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Abstract: Automated classification of biological cells according to their 3D 
morphology is highly desired in a flow cytometer setting. We have 
investigated this possibility experimentally and numerically using a 
diffraction imaging approach. A fast image analysis software based on the 
gray level co-occurrence matrix (GLCM) algorithm has been developed to 
extract feature parameters from measured diffraction images. The results of 
GLCM analysis and subsequent classification demonstrate the potential for 
rapid classification among six types of cultured cells. Combined with 
numerical results we show that the method of diffraction imaging flow 
cytometry has the capacity as a platform for high-throughput and label-free 
classification of biological cells. 
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1. Introduction 

Function correlates with structure for biological cells. Investigation of cellular shape and 
structure, defined here as 3D morphology, can yield insights on many biochemical processes 
underlying various cellular activities such as cell reproduction and differentiation [1,2]. 
Consequently, morphological features provide powerful and often critical markers for clinical 
diagnosis and cell study. In nearly all cases morphological study of cells relies on 
conventional microscopy methods and manual analysis of image data is often necessary due to 
the diverse and complex cell morphology. It is in this perspective that one would be interested 
in a flow cytometry method for automated and real-time analysis of large cell populations 
based on 3D morphology. Most of the existing flow cytometers, however, are designed on the 
concept to detect angularly integrated signals of scattered light and fluorescence for rapid and 
automated cell classification [3]. This approach yields very limited morphology information 
and relies mainly on fluorescent signals from stained cells as the molecular labels for analysis 
and classification. Even though non-diffraction imaging becomes available for probing cell 
morphology with a flow cytometer, automated analysis of the image data for rapid cell 
classification remains a challenge [4]. Different from the above methods, an approach of 
scanning flow cytometry has been developed to obtain polar-angle-resolved light scattering 
signals to derive the intracellular refractive index distribution with coated sphere models of 
cells [5,6]. 

Elastic light scattering (or light scattering as used here) is a result of heterogeneity in 
refractive index. When a highly coherent light beam excites a cell, the spatial distribution of 
elastically scattered light can be recorded as a diffraction image using an imaging detector. 
Through modeling study of light scattering by single cells, it has been shown that the spatial 
distribution of scattered light intensity correlates with the 3D morphology of biological cells 
in the forms of intracellular distribution of refractive index [7–12]. These results have 
motivated us to develop a flow cytometry method as a label-free platform for fast acquisition 
of high-contrast diffraction images from single cells carried by a hydrodynamically focused 
flow through a laser beam [13,14]. Despite validation with microspheres, it remains unknown 
if this new flow cytometry method has the capacity for rapid cell analysis and classification in 
real time. We report here the initial results of image analysis and classification of measured 
diffraction images to answer this critical question. These results are also compared to 
numerical simulations performed using cell models with nucleus only to investigate the 
dependence of the diffraction image textures on cell morphology, refractive index and 
orientation. 

2. Methods 

The measured diffraction images presented in this report were obtained by recording the far-
field distributions of light scattered from a single cell illuminated by an incident light beam 
using a diffraction imaging flow cytometer [13,14]. Six types of cultured cells were used to 
acquire image data with the flow cytometer or to obtain confocal images for reconstruction of 
their 3D morphology for simulations. Among these cells three (Jurkat cells, NALM-6 cells 
and U937 cells) were derived from the malignant white blood cells (WBC) and three (MCF-7 
cells, B16F10 cells and TRAMP-C1 cells) from the epithelial cancer cells. The cells were 
incubated at 37°C in 5% CO2 atmosphere in standard culture media, removed during the 
exponential growth phase and transported from cell labs to the laser lab in centrifuge tubes on 
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ice as cell suspensions with a concentration of about 10
6
 cells/mL. Using separate cell 

samples, we also performed confocal imaging on all six cell types to investigate their 3D 
morphology with single or double fluorescence staining. For simulation of diffraction images, 
three cell models were obtained from the confocal images of selected NALM-6 cells derived 
from leukemic pre-B cells. We stained the nuclei of these cells only for investigating 
numerically the effects of cell orientation, 3D morphology, nuclear index and volumes on 
diffraction image. 

 

Fig. 1. Configuration of FDTD simulation of light scattering at wavelength λ in terms of the 
Mueller matrix elements using imported 3D cell morphology at an orientation given by 

C(θ0,0) and diffraction images by projecting the element S11(θs,s) to the sensor plane centered 
at the negative x-axis. 

To measure the diffraction images of cells, we employs a “jet-in-fluid” design of the flow 
chamber in our diffraction imaging flow cytometer to immerse the laminar flow of the core 
and sheath fluids in a water-filled glass cuvette. This design feature is the key to obtain high-
contrast diffraction images for analysis and feature extraction. The imaging configuration is 
similar to the one depicted in Fig. 1 except an imaging unit is placed between the flow 
chamber and a CCD camera. A cw solid-state laser provided an unpolarized incident beam of 
15mm in diameter and 532nm in wavelength after beam expansion and a power of up to 
48mW before focused into a spot of about 25μm in diameter at the core fluid in the flow 
chamber. The scattered light was collected in an angular region centered at 90° from the 
incident light direction of a half-cone angle of about 25° using an infinity-corrected long 
working distance objective followed with a beam splitter and tube lenses. A 16-bit CCD 
camera was employed for acquisition of one diffraction image per flowing cell with a 1ms 
exposure time and another camera for real-time monitoring. Because of the relatively long 
exposure time, the flow speed of the cells was intentionally set to very small values of about 2 
to 5 mm/s to reduce blurring. Additional details of the flow chamber design, imaging unit and 
alignment procedures can be found in earlier publications [13,14]. 

We conducted numerical simulations of the diffraction images to gain insights on the 
correlation between 3D morphology and fringe patterns and texture parameters. A parallel 
finite-difference-time-domain (FDTD) code [9] was used for simulation of light scattering 
using cell models reconstructed from confocal images of NALM-6 cells. The NALM-6 cells 
were first stained with a fluorescence dye (Syto-61, Invitrogen) binding to DNA molecules 
and then imaged with a confocal microscope (LSM 510, Zeiss). The 3D structures of the 
selected cells were obtained with an in-house developed software from the confocal image 
stacks with nucleus only [11]. After assignment of refractive index to the host medium (nh), 
cytoplasm (nc) and nucleus (nn), the cell model was imported into the FDTD code to calculate 

Mueller matrix Sij((θs,s) for i,j = 1, 2, 3, 4 with θs as the scattering polar angle and s as the 

azimuthal angle [10]. The element S11(θs,s) was projected onto a plane intercepting with the 
x-axis as shown in Fig. 1 as a simulated diffraction image of the side scatters within a half-
cone angle of about 30°. In projecting the S11 element towards a pixel located at rp = (–x0, y, 
z) both effects of distance |rp| to the projected plane and incident angle of rp are considered. 
The pixel intensity I of unpolarized light scatters can thus be written as 
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where x0 is the distance of the projection plane to the origin which was eliminated after image 
normalization. 

After investigation of various methods for analyzing the textures of the measured 
diffraction images, we selected the gray level co-occurrence matrix (GLCM) algorithm for 
quantitative characterization of the fringe patterns presented in a diffraction image [15–17]. 
The GLCM algorithm analyzes the second-order correlations among pixels in an input image. 
The input image textures are quantified by a matrix with its elements determined by the 
occurrence probability of paired intensities or gray levels at two pixels separated by a pre-
determined distance vector d. The row and column positions of a GLCM element are given by 
the gray levels of paired pixels and, therefore, GLCM can also be presented as a square image 
of a size equal to the number of gray levels. In our analysis the pixel pairs are neighbors and 
thus the pair distance d is considerably small in comparison to the sizes of speckles within the 
input images. This leads to GLCM with non-zero elements clustering on and near the main 
diagonal running from the upper-left to lower-right corner as shown by the intensified GLCM 
presented in Fig. 2. Note here that the row-column designation of the GLCM images follows 
that of the matrices and thus the bright pixels close to the main diagonal represent the high 
probability of neighboring pixels having similar gray levels. 

Up to 14 statistical feature parameters have been defined for extraction of textures or the 
spatial variation of gray levels of the input image via GLCM elements [15,16]. Based on 
analysis and classification test of these GLCM parameters for the measured diffraction 
images, we chose 5 parameters as listed in Table 1 to demonstrate their potential utility for 
cell classification. In this report we follow the terminology defined by Haralick for the chosen 
GLCM parameters. Two of these are the sum and difference entropy. Similar to the widely 
used entropy parameter, these parameters measure the randomness or the degree of 
organization of gray levels in the input image. The difference among the three entropy 
parameters lies in the summation over different combinations of the GLCM elements. The 
sum or difference entropy is obtained by summing combined GLCM elements along a line 
parallel to the diagonal or the main diagonal, respectively, while the entropy is obtained by 
summing over single GLCM elements. As a result, the sum and difference entropy are more 
sensitive than the entropy to the arrangement of the non-zero GLCM elements clustered 
around the main diagonal as the cases reported here. The other two parameters, inverse 
difference moment (IDM) and dissimilarity, are calculated by summing over single GLCM 
elements with a weight favoring the elements on or near the main diagonal and off-diagonal 
elements, respectively, to measure the contrast of the input image. The last of the 5 parameters 
is correlation which can be used to gauge the degree of inter-dependence of the two gray 
levels in the paired pixels for an input image. 

Calculation of GLCM can be pursued with different distance vector d. Even with d = 1 for 
neighboring pixels as pairs and only 5 GLCM parameters as discussed above, performing 
GLCM calculations can be computational expensive for multiple directions of d. 
Consequently much effort has been devoted to develop an effective pre-processing algorithm 
so that the rapid GLCM calculations can be achieved for only one direction of d. For this 
purpose, an image processing software was developed to process the diffraction images before 
calculation of GLCM and extraction of feature parameters. Once a measured diffraction image 
was imported into the image analysis software, a histogram based algorithm was used to 
reduce the pixel depth from 16-bit to 8-bit for higher processing speed by removing 
background followed with pixel normalization. Then a coordinate transform was applied to 
the measured diffraction image so that the gray level variations mostly aligned along the 
radial directions become mainly horizontal in the transformed image. This allows the 
subsequent calculation of GLCM from the transformed image being executed only on 
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horizontal pixel pairs, which significantly increases the speed of calculations to reach a rate of 
70 images per second with a PC of 2.5GHz CPU even though our current image acquisition 
speed is much slower than the above rate. 

3. Results 

3.1. Measured diffraction and confocal images of 6 cell types 

Using diffraction imaging flow cytometer system we have acquired unpolarized side scatters 
centered at 90° from the direction of incident light as the diffraction images from 6 types of 
cultured cells. At the time of measurement, the suspended cells received from one of the cell 
biology labs were injected into the core fluid reservoir and carried by the core flow through 
the incident laser beam for diffraction imaging. All measurements were carried out at a room 
temperature of about 22°C and completed within 6 hours from the time the cells were 
detached or taken out of the incubator. For each cell type, we acquired single-cell diffraction 
images from up to 70 flowing cells with an one-hour limit of measurement to maintain cell 
viability. The 50x microscope objective was placed at an off-focus position of 200μm towards 
the flow chamber along the x-axis (see Fig. 1). The measured diffraction images consist of 
1600x1200 pixels with a 16-bit pixel intensity to accommodate the large dynamic range of the 
scattered light signals. 

 

Fig. 2. Typical pairs of measured diffraction images (1) and intensified GLCM images (2) of 
single flowing cells acquired at λ = 532nm: (a1/a2) Jurkat; (b1/b2) NALM-6; (c1/c2) U937; 
(d1/d2) MCF-7; (e1/e2) B16F10; (f1/f2) TRAMP-C1. The GLCM images are placed to the 
right of the diffraction images respectively. The scale bar on the left indicates the pixel values 
of the normalized diffraction images after conversion to 8-bit pixel values and the one on the 
right indicates the values of GLCM elements with pmax = (a2) 0.0172; (b2) 0.0204; (c2) 0.0160; 
(d2) 0.00302; (e2) 0.00175; (f2) 0.00297. 

An image processing software was developed for GLCM analysis of each imported 
diffraction image and extracted feature parameters from the GLCM or image as the outputs. 
Examples of diffraction and intensified GLCM image pairs are shown in Fig. 2 for the 6 cell 
types. The intensified GLCM images were obtained from the GLCM for improved visibility 
using a 3x3 window average for each pixel with a weight of 1 for the center pixel and 0.5 for 
other pixels in the window followed by pixel normalization. It becomes immediately apparent 
by visual inspection that significant differences exist in fringe patterns or image textures 
between the cells derived from the malignant WBC (Jurkat T cells, NALM-6 pre-B cells and 
U937 monocytic cells) and those derived from epithelial cancer cells (MCF-7 breast cancer 
cells, B16F10 melanoma cells and TRAMP-C1 prostate cancer cells). This distinction is 
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further observed to remain quite consistently in all of the measured diffraction images. To 
quantitatively investigate these differences for automated classification, we randomly selected 
30 to 40 diffraction images from the measured data as a training set. 

The rest of the measured diffraction images were used as a testing set for investigation of 
automated classification based on the GLCM parameters. The GLCM analysis was applied to 
the training set for obtaining 12 statistical parameters for each image as defined in [16] and 5 
were selected as the classifiers for the automated classification. Another software developed 
with the support vector machine (SVM) algorithm [18] was used to classify cells with 
diffraction images in the testing set. Table 1 lists the mean values and standard deviations of 
the 5 GLCM parameters of the diffraction images from the training set and Table 2 presents 
the results of cell classification with the diffraction images from the testing set. 

Table 1. GLCM feature parameters for 6 types of cells (n)* 

Cell types (n)* Sum Entropy 
Difference  

Entropy IDM# Dissimilarity^ Correlation 
Jurkat (40) 4.51 ± 0.37 2.88 ± 0.30 0.218 ± 0.085 8.28 ± 1.8 0.940 ± 0.037 
NALM-6 (40) 4.48 ± 0.45 2.67 ± 0.26 0.279 ± 0.092 6.71 ± 0.99 0.970 ± 0.0098 
U937 (30) 4.47 ± 0.42 2.97 ± 0.38 0.204 ± 0.11 9.34 ± 2.2 0.914 ± 0.042 
MCF-7 (40) 5.39 ± 0.14 3.37 ± 0.12 0.113 ± 0.015 11.0 ± 1.3 0.913 ± 0.022 
B16F10 (40) 5.52 ± 0.16 2.97 ± 0.10 0.178 ± 0.026 7.05 ± 0.77 0.972 ± 0.0073 
Tramp (30) 5.55 ± 0.15 2.91 ± 0.17 0.172 ± 0.032 6.69 ± 1.2 0.970 ± 0.015 

*n = cell number in the training set. 
#IDM = inverse difference moment. 

^Dissimilarity corresponds to the k = 1 case of the contrast defined in [16]. 

Table 2. Results of cell classification 

  WBC derived cells 
 

Epithelial derived cells Accuracy 
(%) Cell types n* Jurkat NALM-6 U937 MCF-7 B16 Tramp 

Jurkat 20 15 4 1  0 0 0 75 
NALM-6 20 6 13 0  0 1 0 65 
U937 14 4 0 8  2 0 0 57 
MCF 14 2 0 1  10 1 0 71 
B16F10 30 0 0 0  1 28 1 93 
Tramp 10 0 0 0  1 0 9 90 

* n = cell number in the testing set. 

To analyze the correlation between the diffraction images and cell morphology, we present 
in Fig. 3 the fluorescence images of double-stained cells taken from the same cell labs. For 
these images, we stained the cells with two fluorescent dyes of Syto-61 and Mito-Tracker  
 

 

Fig. 3. Typical confocal image slices acquired from cells with double fluorescent stains for 
nucleus and mitochondria: (a) Jurkat; (b) NALM-6; (c) U937; (d) MCF-7; (e) B16F10; (f) 
TRAMP-C1. Bar = 5μm. 
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Fig. 4. Simulated diffraction images with 3 reconstructed NALM-6 cell models: top row from 
(a) to (d): Cell #1; middle row from (e) to (h): Cell #8; bottom row from (i) to (l): Cell #9. All 
cells have the same index of refraction as nh = 1.33 for host medium and nc = 1.368 for 
cytoplasm. The column of (a), (e) and (i) are for cells of orientation along the z-axis or C(θ0 = 

0, 0 = 0) and nc = 1.45 for the nucleus; the column of (b), (f) and (j) are for cells of C(θ0 = 

109°, 0 = 118°) and nc = 1.45; the column of (c), (g) and (k) are for cells of C(θ0 = 0, 0 = 0) 

and nc = 1.50; the column of (d), (h) and (l) are for cells of C(θ0 = 0, 0 = 0) and nc = 1.50 with 
cell and nuclear volumes proportionally reduced to half. The left most column shows the 
projection images of #1, #8 and #9 cell models from top to bottom with the two numbers 
denoting the total cell volume in μm3 and volume ratio of nucleus to cell respectively. 

Orange binding mainly to the nuclei and mitochondria, respectively, before the confocal 
imaging. The choice of nucleus and mitochondria as the targeted intracellular organelles is 
based on previous studies of their effects on light scattering [8,11,12]. The image slices shown 
in Fig. 3 are the ones near the center of cell imaging stack and thus represent the typical sizes 
of the cells in each type. Even though the 3D morphology varies among the imaged cells 
within each type, one can clearly identify certain features to distinguish cell types from the 
confocal image stacks. For example, the linear sizes of the epithelial cancer cells are typically 
40% to 60% larger than those derived from malignant WBC with similarly larger nuclei and 
numbers of mitochondria. 

3.2. Simulated diffraction of different cell morphology and nuclear refractive index 

With the FDTD method, we simulated the unpolarized diffraction images I(y, z) by projecting 

the Mueller matrix element S11(θs,s) to the y-z plane as images of 800x600 pixels in a 
configuration shown in Fig. 1. For these results, we used a simplified cell model obtained 
from the confocal images of NALM-6 cells and constant indices of refraction for cytoplasm 
and nucleus. We should also point out that the simulated diffraction images do not account for 
the effect of imaging optics used in our flow cytometer setup between the cell and CCD 
imaging sensor. Despite these differences, numerical simulations with these cell models allow 
detailed analysis of different aspects of cell’s 3D morphology and intracellular distribution of 
refractive index on the GLCM parameters which is impossible to implement experimentally. 
For each of the 3 cell models, light scattering distributions with different cell orientations 
were simulated with 2 different values of nuclear index of nn = 1.45 or 1.50 and a wavelength 
of λ = 850nm. Figure 4 shows examples of simulated diffraction images for the 3 cell models 
of varied orientation, nuclear index and volume. As shown in the left-most column of Fig. 4, 
both of the #1 and #8 cell models have single nuclei while the #9 is in the mitosis stage of cell 
cycle with a splitting nucleus. GLCM analysis was applied to the simulated diffraction images 
and values of the 5 parameters are listed in Table 3. 
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Table 3. GLCM parameters of simulated diffraction images 

Cell 
Parameters* 

nc; C; vol 
Sum 

Entropy 
Difference 

Entropy IDM Dissimilarity Correlation 
#1 1.45; C1; full 5.75 2.78 0.301 5.60 0.988 

1.45; C2; full 5.72 2.78 0.263 5.49 0.986 
1.50; C1; full 5.83 2.80 0.273 5.64 0.989 
1.50; C1; half 5.62 2.62 0.335 4.72 0.988 

#8 1.45; C1; full 5.46 2.40 0.402 3.73 0.995 
1.45; C2; full 5.79 2.99 0.247 6.99 0.979 
1.50; C1; full 5.28 2.37 0.415 3.78 0.995 
1.50; C1; half 5.70 2.69 0.318 5.08 0.989 

#9 1.45; C1; full 5.38 2.78 0.287 5.80 0.984 
1.45; C2; full 5.67 2.92 0.240 6.45 0.969 
1.50; C1; full 5.36 2.75 0.307 5.83 0.989 
1.50; C1; half 5.25 2.64 0.353 5.30 0.993 

*nc = refractive index of nucleus; C1 = C(θ0 = 0, 0 = 0), C2 = C(θ0 = 109°, 0 = 118°); vol = cell and nuclear volumes 
(full referring to the volumes same as those determined from confocal images and half referring to both cell and 
nuclear volumes reduced by half proportionally). 

4. Discussion 

Diffraction imaging is nothing new. In fact, diffraction images through x-ray crystallography 
are widely used in biomedical research as a tool to reconstruct 3D morphology of 
macromolecules such as proteins in crystallized arrays. This technique has also been used for 
x-ray microscopy of biological cells through time-consuming image acquisition at multiple 
angles and reconstruction calculations [19]. The key questions we intend to answer here are 
whether an optical diffraction images of biological cells correlates highly with the cells’ 3D 
morphology in the presence of other factors such as cell orientation and, if yes, whether the 
correlation can be utilized to rapidly classify cells in a flow cytometer setting. In this report, 
we present the first set of experimental data that strongly suggest positive answers to both 
questions. However, much remain unknown on the details of correlation between the textures 
of diffraction images and cell morphology. 

GLCM provides a statistical approach for analysis of image textures with feature 
parameters that can be implemented for rapid classification of cells as demonstrated in our 
case here with proper selection of the distance vector d between the paired pixels of the 
diffraction images. Because the selected d is smaller than the size of speckles in our analysis, 
most of the bright pixels in the GLCM images presented in Fig. 2 locate along the main 
diagonal. The value of sum entropy tends to be large among the epithelial derived cell group 
in comparison to the WBC derived cell group, while the difference entropy exhibits mixed 
variations among the 6 cell types. Despite these differences, the two entropy parameters have 
coefficients of variation ranging from 3% to 13% within each cell type and relatively large 
differences in mean values among the different types. They can thus serve as good classifiers 
along with the other three parameters. We should point out here that the cell size does not 
appear to influence these GLCM parameters. As can be seen from Fig. 3 that the 6 cell types 
separate clearly in two groups according to their sizes: the WBC derived ones are from about 
8 to 10μm while the epithelial derived ones are in the range of 13 to 16 μm. This clear 
difference in cell size does not correlate with the values of the GLCM parameters presented in 
Table 1 and Table 3 in a consistent way. Therefore, the diffraction images measured with the 
side scatters provide very little size information as expected, which will be further illustrated 
in the discussion of the simulation results below. 

To test the capacity of the GLCM features for cell classification, we have developed an 
SVM based software for automated classification of the diffraction images in the testing set. 
As shown in Table 2, the accuracy of classification reaches a maximum of 93% for the 
B16F10 mouse melanoma cells and a minimum of 57% for the U937 monocytes. Here the 
accuracy is defined as the number of correctly classified cells or images divided by the total 
number of tested cells. From this table it can be seen again that the cells are well distinguished 
among the two groups of different origins. If the classification is performed between these two 
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groups the accuracy can increase to 94% for each group. So the misclassification occurs 
mainly among the cells within the same group. A further examination of the misclassified 
images demonstrates that the errors can be attributed to the variation of the angular field-of-
view in acquiring the diffraction image, which is mostly likely due to the shift of cell location 
relative to the imaging unit as a result of instability of core flow. This problem could be 
solved effectively with improved design and fabrication of laminar flow nuzzles and flow 
speeds much higher than what we used. It should also be noted that the numbers of cells for 
each cell type in our training and test sets are between 50 and 70 which yield statistically 
significant results but not very large as indicated by the potentially high throughput of the 
flow cytometry method. This was due to the use of a slow CCD camera for acquiring the 
diffraction images, manual file saving and the limited time of cell measurement. 

Besides the imaging errors as discussed above, fluctuations in cell morphology, refractive 
index and orientation are expected to cause variation of the GLCM parameters for cells within 
the same type in the training set as listed by the standard deviations in Table 1. Nevertheless, 
the fluctuations are relatively small and cell classification is reliable for most cells in the test 
set according to the selected GLCM feature parameters of the measured diffraction images. 
This fact seems to be in strong contrast with the results of the same GLCM analysis 
performed on the simulated diffraction images as shown in Table 3 which allows controlled 
variation of cell properties. Among the four factors of different nuclear index, cell orientation, 
cell/nuclear volumes and nuclear shape, the cell orientation in Cell #8 and #9 affects the 
GLCM parameters more significantly than the other factors. We expanded the simulations for 
each cell model to 8 orientations equally distributed in the 4π solid angle range and the results 
(not shown here) demonstrate again that the cell orientation play a significant role in affecting 
the GLCM parameters of simulated images. Despite the fact that our modeling does not 
include the imaging optics, we have shown that the imaging optics merely “bent” the fringe 
patterns of the diffraction images if the objective is placed on an off-focused position towards 
the flow chamber [14]. Consequently the simulation results presented here provide useful 
results to improve our understanding of diffraction imaging approach for single cell study. 
Comparison of the dependence of GLCM parameters on cell properties in the simulated 
results and in the measured results, one can conclude that even with the cell models 
reconstructed from confocal images as we presented here it is still not sufficiently accurate if 
we consider only a homogeneous nucleus. Indeed, by comparing Fig. 2 and Fig. 4 one can 
immediately see that the simulated images carry much higher degrees of symmetry in the 
diffraction patterns than the measured images. To improve the modeling accuracy one has to 
take into account of heterogeneity in intracellular distribution of refractive index such as the 
non-uniformity in nucleus and addition of mitochondria. On the other hand the simulation 
results with simple cell models show that the patterns or textures of a real diffraction images 
contributed by the side scatters are dominated by the cell’s fine details in its 3D morphology 
or intracellular heterogeneity in the index of refraction. 

5. Summary 

We have applied a GLCM algorithm to automate feature extraction from diffraction images of 
6 cultured cell types acquired with a flow cytometer. The measured data clearly demonstrate 
that the method of diffraction imaging flow cytometry has the capacity for rapid and label-free 
cell classification. Further comparison of the experimental results with the confocal imaging 
and simulation results shows that the diffraction images acquired with side scatters centered at 
90° from the incident light direction depends mainly on the 3D morphology of the cells with 
very little sensitivity to the cell size. The classification capability of this platform technology 
can be further improved with increased flow stability and enhanced by combining with wider 
range of angles or multiple angular ranges. 
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