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Abstract
Background—Previous studies reported adverse impacts of traffic-related air pollution exposure
on pregnancy outcomes. Yet, little information exists on how effect estimates are impacted by the
different exposure assessment methods employed in these studies.

Objectives—To compare effect estimates for traffic-related air pollution exposure and
preeclampsia, preterm birth (gestational age less than 37 weeks), and very preterm birth
(gestational age less than 30 weeks) based on four commonly-used exposure assessment methods.

Methods—We identified 81,186 singleton births during 1997–2006 at four hospitals in Los
Angeles and Orange Counties, California. Exposures were assigned to individual subjects based
on residential address at delivery using the nearest ambient monitoring station data [carbon
monoxide (CO), nitrogen dioxide (NO2), nitric oxide (NO), nitrogen oxides (NOx), ozone (O3),
and particulate matter less than 2.5 (PM2.5) or less than 10 (PM10) μm in aerodynamic diameter],
both unadjusted and temporally-adjusted land-use regression (LUR) model estimates (NO, NO2,
and NOx), CALINE4 line-source air dispersion model estimates (NOx and PM2.5), and a simple
traffic-density measure. We employed unconditional logistic regression to analyze preeclampsia in
our birth cohort, while for gestational age-matched risk sets with preterm and very preterm birth
we employed conditional logistic regression.

Results—We observed elevated risks for preeclampsia, preterm birth, and very preterm birth
from maternal exposures to traffic air pollutants measured at ambient stations (CO, NO, NO2, and
NOx) and modeled through CALINE4 (NOx and PM2.5) and LUR (NO2 and NOx). Increased risk
of preterm birth and very preterm birth were also positively associated with PM10 and PM2.5 air
pollution measured at ambient stations. For LUR-modeled NO2 and NOx exposures, elevated risks
for all the outcomes were observed in Los Angeles only – the region for which the LUR models
were initially developed. Unadjusted LUR models often produced odds ratios somewhat larger in
size than temporally-adjusted models. The size of effect estimates was smaller for exposures based
on simpler traffic density measures than the other exposure assessment methods.
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Conclusion—We generally confirmed that traffic-related air pollution was associated with
adverse reproductive outcomes regardless of the exposure assessment method employed, yet the
size of the estimated effect depended on how both temporal and spatial variations were
incorporated into exposure assessment. The LUR model was not transferable even between two
contiguous areas within the same large metropolitan area in Southern California.
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INTRODUCTION
Adverse pregnancy outcomes are an emotional and financial burden on families both in the
short and long term, and are a major public health concern (Stillerman et al. 2008). More
than half a million infants are born prematurely each year in the United States (CDC 2005).
Preterm birth is a primary cause of infant mortality and morbidity and is potentially
associated with learning disabilities and other chronic conditions in adulthood (Cano et al.
2001; Dik et al. 2004; Stillerman et al. 2008). Preeclampsia, characterized by elevated blood
pressure, edema, and protein in the urine, is a multisystem disorder affecting 2–8% of
pregnant women. Since the only cure is delivery of the fetus and placenta, preeclampsia is
the most frequent primary reason for elective, non-spontaneous preterm birth, accounting for
30–35% of total preterm deliveries (Goldenberg et al. 2008; Meis et al. 1998).

Numerous epidemiologic studies have documented adverse effects of air pollution on
pregnancy outcomes (Lacasana et al. 2005; Sram et al. 2005; Stillerman et al. 2008;
Woodruff et al. 2009). Motor vehicle emissions are the principal source of ambient air
pollution in most urban areas and are a significant contributor to the adverse effects of air
pollution on health (Samet 2007). Traffic emits a complex mixture of hundreds of toxic
components including ultrafine particles and polycyclic aromatic hydrocarbons that have the
potential to induce oxidative stress and other mechanisms leading to adverse impacts on the
pregnancy and fetal development. Our prior studies in Southern California have linked
traffic-related air pollution with preeclampsia (Wu et al. 2009a) and preterm birth (Ritz et al.
2000; Ritz et al. 2007; Wilhelm and Ritz 2005; Wu et al. 2009a).

In the current literature there are four major approaches to measure pregnant women’s
exposures to traffic-related air pollutants. The most widely used method relies on
measurements from existing ambient monitoring stations, and some studies restrict the study
population to those living within a specified distance to a monitoring station (Darrow et al.
2009; Ritz et al. 2000; Wilhelm and Ritz 2005). In general, measurements of concentrations
of pollutants at air monitoring stations have the highest temporal resolution, especially for
certain gaseous pollutants such as carbon monoxide (CO) and nitrogen oxides (NOx) that are
usually measured on a continuous, hourly basis. However, due to the high cost of
establishing and operating monitoring stations, the routine monitoring network for criteria
pollutants is generally poor in spatial coverage and unlikely to adequately capture the high
spatial heterogeneity of air pollutants directly emitted from traffic such as ultrafine particles
(Hitchins et al. 2000; Zhu et al. 2002). In addition, CO may no longer be a good marker for
traffic in Southern California because levels of this pollutant continue to decline, due to
gasoline reformulation, and are reaching the minimum detection threshold of the routine
monitoring system (Kirchstetter et al. 1999; South Coast Air Management District 2007).

Recently, geographic information system (GIS)-based methods have been developed to
better estimate exposures to traffic-specific pollutants. Some research has employed GIS
tools to account for the high spatial heterogeneity of local traffic emissions with simple
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exposure surrogates such as distance-weighted traffic density (Wilhelm and Ritz 2003).
Other studies have either spatially-interpolated measured concentrations from a small
number of ambient monitoring stations (Leem et al. 2006) or developed more sophisticated
land-use regression (LUR) models using data on pollutants collected in short-term intensive
monitoring campaigns and supplemental GIS information for pollution sources and
meteorology (Aguilera et al. 2009; Ballester et al. 2010; Brauer et al. 2008; Hoek et al.
2008; Slama et al. 2007). The GIS-based methods provide high spatial resolution in
estimated concentrations, but have no or limited capabilities in characterizing temporal
variability. For instance, most existing LUR models were developed using one to four 7- or
14-day measurement periods to characterize temporal variation in pollution over a year;
temporal trends derived from measures taken at ambient monitoring stations were then
applied to the modeled values based on the assumption that ambient monitoring site
measures and LUR-modeled concentrations co-vary over space.

Another approach is to assign exposure based on air dispersion models that take into account
the spatial relationship of sources and receptors, source emission strength, and meteorology
parameters that influence dispersion (e.g. atmospheric stability and wind) (Wu et al. 2009a).
These models output concentrations at high spatial but only moderate temporal variability
because of a general lack of real-time inputs (e.g. hourly traffic counts), and a simplified
treatment of meteorology, atmospheric chemistry, transport, and diffusion. More
sophisticated air pollution models account for not only dispersion but also atmospheric
chemistry and physical dynamics (Vutukuru et al. 2006; Zhang et al. 2006); however, these
models are usually developed to simulate air quality at a relatively coarse spatial resolution
(e.g. 5 km * 5 km) and are computer-intensive, making them unsuitable for health studies
that require both high spatial and temporal resolution. A combination of the above
approaches has also been used in exposure assessment, such as integrating dispersion
modeling results into LUR (Wilton et al. 2008) or developing two-stage geostatistical
models that incorporate measured concentrations and information on temporally or spatially
varying covariates (Fanshawe et al. 2008).

Reliable estimation of exposure to traffic-related air pollution is a complex and challenging
issue, and different exposure assessment methods may account for differences in published
findings (Woodruff et al. 2009). To date, only one Canadian study examined the
implications of three different exposure assessment methods on the size of effect estimates
for adverse birth outcomes and traffic-related air pollution exposure (Brauer et al. 2008).
Compared to exposures derived from ambient monitoring stations, temporally-adjusted LUR
exposures were associated with somewhat more precise effect estimates [i.e., smaller
confidence intervals (CIs)], but not necessarily larger effect estimates (Brauer et al. 2008).

In our study, we employed four commonly-used exposure assessment methods: ambient
monitor-based measurements, land-use regression modeling, CALINE4 line-source
dispersion modeling, and traffic-density estimates to further examine whether traffic can be
considered an important source of air pollution contributing to adverse pregnancy outcomes
and to assess the impact of different exposure assessment methods on the size of effect
estimates.

METHODS
Study Subjects

The study subjects resided in southern Los Angeles County and Orange County in the South
Coast Air Basin of California. This area is heavily impacted by several major commuter
freeways (e.g. I-405 and I-5) and main trucking routes (e.g. Interstate 710) for goods leading
out of the Ports of Los Angeles and Long Beach. The study subjects were identified from a

Wu et al. Page 3

Environ Res. Author manuscript; available in PMC 2012 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



hospital-based birth database that included residential address at delivery, birth hospital,
estimated date of conception (based on last menstrual period and ultrasound dating), prenatal
care insurance, maternal age and race-ethnicity, maternal medical history (heart disease,
chronic hypertension, previous preterm birth), preeclampsia and other maternal
complications during pregnancy (diabetes, pyelonephritis), parity (first birth vs. second or
subsequent birth), gestational age, and the neonate’s sex (Wu et al. 2009a). Diagnosis dates
for the onset of preeclampsia were not available. Out of 105,092 neonatal records from the
birth database, we obtained 81,186 singleton birth records after excluding multiple
gestations, incomplete records including those without full residential address or missing
covariate information, unsuccessfully geocoded residential addresses, and addresses outside
the study region (Wu et al. 2009a).

Study Design
We defined preeclampsia as the occurrence of preeclampsia (blood pressure > 140/90 and
proteinuria) or hemolysis, elevated liver enzyme levels, and low platelet count (HELLP)
syndrome at any time during pregnancy. As HELLP is on the continuum of preeclampsia
severity and is relatively uncommon, we chose to combine this diagnosis with preeclampsia.
Preterm birth was defined as births at less than 37 completed gestational weeks, and very
preterm birth as births at less than 30 gestational weeks.

We examined associations between ambient air pollution and preeclampsia in our birth
cohort using unconditional logistic regression. For preterm birth, we employed a risk set
design, which allowed us to estimate effects for gestational age-matched exposure windows.
For each preterm case, we randomly selected five controls from among those who were born
one year before or after the birth date of the case and who were still in utero at the
gestational age when the case was delivered. Exposure periods for preterm cases and
controls were based on the gestational age of the case infant at birth. For example, for a
preterm birth occurring at 34 weeks gestation, controls were selected randomly from all
infants still in utero at age 34 weeks. Thus the “one month before birth” exposure period
covered the same developmental period for cases and controls (weeks 30 to 34 of gestation).
This matching approach provided a similar length of exposure for both cases and controls
while retaining both temporal and spatial variability in air pollution exposures.

We geocoded residential addresses with exact matches to house number using the TeleAtlas
Geocoding Service (http://www.geocode.com). All exposure measures were based on
estimated outdoor air pollution concentrations at individual residential locations, without
considering time-activity patterns and potential exposures in other microenvironments.
Time-resolved exposures were estimated for the 1st trimester (1–13 gestational weeks), 2nd

trimester (14–26 gestational weeks), last month before delivery, and for the entire pregnancy
period. Exposure periods for preterm cases and controls were based on the gestational age of
the case infant at birth.

Air Pollution Exposure Assessment
Ambient monitoring data—We obtained from the California Air Resources Board
(http://www.arb.ca.gov/aqd/aqdpage.htm) measurements of concentrations of CO, NOx,
nitric oxide (NO), nitrogen dioxide (NO2), ozone (O3), particulate matter (PM) less than 10
μm in aerodynamic diameter (PM10) and less than 2.5 μm in aerodynamic diameter (PM2.5)
from 1997 to 2006 (PM2.5 data started in 1998). Hourly measurements of CO, NO, NO2, and
NOx, and O3 (10 AM-6 PM) were converted to daily means using a criterion of 75% data
completeness (i.e. > 18 hours of valid data in a day was required for a daily average to be
generated). Monthly averages for gaseous pollutants were calculated for stations with >22
days of valid data in a month. Since real-time PM measurements accounted for less than 6%
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of the total data, we only included filter-based PM measurements that were collected every
3rd or 6th day. Monthly averages for PM10 and PM2.5 were calculated if three or more daily
measures per month were available. Final exposures were calculated for each individual
subject by weighting monthly average concentrations by the number of days in each month
for specific exposure periods (1st trimester, 2nd trimester, last month before delivery, and
entire pregnancy period). The number of active monitoring stations varied by pollutant and
by year. There were 14–19 stations with valid measurement data for CO, 17–21 stations for
NO/NO2/NOx and O3, and 10–11 stations for PM10 during 1997 to 2006 in the study area.
PM2.5 sites started at only 2 in September, 1998 and increased to 10 in February 1999; thus
we only included subjects who delivered in 2000 and after in the PM2.5 analyses.

Exposure measures were derived using the nearest station approach, i.e. we assigned to each
residential location daily concentrations for each specific pollutant measured at the closest
operational monitoring station. The median distance from the residence to the nearest
monitoring station was 6.1 km for CO and O3, 7.1 km for NO/NO2/NOx, 7.0 km for PM10,
and 6.5 km for PM2.5, and the 95th percentile of the distance was 14.0 km for CO and O3,
27.8 km for NO/NO2/NOx, 17.6 km for PM10, and 18.2 km for PM2.5, respectively
(Supplemental Materials Table S1). Subjects in Los Angeles resided closer to monitoring
stations because of a higher density of monitors in Los Angeles than in Orange County
(Supplemental Materials Table S1).

Land use regression models—LUR models were developed for NO, NO2, and NOx
based on simultaneous two-week measurements using Ogawa passive diffusion samplers at
181 sites in Los Angeles during September 2006 and February 2007 in a separate study (Su
et al. 2009). The LUR model included the following variables: traffic volumes, truck routes
and road network, land use data, coordinates of the sampling sites, and satellite-derived soil
brightness. The final regression models explained 81%, 86% and 85% of the variance in
measured NO, NO2 and NOx concentrations, respectively.

NOx measurement data from the two seasons were averaged to derive an annual average
pollution surface for the Los Angeles Basin, which was then used to assign exposures to all
subjects, without considering year-to-year and seasonal differences in the spatial surface
(unadjusted LUR). We also derived temporally-adjusted LUR estimates based on the
relative temporal profiles of yearly and monthly concentrations of pollutants measured at
government-operated monitoring stations. Yearly and monthly scaling factors at the nearest
monitoring station were assigned to each residence and the distances between the residences
and the closest stations were recorded. Temporally-adjusted monthly LUR concentrations at
each residence were calculated by multiplying the unadjusted LUR estimates by the yearly
and monthly scaling factors, and then averaging over specific pregnancy periods. Since the
LUR models were originally developed and validated based on measurements in Los
Angeles but not Orange County, we estimated effects separately for the two regions.

Traffic density—A comprehensive database with annual average daily traffic counts was
constructed for the study region based on data from the California Department of
Transportation and other sources (Wu et al. 2009b). Traffic count data were available for all
freeways and highways, most major arterial streets, and a small portion of local streets.
Previous measurement studies indicate ultrafine particles and CO drop to near-background
levels at 200 m during daytime hours (10 AM – 6 PM) (Zhu et al. 2002) and up to 2000 m
during pre-sunrise hours (4:00 – 7:30 AM) (Hu et al. 2009) downwind from major
roadways. A recent summary of 41 roadside monitoring studies conducted worldwide
concluded that most traffic-related pollutants (e.g. ultrafine particles, CO, NOx, and
elemental carbon) decay to background concentrations at 570 m from the edge of the road
(Karner et al. 2010). While the area of traffic influence varies according to a number of
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factors, we decided to calculate traffic densities within a 300 m buffer, as this is the size
commonly employed in previous studies of traffic-related air pollution (Chang et al. 2009;
Kan et al. 2008). Traffic densities were calculated on a 10×10 m grid using the kernel
density plotting feature of Spatial Analyst in ArcInfo GIS 9.1 (ESRI, Redlands, CA), which
effectively caused the densities to decrease from volume-dependent values at roadway edges
to zero at 300 m perpendicular distance from roadways.

Air dispersion model—A modified CALINE4 dispersion model was used to model local
traffic emissions within 3 km of each residence for five traffic-related pollutants (CO, NO2,
NOx, PM10, and PM2.5) (Benson 1989; Wu et al. 2005; Wu et al. 2009a; Wu et al. 2009b).
Vehicle emission factors were obtained from the California Air Resources Board’s
EMFAC2007 model (http://www.arb.ca.gov/msei/onroad/latest_version.htm). Paved road-
dust emissions for PM2.5 were based on in-roadway measurements (Fitz and Bufalino 2002).
Hourly wind speed, direction, and temperature were obtained from the National Weather
Service. Average mixing heights by season and hour were obtained from the 1997 Southern
California Ozone Study (Croes and Fujita 2003) and assigned to each modeled day based on
season and hour. More details about the CALINE4 model and the evaluation of the model
can be found in Wu et al. (2009a).

Statistical Analysis
The statistical package R (version 2.6.1; The R Foundation for Statistical Computing 2008)
was used for analyses. For preeclampsia, we performed multiple logistic regression and
excluded women who had preexisting chronic conditions such as hypertension and heart
disease prior to pregnancy. Conditional logistic regression was used for the preterm
outcomes to account for our risk set approach, which matched on gestational age.
Confounders for both logistic regression models were selected based on a priori knowledge
and included maternal age, maternal race/ethnicity, parity, prenatal care insurance type
(private, non-private: government-sponsored or self pay, and unknown), season of
conception, pyelonephritis (preterm analyses only), diabetes (preeclampsia analyses only),
and poverty (the percent of the population living below the poverty level from U.S. Census
2000 block group data). We adjusted for maternal age as a continuous variable using a
quadratic polynomial function. No interaction terms for confounding variables were
included in the regression models. We separately calculated odds ratios (ORs) and 95% CIs
for the inter-quartile range (IQR) increase and for a specified unit increase in each exposure
metric (0.1 ppm for CO, 5 ppb for NO, NO2, NOx, and O3, 5 μg/m3 for PM10, and 1 μg/m3

for PM2.5). The IQR-scaled ORs were used to compare effect estimates across different
pollutants using the same exposure assessment method, while the ORs for a standardized
increase in exposure were used to compare effect estimates across the four exposure
assessment methods for a specific pollutant. We also examined the outcomes by exposure
window (1st trimester, 2nd trimester, last month before delivery) for ambient monitor-based
and CALINE4-modeled exposures. We additionally examined effect measure modification
of air pollution and preeclampsia associations by socio-demographic variables (e.g. maternal
age, infant sex, insurance type, parity, poverty, and race) using stratified analyses.

RESULTS
Preeclampsia, preterm birth (less than 37 weeks), and very preterm birth (less than 30
weeks) occurred in 3.0%, 8.3%, and 1.0% of the singleton births in our study population,
respectively (Table 1). Compared to the entire study population, the prevalence of
preeclampsia, preterm birth, and very preterm birth was in general greater for women
younger than 20 years of age or older than 39 years of age at delivery, were primiparous,
had government-sponsored or self-pay health insurance, were of African American race, or
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were living in areas of higher poverty. Women in Los Angeles accounted for 48% of the
total study population, contributed disproportionately to the number of cases for
preeclampsia (53.4%), preterm birth (58.5%), and very preterm birth (70.5%), were on
average two years younger, were less likely to have private health insurance, were more
often of African American race or Hispanic ethnicity, and resided in areas with higher
poverty rates compared to women from Orange County.

Table 2 lists mean values and Pearson’s correlation coefficients for exposure measures for
the entire pregnancy based on the four methods of exposure assessment. For ambient
monitoring data, concentrations of traffic-related gaseous air pollutants (CO, NO, NO2, and
NOx) were highly correlated, but they were only moderately correlated with monitor-
measured PM2.5 and PM10, and negatively correlated with O3. LUR-modeled exposures for
NO, NO2 and NOx were moderately to highly correlated with each other. The traffic density
measure was moderately correlated with CALINE4-modeled exposures, less correlated with
LUR measures, and poorly correlated with all ambient monitor-based measures. CALINE4-
modeled exposures of CO, NO2, NOx, PM10, and PM2.5 were highly correlated (r ranged
from 0.75 to 1.00; data not shown), most likely because CALINE4 was only used to
estimate concentrations of pollutants from a single emission source – local traffic within 3
km of a residence – which is also why CALINE4-modeled concentrations were only about
13% and 11% of the ambient monitor-based NOx and PM2.5 levels, respectively. Therefore,
we only report CALINE4-modeled NOx and PM2.5 exposures and corresponding effect
estimates. Compared to women in Orange County, we found that, on average, all monitor-
measured pollutants except O3 were higher for women residing in Los Angeles (46%–73%
higher for CO, NO, NO2, and NOx, 11–18% higher for PM10 and PM2.5, but 35% lower for
O3) (Supplemental Materials Table S2).

Table 3 presents effect estimates for preeclampsia with inter-quartile range increases in
exposures for the entire pregnancy by study region (the effect estimates per standard
increase in exposures are listed in Supplemental Materials Table S3). We present our results
by region for two reasons. First, our study populations in Los Angeles and Orange County
were remarkably different in socio-demographic characteristics. In addition, our LUR
models were originally developed based on measurements in Los Angeles County only. For
subjects in Los Angeles, we observed increased risks of preeclampsia (2–16%) with each
inter-quartile range increase in exposure to residential traffic density, ambient CO, NO,
NO2, NOx, LUR-modeled NO, NO2 and NOx, and CALINE4-modeled NOx and PM2.5. In
Orange County, no increased risk of preeclampsia was found for monitor measured
pollutants except NOx and O3 or for temporally-adjusted LUR measures; estimated risks
from unadjusted LUR models were much lower than for subjects residing in Los Angeles.
On the other hand, effect estimates for CALINE4-modeled exposures and traffic density
estimates were of similar size in both regions (3–10% increases in risk per inter-quartile
range).

We estimated 3–14% risk increases for preterm birth and 26–76% risk increases for very
preterm birth per inter-quartile increase in monitor-measured CO, NO, NO2 and NOx; effect
estimates were similar in magnitude for subjects in LA and Orange County for both
outcomes (Tables 4 and 5). Risks of preterm and very preterm birth increased by
approximately 9% and 30%, respectively, with increases in ambient PM10 and PM2.5 for
subjects residing in Orange County, but we observed only small risk increases for particles
in Los Angeles. For unadjusted LUR-modeled NO2 and NOx, inter-quartile range increases
in exposure were associated with 5–7% and 27–42% increases in risk for preterm and very
preterm birth, respectively, in Los Angeles, but no associations were apparent for preterm
and very preterm births in Orange County. Additionally, effect estimates were greater for
unadjusted versus temporally-adjusted LUR-modeled NO2 and NOx in Los Angeles. Inter-
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quartile range increases in entire pregnancy CALINE-model NOx and PM2.5 exposures were
associated with 4% increases in risk of preterm birth in Los Angeles but not Orange County,
and about 16% increases in risk of very preterm birth in both regions. Inter-quartile range
increases in traffic density were associated with slightly increased risks of both preterm and
very preterm birth (2–3%) in Los Angeles County but not Orange County.

We did not observe consistent differences in patterns of effect estimates for specific periods
of pregnancy using either monitor-based exposure measures (Supplemental Materials Table
S4) or CALINE4-modeled exposures (results not shown). In general, risk of preeclampsia,
preterm birth, and very preterm birth increased with increasing quartiles of exposure (data
not shown). No consistent patterns or differences in risk estimates were observed in analyses
stratified by socio-demographic parameters such as maternal age, infant sex, insurance type,
parity, poverty, and race (data not shown); some of these comparisons however were limited
by the small number of cases, particularly for preeclampsia and very preterm birth.

DISCUSSION
In the past decade, interest in effects of air pollution on fetal and perinatal development has
increased since the growing fetus may be particularly susceptible to the toxic effects of
environmental contaminants (Maisonet et al. 2004; Mone et al. 2004; Pinkerton and Joad
2006). Traffic is an important source of ambient air pollution in urban areas. Here, we
addressed how exposure assessment influences the size of estimated effects for adverse
pregnancy outcomes when traffic-related air pollution is modeled by four commonly-used
methods. Based on these four measures, results were consistent in suggesting that pregnant
women who experience higher exposure to traffic-related pollutants were more likely to
develop preeclampsia during pregnancy or to give birth to preterm and very preterm infants.
For preeclampsia, gaseous air pollutants (CO, NO, NO2 and NOx) were most important,
while for preterm birth both gases (CO, NO, NO2 and NOx) and particulate matter (PM10
and PM2.5) pollution contributed to adverse effects. Importantly, the LUR model we
developed based on monitoring in one region (Los Angeles) was not applicable to a
neighboring region (Orange County) in the same metropolitan area. Finally, temporal
adjustment of LUR pollution surfaces by scaling using data from ambient monitoring
stations may not be an improvement over unadjusted (annual average) LUR data possibly
because of the un-validated and potentially incorrect assumption that measures from ambient
monitoring sites and LUR-modeled concentrations co-vary over space.

The exposure metrics we employed capture different aspects of traffic-related air pollution,
such as emission sources (local vs. regional) and spatio-temporal variability, and may result
in differences in measurement error and effect estimates (Brauer et al. 2008). Monitor-based
measures provide the greatest temporal variability and reflect mostly regional emission
sources, and to a lesser extent, local sources in areas with denser monitoring networks (e.g.
Los Angeles). The CALINE4 model was developed to capture local traffic emissions and
resulting estimates have limited temporal variability since some model inputs were not
derived from real-time measurements but averages based on data for limited time periods
(e.g. mixing height by season and time of day, traffic volume by day of week and time of
day, and emission factor by season). Unadjusted LUR measures have no temporal variability
and capture largely local traffic emissions, local land use characteristics, as well as regional
traffic emissions up to 11 km (Su et al. 2009). Thus, even though monitor-based measures
capture temporal variability best and CALINE4- and LUR-modeled exposures are more
spatially defined (Brauer et al. 2008; Marshall et al. 2008), they are not mutually exclusive
in terms of emission sources and spatio-temporal variability. This may explain why we
found associations with all, even though the measures were only moderately to poorly
correlated.
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For preeclampsia, we observed similar increases in magnitude of risk for women in Los
Angeles for all measures of traffic-related pollution except monitor-based PM10 and PM2.5,
suggesting that both temporal and spatial variability may contribute to risk. In addition, local
emissions better represented by CALINE4- and LUR-modeled exposures may contribute
somewhat more strongly to the risk of preeclampsia than regional sources better captured by
monitor-based PM2.5 (Gomiscek et al. 2004; Russell et al. 2004). Both temporal and spatial
variability in concentrations of pollutants seemed to also contribute to the risk of delivering
a preterm and very preterm infant. Although the 95% CIs overlapped, risk estimates for very
preterm births were higher for monitor-based and LUR-modeled (Los Angeles only) NOx
than for CALINE4-modeled NOx, indicating the importance of a regional component of
exposure, in addition to local traffic emissions. In Supplemental Materials Table S5 we
present results from two-pollutant models for monitor-based and CALINE4-modeled
exposures and monitor- and LUR-based exposure estimates. Results from the two-pollutant
models suggest somewhat stronger contributions from local traffic for preeclampsia and
from regional sources for preterm and very preterm births, but both spatial and temporal
variations in concentrations of traffic-related pollutants seem to contribute to both outcomes.

Since preeclampsia is one of the major reasons for elective non-spontaneous preterm birth,
there is overlap between this outcome and preterm delivery. Data were not available to
separate the impacts of air pollution on spontaneous versus non-spontaneous preterm births.
However, no appreciable differences in air pollution effect estimates for preterm birth were
observed for women with and without a diagnosis of preeclampsia (data not shown).

We consistently estimated larger effects for preeclampsia, preterm birth and very preterm
birth in Los Angeles than in Orange County for LUR-modeled exposures. Los Angeles and
Orange Counties seem to be different enough in land use characteristics, emission sources,
topography, and meteorology such that the LUR model developed from measurements taken
in Los Angeles resulted in larger measurement error when applied to residences in Orange
County. Higher risks of preeclampsia were observed in Los Angeles than in Orange County
for ambient monitor-based traffic-related pollutants (CO, NO, NO2, NOx), which may be
partly explained by the denser monitoring network and presumably better measures of local
traffic emissions at Los Angeles monitoring stations (see residential distances to monitoring
stations in Supplemental Materials Table S1). On the other hand, the magnitudes of effect
estimates for each region were similar for CALINE4-modeled and traffic density exposure
measures, suggesting that these two measures are of comparable quality in both regions.

Contrary to what we expected, effect estimates were often greater for unadjusted versus
temporally-adjusted LUR exposures for preterm and very preterm births in both regions and
for preeclampsia in Orange County. This indicates that the assumption of a stable spatial
surface used to temporally adjust the LUR – as is commonly done for most existing LUR
models – may have been inappropriate. Thus, temporally-adjusted LUR models may not
necessarily be better surrogates for traffic pollution than simpler metrics like distance to
roadways and may suffer from potentially larger exposure misclassification, as suggested
previously by Brauer et al. (2008).

We did not find specific exposure windows of greater relevance for any of the outcomes.
However, our ability to assess the impact of exposures during specific windows of
pregnancy was limited since ambient monitor-based and CALINE4-modeled exposures were
moderately to highly correlated across pregnancy periods (data not shown). Also, the
exposure window of one month before birth may be irrelevant for preeclampsia since time
of onset was not available. One the other hand, since even an entire pregnancy is a relatively
short period of time, our results based on temporally-resolved exposures may not be directly
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applicable to chronic health outcomes for which longer-term rather than shorter-term
exposures are more important.

Our study had several limitations. We estimated exposures for the mother’s residential
address at birth, possibly resulting in exposure misclassification since about 12% to 35% of
pregnant women may move during pregnancy (Brauer et al. 2008; Fell et al. 2004). In
addition, we lacked time-activity data and time spent in non-residential locations (e.g.
workplace, commuting). For example, we previously reported associations between preterm
birth and monitor-based air pollution exposure to be greater for women who did not work
(and for whom a residence-based measure of exposure presumably is more accurate) than
for women who worked outside their homes (Ritz et al. 2007).

Another potential source of bias is residual confounding due to risk factors we could not
control for in our analyses (e.g., maternal smoking, environmental tobacco smoke, stress). In
a previous study, we found that for short-term (pregnancy months or trimesters) exposures
that change seasonally, behavioral factors that do not change seasonally were not strong
confounders of air pollution and preterm birth associations (Ritz et al. 2007). Therefore, we
expect less residual confounding of exposure-outcome associations with temporally-based
exposures from ambient monitoring stations than for the primarily spatially-based
CALINE4, LUR and traffic density measures.

CONCLUSIONS
Elevated risks of preeclampsia, preterm birth, and very preterm birth were associated with
all measures of traffic-related air pollution exposure in Southern California women living in
our Los Angeles and Orange County study region. Preeclampsia was more strongly
associated with local traffic-related air pollution, while preterm birth and very preterm birth
were associated with both local and regional air pollution. The size of effect estimates was
generally smaller for exposures based on traffic density measures compared to more refined
exposure assessment methods. We found that LUR models developed in one region (Los
Angeles) may not be readily transferred and applied to a neighboring region (Orange
County) in the same metropolitan area. In addition, a simple scaling of annual average LUR
pollution surfaces using existing monitoring station data may be inappropriate and may
introduce larger exposure misclassification than unadjusted (annual average) LUR estimates.
These results provide further evidence that traffic-related air pollution is associated with
adverse reproductive outcomes. While this study underscores the importance of improving
exposure assessment in air pollution and reproductive health research, it nevertheless
suggests that simple measures (e.g. concentrations of pollutants measured at ambient
monitoring stations or traffic density measures) can still be useful.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

CI 95% confidence interval

CO carbon monoxide

GIS geographic information system

IQR inter-quartile range

LUR land-use regression

NO nitric oxide

NO2 nitrogen dioxide

NOx nitrogen oxides

O3 ozone

PM10 particulate matter less than 10μm

PM2.5 particulate matter less than 2.5μm

OR odds ratio
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