section 3.2.2). To 

extrapolate the epithelium-Bowman’s layer boundary into the low-SNR region, we go 

through two steps: 1) find the thicknesses of the epithelium at the border of each low-SNR 

region using the difference between the augmented air-epithelium boundary segmentation and 

the pilot epithelium-Bowman’s layer boundary and 2) maintain these thicknesses throughout 

the low-SNR regions on each side. Indeed, there is a thickness difference in the corneal 

epithelium depending on radial position (approximately a 5.9 µm thickness difference 

superiorly and 1.3 µm difference temporally at a 3 mm radius [29]). However, since we only 

extrapolate up to 1.5 mm (see Section 3.2.2), we expect that the difference between our 

extrapolation and the actual epithelium-Bowman’s layer boundary to be different by no more 

than 3–5 µm, which is approximately 1–1.5 pixels. The search region for the epithelium-

Bowman’s layer interface is limited to 37–64 µm below the air-epithelium interface, which is 

well inclusive of the normal range of this structure as established in the literature [8,26,27]. 

Figure 12 shows the search region for the epithelium-Bowman’s layer interface given the air-

epithelium boundary segmentation. 

 

Fig. 12. The corneal image from Fig. 1.c with the augmented air-epithelium boundary 

delineated in yellow. The dotted orange curves below the epithelium represent the search 
region for the epithelium-Bowman’s layer boundary. 

4. Experimental results 

4.1. Automated versus manual segmentation study 

To determine the accuracy and reliability of the three corneal layer boundaries segmentation 

algorithm, we conducted a pilot clinical study. This study included corneal SDOCT scans 

from normal adult subjects, which were segmented manually by a cornea specialist and 

automatically using our software. To estimate manual inter-observer variability, the same 

images were also graded manually by a researcher trained with corneal SDOCT 

segmentation. To estimate manual segmentation intra-observer repeatability, each manual 

grader segmented each image twice without being aware of the duplication. 

The data set was created by randomly selecting 20 B-scans from a pool of 60 OCT corneal 

volumes. These 60 corneal volumes were taken under an IRB approved protocol by imaging 

in triplicate both eyes of 10 normal adult subjects using a Bioptigen (Research Triangle Park, 
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NC) SDOCT imaging system fitted with a corneal adapter. This commercial system had a 

measured peak sensitivity of 104 dB at 50 ms acquisition time per B-scan, an axial resolution 

of 4.3 µm full-width at half-maximum in tissue, and the corneal adapter enabled an 

essentially telecentric (parallel) sample arm beam scan pattern across the cornea. All subjects 

were represented in the final data set, and no volume was represented by more than one B-

scan. Each volume consisted of 50 radial B-scans, 1000 A-scans each, and 1024 axial pixels 

per A-scan. The nominal scan width was 6 mm. The measured B-scan pixel sampling 

resolution in tissue was 6.1 µm (lateral) x 4.6 µm (axial). The randomly selected 20-frame 

test data set was duplicated for the repeatability test and then randomly shuffled to create the 

final 40-frame test data set. The automatic segmentation algorithm parameters were selected 

based on a training set of five frames, which did not include images from the 40-frame test 

data set described above. 

Within the 20 original frames of the test data set, 17 frames had low-SNR regions for the 

air-epithelium interface, 19 frames had low-SNR regions for the epithelium-Bowman’s 

interface, and all 20 frames had low-SNR regions for the endothelium-aqueous interface. 

From the frames that had regions of low-SNR, the average number of A-scans with low SNR 

was 134 A-scans for the air-epithelium interface, 211 A-scans for the epithelium-Bowman’s 

layer interface, and 389 A-scans for the endothelium-aqueous layer interface with standard 

deviations of 68, 117, and 97 A-scans, respectively. The central and horizontal artifacts were 

prominent in 18 frames with an average width of 77 A-scans and a standard deviation of 23 

A-scans. The number of A-scans in the low-SNR and central artifact regions corresponds to 

the number of columns detected within those regions by our algorithm. 

The three corneal layer boundaries were segmented automatically on the 40-frame test 

data set using a MATLAB implementation of our algorithm. The average computation time 

was 1.13 seconds per image after implementing parallel processing with 8 threads (64-bit OS, 

Intel (R) Core (TM) i7 CPU 860 at 2.80 GHz and 16 GB RAM). The three layer boundaries 

were independently, manually traced by the two graders on the same test data set. 

We calculated the difference in layer boundary position between the manual graders and 

the automatic segmentation software for each B-scan. The same was done to compare the two 

manual graders. The absolute mean and standard deviation of these differences across all B-

scans were calculated and are shown in Table 1. Column I shows the absolute average pixel 

difference for the three corneal layers as measured by two manual graders. Column II 

displays the layer boundary difference between the automatic segmentation software and the 

expert grader. 

Table 1. Differences in corneal layer boundary segmentation between two manual 

graders for 40 B-scans (Column I), as compared to the position differences between the 

automatic segmentation and the expert manual grader of the same 40 B-scans (Column 

II). Each pixel is approximately 3.4 µm in the cornea. The automatic segmentation has 

the same or lower mean difference and standard deviation compared to the expert than 

another trained manual grader. 

  

Comparison of Two Manual Graders 

Comparison of Automatic 

and Manual Expert Segmentation 

  Column I Column II 

Corneal 

Layer Boundary 

Mean Difference 

(pixels) 

Standard Deviation 

(pixels) 

Mean Difference 

(pixels) 

Standard Deviation 

(pixels) 

Epithelium-Air Interface 1.5 0.4 0.6 0.4 

Epithelium-Bowman Interface 1.2 0.5 0.9 0.5 

Endothelium-Aqueous 

Interface 

2.1 2.3 1.7 2.1 

The results in Table 1 show that the automatic algorithm segmented three corneal layer 

boundaries in normal adult eyes more closely to an expert grader as compared to a trained 

manual grader. Figure 13 displays the qualitative results, with the automatic segmentation 
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(cyan) and trained manual segmentation (green) overlaid with the expert segmentation 

(magenta) results. 

 

Fig. 13. (a) Comparison of automatic (cyan) versus expert (magenta) segmentation. (b) 

Comparison of trained manual (green) versus expert (magenta) segmentation. 

Due to the low SNR of some corneal images, the variation between segmentations of the 

individual graders was significant. Thus, we conducted a repeatability test in which the results 

are displayed in Table 2. Column I shows the intra-observer repeatability of the first expert 

manual grader and Column II displays the intra-observer repeatability of the second trained 

manual grader. 

Table 2. Repeatability tests for the First Expert Manual Grader (Column I) and the 

Second Trained Manual Grader (Column II). Each pixel is approximately 3.4 µm in the 

cornea. 

  Comparison of First Expert 
Manual Grader to Self 

Comparison of Second Trained 
Manual Grader to Self 

  Column I Column II 

Corneal 

Layer Boundary 

Mean Difference 

(pixels) 

Standard Deviation 

(pixels) 

Mean Difference 

(pixels) 

Standard Deviation 

(pixels) 

Epithelium-Air Interface 0.5 0.2 1.2 0.8 

Epithelium-Bowman Interface 0.8 0.4 1.1 0.9 

Endothelium-

Aqueous Interface 

1.5 2.3 2.5 3.0 

For corneal images of varying degrees of SNR and artifacts shown in Fig. 1, the results of 

our robust segmentation are shown in Fig. 14. 

 

Fig. 14. a–d) The segmented corneal images of Fig. 1.a–d, respectively, in which the yellow 
layer is the air-epithelium interface, the magenta layer is the epithelium-Bowman’s layer 

interface, and the red layer is the endothelium-aqueous interface. Recall from Fig. 1 that (a) 

and (b) had relatively high-SNR and (c) and (d) had relatively low-SNR. 
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4.2. Other segmentation results 

Sections 3 and 4.1 discuss the algorithm implemented for segmenting corneal layers on 

normal adult SDOCT images. As seen in Fig. 15, the general graph theory and dynamic 

programming paradigm for segmenting layered structures extends to non-normal corneal 

images as well. Four layer boundaries segmentation for an eye with a LASIK flap is shown in 

Fig. 15.a. Three layer boundaries segmentation for an eye with abnormally steep curvatures 

(keratoconus) is shown in Fig. 15.b. These are illustrative examples; the extension and 

quantitative validation of our algorithm for non-normal corneal will be presented in future 

work. 

 

Fig. 15. Segmentation of a cornea that has undergone LASIK surgery and a cornea with 

keratoconus. (a) Cornea after LASIK surgery with four layer interfaces segmented: the air-
epithelium layer interface (yellow), the epithelium-Bowman’s layer interface (magenta), the 

LASIK flap (cyan), and the endothelium-aqueous interface (red). (b) Cornea with keratoconus 

with the yellow, magenta, and red curves representing the same interfaces as in (a). 

5. Conclusion 

In this work, we presented an automatic method for accurate segmentation of three clinically 

important corneal layer boundaries on SDOCT images of normal eyes. Our algorithm is 

robust against artifacts and low-SNR regions often seen in clinical SDOCT images. 

Compared to an expert grader, our automatic segmentation algorithm more closely and 

consistently matched the expert segmentation compared to a second trained manual grader. 

While this work was done serially on two-dimensional B-scan images, it is possible to 

extend this work to three-dimensional volumetric segmentation. Three-dimensional 

volumetric segmentation would introduce additional information from neighboring voxels, 

which may further improve segmentation accuracy, though likely with increased computation 

costs. 

Our work, as presented, is promising for reducing the time, manpower, and costs required 

for accurately segmenting and analyzing corneal SDOCT images. This will allow for 

practical, large-scale introduction of corneal SDOCT into the clinical patient care setting. 
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