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Abstract
Diffusion tensor imaging (DTI) enables noninvasive parcellation of cerebral white matter into its
component fiber bundles or tracts. These tracts often subserve specific functions, and damage to
the tracts can therefore result in characteristic forms of disability. Attempts to quantify the extent
of tract-specific damage have been limited in part by substantial spatial variation of imaging
properties from one end of a tract to the other, variation that can be compounded by the effects of
disease. Here, we develop a “penalized functional regression” procedure to analyze spatially
normalized tract profiles, which powerfully characterize such spatial variation. The central idea is
to identify and emphasize portions of a tract that are more relevant to a clinical outcome score,
such as case status or degree of disability. The procedure also yields a “tract abnormality score”
for each tract and MRI index studied. Importantly, the weighting function used in this procedure is
constrained to be smooth, and the statistical associations are estimated using generalized linear
models. We test the method on data from a cross-sectional MRI and functional study of 115
multiple-sclerosis cases and 42 healthy volunteers, considering a range of quantitative MRI
indices, white-matter tracts, and clinical outcome scores, and using training and testing sets to
validate the results. We show that attention to spatial variation yields up to 15% (mean across all
tracts and MRI indices: 6.4%) improvement in the ability to discriminate multiple sclerosis cases
from healthy volunteers. Our results confirm that comprehensive analysis of white-matter tract-
specific imaging data improves with knowledge and characterization of the normal spatial
variation.

dCorresponding author: Translational Neuroradiology Unit, Neuroimmunology Branch, National Institute of Neurological Disorders
and Stroke, 10 Center Drive MSC 1400, Building 10 Room 5C103, Bethesda, MD 20892, office 301-496-1801, fax 301-402-0373
daniel.reich@nih.gov.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Neuroimage. Author manuscript; available in PMC 2012 July 15.

Published in final edited form as:
Neuroimage. 2011 July 15; 57(2): 431–439. doi:10.1016/j.neuroimage.2011.04.044.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Keywords
multiple sclerosis; diffusion tensor imaging; magnetization transfer ratio; regression methods;
functional data analysis

1. Introduction
DTI, a form of MRI that is sensitive to the microscopic diffusion of water molecules, can
resolve white-matter tracts in the central nervous system and is sensitive to disruption of
tissue microstructure. This technique therefore makes it possible to investigate
noninvasively the relationship between brain-structure abnormalities and disability in
various diseases (Ciccarelli et al., 2008). Such investigations have revealed correlations
between imaging abnormalities in specific tracts and impairment related to the functions of
those tracts. For example, in MS, abnormally rapid diffusion of water in the corpus
callosum, a major white-matter bundle that connects the two cerebral hemispheres, has been
associated with poor performance on complex motor and cognitive tasks (Kern et al., 2010;
Lin et al., 2008; Lin et al., 2005; Lowe et al., 2006; Ozturk et al., 2010).

Determining correlations between tract-specific imaging-marker abnormalities and disability
is necessary to establish whether such markers can be used to predict prognosis, monitor
disease progression, and help guide therapy decision-making. Although it might seem that
the well established functional organization of the human central nervous system would
seamlessly combine with the sensitivity of MRI to many pathologic processes (including
inflammation, edema, demyelination, ischemia, and gliosis) to explain much of the variance
in clinical scores, this has not generally been the case. In the largest studies of MS, for
example, correlation coefficients relating lesion load to clinical disability scales hover
around 0.2 (Barkhof, 2002; Goodin, 2006). Reasons for this disappointing result include the
fact that MRI measures are not specific for the tissue damage that causes disability as well
as the often high variability in clinical outcome measures.

A popular family of image-processing techniques globally searches for areas of the brain,
including not only well-defined gray-matter and white-matter structures but also individual
image voxels, that bear statistically significant correlations with the disability scores
(Ashburner and Friston, 2000; Smith et al., 2006). These techniques, while computationally
powerful and theoretically capable of uncovering interactions between distinct anatomic
regions, are not primarily motivated by the wealth of knowledge, accumulated over decades
and even centuries, about the functional organization of the brain. Often described as “bias-
free,” these techniques may nevertheless make substantial assumptions about the statistical
structure of brain images and their variation across populations, and they require advanced
registration methods that may not perform as well in the presence of pathology as they do in
normal brains.

On the other hand, hypothesis-driven DTI studies of the structure-dysfunction relationship
have used MRI data derived from variously placed ROIs drawn in the tracts being studied or
from spatial averages across segments of those tracts, where the tracts themselves are
isolated by a tractography procedure. Although it is known that MRI indices (derived either
from DTI or from other MRI sequences registered to the DTI maps) vary spatially across
single tracts (Jones et al., 2005; Lin et al., 2006; Oh et al., 2007; Reich et al., 2007; Stieltjes
et al., 2001), that spatial variation – and the differential relationship between disability and
abnormalities in different segments of each tract – has received relatively little attention
(Goodlett et al., 2009; O'Donnell et al., 2009; Yushkevich et al., 2008).
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In this paper, we present results derived from a statistical image-processing method that
explicitly accounts, via a weighting technique, for the spatial variation in the imaging
properties of white-matter tracts. We address the hypothesis that the observed correlations
between MRI indices and disability scores would be improved if this spatial variation were
considered. If correct, the specificity of tract-specific MRI for the presence or absence of
disease or for different degrees of physical or cognitive disability would be improved. Our
method, which we call “penalized functional regression,” weights different portions of each
tract according to their importance with respect to outcome measures and constructs a scalar
index of abnormality for the entire tract. We consider data from a cross-sectional MRI study
of MS and address our hypothesis by regressing the tract abnormality indices against clinical
outcome scores.

2. Methods
Our image acquisition and processing protocols have been published previously (Reich et
al., 2010), and most of the data used in the current work have previously been reported. This
section therefore provides only a few details about these protocols and instead focuses on
the PFR methodology.

2.1 Study participants
We recruited study participants with MS from the outpatient neurology clinic and healthy
volunteers from the community. All disability scores were measured within 30 days of the
MRI scan. Prior to MRI scanning and disability testing, all participants gave signed,
informed consent, and all procedures were approved by the institutional review board.
Cohort characteristics are summarized in Table 1.

2.2 Disability scores
We obtained several disability score measurements in the MS cohort, each within 30 days of
the MRI scan. Disability scores were as follows: EDSS, an ordinal measure of overall
disability that is heavily weighted toward motor impairment (Kurtzke, 1983); MSSS, a
continuous score from 0 to 10, derived from the EDSS and estimated disease duration
(measured as number of years since the first symptoms attributable to MS), where 5
indicates a typical rate of disease progression (Roxburgh et al., 2005); and MSFC, a
composite score that includes the PASAT-3, the 9HPT, and the 25FTW (Fischer et al.,
1999).

2.3 MRI protocol and image processing
We performed all scans on a 3 tesla scanner (Intera, Philips, Best, the Netherlands) over a
4.6 year period, using the body coil for transmission and either a 6-channel head coil or the 8
head elements of a 16-channel neurovascular coil for reception (both coils are made by
Philips). Each session included two sequential DTI scans using a conventional spin-echo
sequence and a single-shot EPI readout. We acquired whole-brain data in nominal 2.2 mm
isotropic voxels and with the following parameters: TE, 69 ms; TR, automatically calculated
(“shortest”); slices, 60 or 70; parallel imaging factor, 2.5; non-collinear diffusion directions,
32 (Philips “overplus high” scheme); high b-value, 700 s/mm2; low b-value (“b0”),
approximately 33 s/mm2; repetitions, 2; reconstructed in-plane resolution, 0.82 × 0.82 mm.
We also performed a 3D gradient-echo magnetization-transfer sequence with segmented EPI
readout (nominal acquired resolution: 1.5 × 1.5 × 2.2 mm; TE: 15 ms; TR: 64 ms; parallel
imaging factor: 2; EPI factor: 7; magnetization-transfer pulse: sinc-shaped, 1.5 kHz off-
resonance; repetitions: 3), the data from which were rigidly registered to the DTI scan before
calculation of MTR maps (defined as 1 minus the voxel-wise ratio of data from this
sequence to those obtained using the same sequence without the magnetization-transfer
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pulse). Prior to analysis, data were adjusted to account for changes in average tract-specific
MRI indices that resulted from the scanner upgrades that inevitably occur over the course of
a study such as this. The procedure by which this adjustment was made has been previously
described (Harrison et al., 2011).

The diffusion-weighted scans were processed using CATNAP (Landman et al., 2007) to
create maps of FA and MD, AD, and RD. These four quantities, together with MTR, are
hereafter termed MRI indices. Whole-brain MRI indices were calculated by slice-wise
averaging of all diffusion-weighted images, removal of the low-intensity voxels that are
characteristic of extracerebral tissues on these images, and final removal of voxels with
MD>1.7 μm2/ms to exclude cerebrospinal fluid (Ozturk et al., 2010). The resulting brain
mask was applied to all DTI maps and also to the coregistered MTR maps.

2.4 Tract parcellation
We used a recently published atlas-based method, based on tract probabilities, to reconstruct
the locations of the corpus callosum (CC), corticospinal tracts (CST), and optic radiations
(OR) in all scans (Reich et al., 2010). This method involves registration of each scan to that
of a single selected healthy volunteer, referred to as the template. As previously described,
in 26 healthy volunteers we used fiber assignment by continuous tractography (Mori et al.,
1999) to estimate the probability that each voxel in template space is part of one of those
tracts. We thresholded the probability maps to exclude voxels with probability <0.05 in
order to limit the number of spurious assignments (Reich et al., 2010), and then binarized
the probability maps to create masks. We applied these masks to MRI index maps from
every scan to identify the voxels belonging to each tract.

2.5 Spatially normalized tract profiles
We created spatially normalized tract profiles to account for the spatial variation in MRI
indices along each tract; see Figure 1 in (Reich et al., 2007). Specifically, we divided each
tract in the template space into segments and subsegments, with each subsegment spanning
approximately 1 mm. We divided the entire OR into 60 subsegments along the
anteroposterior axis; the CST into 6 segments along the rostrocaudal axis, each segment
comprising 20 subsegments with segmental boundaries at predetermined, manually placed
anatomical landmarks (Reich et al., 2007); and the CC into 6 segments, each again
comprising 20 subsegments, along the more functionally defined anteroposterior axis (rather
than along the mediolateral orientation of its component fibers) (Ozturk et al., 2010). The
CC delineation followed a commonly used scheme (Witelson, 1989) that divides the CC into
the following sections: rostrum and genu together, rostral body, anterior midbody, posterior
midbody, isthmus, and splenium. For each tract, we created the spatially normalized tract
profiles by calculating the average value of each MRI index within a sliding window of
width 5 subsegments. We then plotted these average values as a function of tract position
(anteroposterior for the OR and CC, rostrocaudal for the CST). Note that the tract
segmentation used to generate tract profiles is performed with the express purpose of
facilitating landmark-based registration, and the specific segmentation schemes are
unrelated to the spline-based smoothing used in PFR (see Section 2.6).

2.6 Penalized functional regression
PFR is a statistical method that we developed to relate spatially normalized tract profiles to
clinical outcomes, whether cases status or disability scores (Goldsmith et al., 2010b). PFR
considers the tract profiles as continuous functions parameterized by location along the tract
and seeks a smooth weighting scheme that, when applied to a tract profile, predicts as
accurately as possible the corresponding outcome.
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A brief description of the PFR procedure follows; more details are provided in the Appendix
and in (Goldsmith et al., 2010b). For each tract Xi(p) denotes the tract profile for participant
i after subtracting the population mean μ(p), where p is the tract position (defined on the
interval [0,1]) and Yi is either a dummy variable indicating case status (0 for healthy
volunteers, 1 for MS cases) or a scalar disability score. Note that when considering case
status as outcome, we subtract from the tract profile of each case the mean tract profile
derived from all healthy volunteers. When considering disability scores, which are not
measured for healthy volunteers, we use mean tract profiles derived from the included MS
cases.

The linear functional regression model is:

(1)

where β(p) is the smooth weighting scheme we wish to estimate and εi is the remaining
error. The εi are considered to be to be normally distributed with mean 0 and variance .
PFR uses a large spline basis for β(p) and explicitly induces smoothness via standard mixed-
effects models and cross-validation. When regressed on case status, the integral term is
defined to be the scalar tract abnormality index, di:

(2)

To build intuition for the meaning of β(p), consider the following. Instead of requiring β(p)
to be smooth, let:

so that di=β1Xi,1+ β2Xi,2+ β3Xi,3, where for example Xi,1 is the average of the tract profile in
the region 0 ≤ p ≤ 0.33. This corresponds to a standard multivariate regression analysis, with
the three region means used as regressors. Thus, |β(p)| provides information regarding the
importance of each region for predicting the outcome (case status or disability score): small |
β(p)| (near 0) implies a region is unimportant, whereas large |β(p)| has a significant impact
on the estimated outcome. Now, consider more and smaller regions. The interpretation of
β(p) for each of the smaller regions remains the same as in the case with only three. As the
number of regions increases to infinity, we arrive at the functional regression model
presented above. The constraint that β(p) be smooth arises from the logical assumption that
nearby points have similar impacts on the outcome. Figure 1 shows the interaction of the
tract profiles Xi(p) and weighting scheme β(p) to produce estimates of the outcome.

It is important to point out that the PFR procedure is flexible, as it is able to handle missing
observations within the Xi(p) or observations measured with error; highly automated, as it is
implemented via standard statistical software (R; http://www.r-project.org) with minimal
user input; and easily generalizable, as it allows dichotomous outcomes to be considered.
The software has been integrated into the “Refund” package in R
(http://cran.r-project.org/web/packages/refund) and is freely available.
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2.7 Statistical analysis
To address the hypothesis that spatial variation in the imaging properties of white-matter
tracts can be useful in predicting case status, we fit three related logistic regression models.
The first model includes subject-level information (age, sex, and whole-brain MRI index)
but no tract-specific information:

(3)

The second model augments the first model with the addition of the tract-specific index
average, :

(4)

Finally, the third model augments the first with the integral term appearing in the PFR
model:

(5)

The first two models are standard logistic regression models that do not account for spatial
variation in the tract profiles and are fit using standard techniques. Model 2 includes tract-
specific information, but only in a spatially averaged sense. The final model, which accounts
for spatial variation, is the only that is fit using the PFR procedure described above. We
choose the level of smoothness to maximize the area under the leave-one-out, cross-
validated ROC curve and to maximize interpretability. Specifically, among all levels of
smoothness resulting in an area under the curve within 2% of the maximum we empirically
choose the one that gives a number of degrees of freedom closest to 10. Note that the
integral term in the third model (5) retains an influence from the tract-specific index
average.

When fitting models (3)-(5) for the CST and OR, we included the left and right tract profiles
as independent observations, because the two sides are separated in space in the portion of
the brain analyzed here (i.e., above the decussation of the CST in the medulla). This yields
an effective sample size of double the number of participants for these two tracts. Since the
CC is here considered a single fiber bundle that crosses the midline, we included a single
observation for each participant. In order to increase the generalizability of our results, we
randomly divided the full dataset into training and validation sets. For the CST and OR,
where the effective sample size was larger, the training set consisted of 65% of the
observations; for the CC, it used 80% of observations.

We also performed additional analyses, with linear regression models analogous to (3)-(5)
above, to examine the usefulness of incorporating spatial variation in the tract profiles to
predict disability scores. In the PFR model (5), the level of smoothness was chosen to
minimize the leave-one-out, cross-validated prediction error and to maximize
interpretability. Empirically, in each case we chose a level of smoothness that yielded
prediction errors within 5% of the minimum and a number of degrees of freedom closest to
10. Once again, for the CST and OR we included the left and right tract profiles as
independent observations.
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3. Results
We first consider the contribution of the spatial variation of MRI indices along white-matter
tracts to distinguish MS cases from healthy volunteers. We then proceed to illustrate a
similar analysis that relates tract profiles to disability scores. We compare the PFR results
that consider spatial variation to those from more standard regression models that do not. In
the following, Model 1 includes age, sex, and whole-brain MRI index; Model 2 adds the
tract-specific index average; and Model 3 is the full PFR model that adjusts for age, sex, and
whole-brain MRI index but also implicitly considers the tract-specific average.

3.1 Prediction of case status
Here, we consider MS case status as the outcome. As an example, we use the demeaned FA
profile in the right OR to distinguish between MS cases (blue lines in Figure 2A) and
healthy volunteers (red). The weighting function that best separates the two groups using
PFR is shown in Figure 2B and emphasizes the contrast between the middle portion of the
tract and its termini, so that tract profiles with substantially lower-than-average values of FA
at the termini but slightly higher-than-average values in the middle are more likely to come
from MS cases. Model 2, by construction, averages these regions of the tract together.

The comparison of Models 2 (solid purple curve in Figure 2C) and 3 (solid black curve) is
based on ROC analysis and uses leave-one-out cross-validation. Model 1 (which does not
account for tract-specific effects and is not shown) and Model 2 (which includes the mean
tract-specific MRI index) perform similarly in terms of classifying cases and controls (not
shown), but using PFR to consider the complete tract profile in Model 3 improves the
classification (i.e. shifts the ROC curve to the left). This is not surprising, because the tract-
abnormality index di greatly improves separation between the two groups in comparison to
the tract-specific mean (Figure 2D). In Figure 2C, we also display the ROC curves for the
test set using the β(p) function derived from the training set (dashed curves). The results
indicate that the method is robust, providing even better prediction accuracy for the test set
than for the training set.

Figure 3 shows the weighting functions β(p) for each tract and MRI index. In general, these
weighting functions differ from index to index and tract to tract, though within individual
tracts the β(p) functions for RD and MD tend to have similar shapes. These shapes highlight
areas of the tracts that are relatively emphasized or de-emphasized when separating MS
cases (Yi=1) from healthy volunteers (Yi=0). Interpretation of the weighting functions
requires knowledge of whether each MRI index typically increases (AD, RD, MD) or
decreases (FA, MTR) in the MS tracts relative to its average value in healthy volunteers. An
example is MD of the CC (1st row, 4th plot from the left). For this index, abnormally high
values of MD in the rostrum, genu, and rostral body (positions 0-0.33) and isthmus
(0.67-0.83) increase the likelihood of MS, whereas high values in the midbody (positions
0.33-0.67) and splenium (0.83-1) have little effect.

Population results are provided in Figure 4 and Table 2. The areas under the ROC curves are
given in Table 2 for both the training sets (calculated with the leave-one-out cross-validation
procedure) and test sets. These values are a measure of the ability of each model to
discriminate MS cases from healthy volunteers for each tract and MRI index. Because
Model 1 does not use tract specific information, the corresponding training-set results are
the same for the CST and OR; results for the CC are different because they are constructed
on a smaller effective sample (see Methods). Model 3, which uses PFR to account for the
spatial variation in MRI index along a tract, is associated with the best discrimination
performance, yielding improvements up to 15% (mean across all tracts and MRI indices:
6.4%). Note that for the CC, the performance of Model 2 is substantially improved on the
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test set, where it in fact outperforms Model 3. This instability is a result of the small test set
for the CC, containing 9 healthy volunteers and 24 MS cases, and likely does not reflect a
truly increased predictive ability of the simpler model.

In Figure 4, we show box plots and corresponding p-values from 2-sample t-tests comparing
PFR (Model 3) abnormality indices (di) from MS cases with those from healthy volunteers
for each combination of MRI index and tract. By construction, di=0 is the abnormality index
in the mean healthy-volunteer tract. Tracts with di<0 are more likely to derive from healthy
volunteers, whereas tracts with di>0 are more likely to derive from MS cases. The box plots
show that the two groups are well distinguished for all MRI indices and tracts, though more
for diffusion indices than for MTR. Among tracts, the CC appears most abnormal, showing
the greatest separation between MS cases and healthy volunteers. Corresponding data are
provided in Table 2 as mean ± SD for di. A pooled analysis of variance demonstrates
significant main effects of case status, tract type, and MRI index on tract abnormality score
(p<0.0001 in all cases).

3.2 Prediction of disability scores
To illustrate the performance of our method for relating imaging results to global disability,
we focus on the relationship between MD in the CC and six disability scores: EDSS, MSSS,
MSFC, PASAT, 9HPT, and 25FTW (Table 3 and Figure 5). We choose the CC because it
contains fibers that may play a role in determining all of these measures; we obtained similar
results for the CST and OR for functions (movement and vision, respectively) related to
those tracts. Table 3 shows that Model 1 already explains a large fraction of the variation in
the EDSS, indicating that CC damage is not particularly relevant. On the other hand, CC
damage is highly relevant for PASAT-3, so that accounting for MD in the CC yields an
improvement of 163% in the prediction of that score. The relevance of spatial variation in
MD across the CC (Model 3) is greatest for MSFC (14% improvement in prediction), MSSS
(13%), and PASAT-3 (11%). The β(p) functions shown in Figure 5 indicate, not
surprisingly, similar weighting for the interrelated EDSS and MSSS scores. More interesting
is the similarity of the weighting functions for 9HPT and 25FTW, which are both motor
outcomes. The weighting function for PASAT-3 is somewhat different and appears to most
strongly determine the weighting function for MSFC, which is a composite of PASAT-3,
9HPT, and 25FTW.

4. Discussion
The correlations between MRI results and clinical variables in MS remain perplexingly poor
despite the high sensitivity of MRI for detecting MS lesions and defining their location in
space. Diffusion-weighted MRI holds some promise to improve this state of affairs by
allowing accurate delineation of the location of functional systems in the brain and
providing a means to quantify tissue damage in those tracts. Previous work has
demonstrated the presence of correlations between MRI abnormalities in specific tracts and
disability related to the function of those tracts (Ciccarelli et al., 2008; Gorgoraptis et al.,
2010).

We have demonstrated, through a detailed analysis of three tracts in 42 healthy volunteers
and 115 MS cases, including both lesions and so-called normal-appearing white matter, that
accounting for spatial variation within a tract, rather than simply considering average
measurements, can substantially improve the statistical associations between quantitative
MRI indices and case status (i.e., presence or absence of MS). To do this, we developed a
new statistical technique – PFR – that operates on the natural representation of tract-specific
imaging data as parametric functions of space rather than scalar measures (Goldsmith et al.,
2010b). We validated the method by dividing our sample into training and testing sets and
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demonstrating similar results in the two groups. In the pooled analysis (Figure 4 and Table
2), there is generally robust separation across case status between the abnormality scores,
with respect to both mean values (see p-values in Figure 4) and distributions.

In order to maintain brevity, we only partially present here, in Figure 5 and Table 3, the
results of a similar analysis using disability scores as the outcome. Although in many cases
the PFR-related improvement in prediction is only modest, in some cases (e.g., the ability of
MD in the CC to predict the MSFC score) accounting for the spatial variation across the
tracts is particularly useful. This improvement comes at the cost of creating tract profiles
that are accurately registered across subjects. However, with the advent of atlas-based
registration techniques that work in the presence of disease (Pagani et al., 2005; Reich et al.,
2010), these tract profiles can be created automatically.

MRI indices have a normal variation along white-matter tracts (Reich et al., 2006; Stieltjes
et al., 2001). This variation is especially prominent for indices, such as FA, that have high
contrast within the white matter, but even T1 and T2 relaxation times may vary by location.
Spatial variation may be affected by the presence of disease, which may have both
microstructural (for example, through the presence of focal MS lesions) and macrostructural
effects (for example, changes in tract curvature due to brain atrophy). Even diffuse damage
that affects long segments of a tract could affect spatial variation in at least two ways: (1)
when the damage interacts with local macrostructural features, such as curvature and axon
density; and (2) when the damage affects only a portion of the tract, such as might occur
with Wallerian degeneration distal to a lesion in the tract's midsection. The additional
information provided by PFR is therefore most helpful in tracts where the spatial variation is
substantial and therefore likely to be compounded by disease effects. Our results imply that
when evaluating quantitative MRI indices in the brain, great care must be taken in ROI
placement both across and within individuals to avoid false positive results.

The combination of spatially normalized tract profiles with PFR represents a powerful way
of accounting for spatial variation, for several reasons: (1) it involves registration of tracts
across individuals, in this case using landmarks, so that the registration accuracy does not
suffer by inclusion of extraneous brain regions; (2) it allows comparison of cases to a
collection of controls at each position along the tract; and (3) it allows extraction of
additional outcome-related information from the spatial variation. Advantages of PFR
include emphasizing regions of the tracts that are more or less relevant to the outcome,
which in the work described here was either case status or disability score; robustness to
misregistration, which can appear as jitter in the tract profiles; and relatively low sensitivity
to partial volume averaging. We did not perform a formal analysis investigating the degree
to which crossing fibers or lesions – factors that interfere with tract reconstruction using
conventional tractography – affect the PFR results. However, we note that PFR de-
emphasizes regions of reconstructed tracts that have little bearing on the outcome,
particularly if those areas are not included in the tract profiles themselves.

Despite pronounced heterogeneity in lesion location and volume across cases, the analysis
uncovers tract-specific features that are common in MS (i.e., that emerge from studying the
entire MS cohort). In additional analyses not formally presented here, we found that nonzero
(i.e. important) regions of the weighting functions β(p) for the most part remain stable across
a range of smoothness levels, indicating that identification of these regions is related to the
disease rather than to the statistical methodology. It is likely that the weighting schemes are
most robust where the relationship between tract and outcome is clearest.

One interesting finding is that the PFR weighting functions (Figure 3) do not always
emphasize the portions of the tracts that contain lesions. A prime example is the weighting
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function for OR-specific FA presented in Figures 1 and 2. This tract passes along the lateral
border of the lateral ventricular trigone, a common site of MS lesions (Sahraian and Radue,
2008). However, the portions of the tract in which low FA is most heavily weighted for
prediction of tract status are its termini, near the lateral geniculate nucleus and primary
visual cortex. Because the tracts were reconstructed using an atlas-based method rather than
tractography, this cannot be explained by the exclusion of lesioned portions of the tracts
from the analysis. In fact, because lesions only make up a relatively small fraction of each
tract on average (Reich et al., 2009), the tract profiles themselves are mostly determined by
extralesional portions of the tracts. Furthermore, most of the spatial variation is present in
tract profiles from both MS cases and healthy volunteers. As discussed above, these results
suggest that PFR highlights local effects of tissue damage, either diffuse or tract-specific,
that may ultimately reflect the effects of axonal loss on disease severity.

Why aren't correlations with disability stronger even after using PFR to extract additional
outcome-related information from the tract-specific MRI indices? Possible explanations
include variability in the outcome measures, failure to capture all the functionally relevant
areas of the central nervous system, and limited sensitivity to, and specificity for, the aspects
of tissue damage that cause disability in MS. We expect that the results in this paper are
probably close to the upper bound of what can be expected using existing measurement
techniques, though they might be improved somewhat if information from multiple different
tracts were integrated.

Functional data analysis techniques with application to DTI are increasingly popular,
especially for applications such as the one discussed here. For example, Zhu et al. consider a
functional linear model in which a collection of covariates is used to predict a tract profile
(Zhu et al., 2010). Greven et al. use functional principal components analysis to decompose
populations of tract profiles observed longitudinally into their main directions of variability
(Greven et al., 2010). Staicu et al. explore the decomposition of skewed functional
observations where the skewness varies spatially (Staicu et al., 2010). Our method is data-
driven, yielding results that often have clear biological interpretations. In addition, to our
knowledge this is the first case in which functional observations of white-matter tracts have
been used to predict disability scores or case status.

The functional data perspective adopted here differs from other voxel-based approaches to
regression with very large predictors. Voxel-based methods conduct many simple
regressions and look for regions of interest based on a combination of the results; here, we
propose a more complex regression model that takes a functional object as a predictor. Thus,
our functional approach treats complex observations as single entities and benefits from the
explicit incorporation of spatial information in the model. A limitation of this approach is
the requirement for more complex and possibly less intuitive models than would otherwise
be necessary. Furthermore, the assumption of a smooth coefficient function may cause very
localized effects to appear diffuse. Finally, as a consequence of the model's complexity,
large sample sizes may be needed to achieve reasonable estimates.

PFR can be naturally and readily extended to more complex situations, such as longitudinal
tract-specific data or simultaneous analysis of multiple MRI indices from the same scan.
Adding subject-specific random intercepts in the longitudinal setting and/or including
multiple tract profiles could be easily accomplished in the mixed model-based PFR
framework using augmented random-effects design matrices (Goldsmith et al., 2010a).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

MS multiple sclerosis

CIS clinically isolated syndrome

RRMS relapsing-remitting multiple sclerosis

SPMS secondary-progressive multiple sclerosis

PPMS primary-progressive multiple sclerosis

DTI diffusion tensor imaging

FA fractional anisotropy

MD mean diffusivity

AD axial (parallel) diffusivity

RD radial (perpendicular) diffusivity

MTR magnetization transfer ratio

EPI echo-planar imaging

TE echo time

TR repetition time

ROI region of interest

CATNAP coregistration, adjustment, and tensor-solving, a nicely automated program

CST corticospinal tract

CC corpus callosum

OR optic radiation

EDSS expanded disability status scale

MSSS multiple sclerosis severity score

MSFC multiple sclerosis functional composite

PASAT-3 paced auditory serial addition test, 3-second version

9HPT timed 9-hole peg test

25FTW timed 25-foot walk

PFR penalized functional regression

ROC receiver operating characteristic

SD standard deviation
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Figure 1.
Schematic description of the PFR analysis, using FA in the right OR as the regressor and
case status as the outcome. In all panels, the horizontal axis corresponds to normalized
position along the tract (0 is close to the lateral geniculate nucleus, 1 to the primary visual
cortex), and the vertical axis is dimensionless. The left column shows raw tract profiles: top
row, population mean FA derived from 42 healthy volunteers; second row, population mean
derived from 115 MS cases; third row, 23-year-old healthy woman; fourth row, 42-year-old
woman with secondary-progressive multiple sclerosis and EDSS 2.0. The second column
shows the same tract profiles after subtracting the healthy-volunteer population mean. The
third column shows the derived weighting function β(p) for this tract and MRI index. The
fourth column shows the weighted tract profiles derived by point-wise multiplication of the
demeaned tract profiles in the second column by the weighting function in the third column.
Finally, the fifth column shows the tract-abnormality indices di. Lower (including negative)
values of di denote tracts that are more likely to come from healthy volunteers, and higher
values denote tracts that are more likely to come from MS cases. Thus, the tract in the fourth
row, which derives from the MS case, is most abnormal.
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Figure 2.
PFR analysis of FA in the right OR improves discrimination of MS cases from healthy
volunteers. Panel A shows the spatially normalized tract profiles for MS cases (blue) and
healthy volunteers (red) after removing the healthy-volunteer population mean; there is a
great deal of overlap. Panel B shows the weighting function β(p) for the PFR; this function
is optimized to maximize separation of cases from controls. Panel C shows ROC curves for
Model 2 (purple), which includes age, sex, whole-brain FA, and average FA over the OR;
and Model 3 (black), which also includes the PFR results. Solid lines show the leave-one-
out cross-validated analysis of the training dataset, and dashed lines show the results
obtained by applying the weighting function shown in Panel B to a test dataset. The best
separation between MS cases and healthy volunteers is obtained with Model 3 (black). Panel
D is a scatter plot of the tract-specific abnormality scores (vertical axis) against the tract-
specific means, showing that the abnormality score gives much better separation of the two
groups.
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Figure 3.
Weighting functions β(p) for predicting MS case vs. healthy-volunteer status. Top row, CC;
middle row, CST; bottom row, OR. For the CST and OR, data from the right and left sides
have been combined. The horizontal axis is a normalized distance measure along a
parameterization of the tract and has been divided into anatomical regions. For the CC,
regions R1 through R6 refer to the rostrum/genu, rostral body, anterior midbody, posterior
midbody, isthmus, and splenium, respectively; for the CST, regions R1 through R6 refer to
the medulla, pons, midbrain, internal capsule, corona radiata, and subcortical white matter;
and for the OR, 0 corresponds to the lateral geniculate nucleus and 1 to the subcortical white
matter of the occipital lobe. By construction, the unit of β(p) for each MRI index is the
inverse of the unit of the MRI index itself.
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Figure 4.
Box plots showing the distribution of abnormality indices for MS cases (blue) and healthy
volunteers (red) for each pair of MRI index and tract. The p-values listed over each pair of
box plots are derived from two-sided two-sample t-tests and are not corrected for multiple
comparisons. The solid lines indicate the median for each group, the box edges the
interquartile range, and the whiskers the most extreme data points no more than 1.5 times
the interquartile range from the median. Notches show robust estimates of the medians.
Corresponding means and standard deviations are provided in Table 2.
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Figure 5.
Weighting functions β(p) for predicting various disability scores from MD in the CC. See
the legend to Figure 3 for a description of the horizontal axes.
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