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OBJECTIVE—Inflammation and dysfunction of the hypothala-
mus are common features of experimental obesity. However, it is
unknown whether obesity and massive loss of body mass can
modify the immunologic status or the functional activity of the
human brain. Therefore, the aim of this study was to determine
the effect of body mass reduction on brain functionality.

RESEARCH DESIGN AND METHODS—In humans, changes
in hypothalamic activity after a meal or glucose intake can be
detected by functional magnetic resonance imaging (fMRI).
Distinct fMRI analytic methods have been developed to explore
changes in the brain’s activity in several physiologic and patho-
logic conditions. We used two analytic methods of fMRI to ex-
plore the changes in the brain activity after body mass reduction.

RESULTS—Obese patients present distinct functional activity
patterns in selected brain regions compared with lean subjects.
On massive loss of body mass, after bariatric surgery, increases
in the cerebrospinal fluid (CSF) concentrations of interleukin
(IL)-10 and IL-6 are accompanied by changes in fMRI patterns,
particularly in the hypothalamus.

CONCLUSIONS—Massive reduction of body mass promotes
a partial reversal of hypothalamic dysfunction and increases anti-
inflammatory activity in the CSF. Diabetes 60:1699–1704, 2011

O
besity affects more than 300 million people
worldwide (1). It is the main risk factor for type
2 diabetes, atherosclerosis, and hypertension,
and therefore plays an important role in the

overall mortality of modern societies (2). Increased adi-
posity results from the progressive loss of the homeostatic
control of caloric intake and energy expenditure. In animal
models, dysfunctional activity of specialized neurons of
the hypothalamus is regarded as an important determinant
for the development of obesity (3–6). In both genetic and
diet-induced obese rodents, the malfunction of the hypo-
thalamus is a consequence of the activation of local in-
flammation and eventually apoptosis of selected neuronal

populations (3,4,7,8). The inhibition of inflammation by
genetic or pharmacologic approaches leads to the re-
duction of the obese phenotype and correction of the
metabolic breakdown, placing hypothalamic inflammation
as a potential target for the treatment of obesity (3,4,8–10).

We show that obese patients present distinct functional
activity patterns in selected brain regions, compared with
lean subjects. On massive loss of body mass, increases in
the cerebrospinal fluid (CSF) concentrations of interleukin
(IL)-10 and IL-6 are accompanied by changes in functional
magnetic resonance imaging (fMRI) patterns, particularly
in the hypothalamus.

RESEARCH DESIGN AND METHODS

Thirteen obese patients (11 females) were recruited from the Obesity Clinic at
the University of Campinas. All patients were selected for bariatric surgery
according to the National Institutes of Health Consensus Statement (11). The
surgical technique used was always the Roux-in-Y gastric bypass (12).
Patients were submitted to fMRI plus blood and CSF collection at the time of
the surgery and after reduction of body mass. Inclusion criteria for patient
selection were men and women between 18 and 60 years of age who met the
above-mentioned criteria for surgery. Exclusion criteria for patient selection
were diabetes, inflammatory or infectious disease, use of psychotropic or
anti-inflammatory drugs, and history of substance addiction. In addition,
eight lean control subjects were selected among students of the university.
Control subjects were submitted to blood collection and fMRI. Control CSF
was obtained from patients referred to the university for headache. Criteria
for selection of both control groups were the same used for patients, except
for a BMI ,25. The fMRI studies were performed on a 1.5 GE MRI scanner
(GE Healthcare, Waukesha, WI) in 12-h fasting subjects. The method for
image acquisition was the same as previously described (13) except that
a total of 500 images were acquired in 30 min. D-glucose (50 g) was ingested
after 5 min. Leptin, insulin, and adiponectin were determined in sera using
ELISA kits from Millipore (Billerica, MA). Tumor necrosis factor-a (TNF-a),
IL-1b, IL-10, and IL-6 were determined in sera and CSF using ultra-sensitive
ELISA kits from BD Biosciences (Bedford, MA) and Cayman Chemical (Ann
Arbor, MI). Biochemical and cellular parameters in the blood and CSF were
determined using automated methods from F. Hoffmann-La Roche (Basel,
Switzerland) and Beckman Coulter (Brea, CA). Temporal clustering analysis
(TCA) and spatial analysis were performed as described (13). The fcMRI
analysis was performed as previously described (14,15) except that the seed
(virtual label that defines the target area from or toward which connectivity
is evaluated) was placed in the hypothalamus. Student t test was used for
statistical analysis.

RESULTS

Patients were evaluated at the time of the surgery and
238 6 11 days later, when body mass was reduced by 29 6
4% (P, 0.05). Although most patients enrolled in the study
were women, both male patients presented similar out-
comes; therefore, we have no reason to suspect the data
shown in this article represent female-specific phenomena.
The nutritional habits of the patients were assessed
according to the International Collaborative Study of
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Macro- and Micronutrients and Blood Pressure 24-h di-
etary recall (16). Total caloric intake decreased from
5,602 6 3,391 to 803 6 355 kCal/day (P , 0.05), and the
consumption of saturated fats decreased from 33.6 6 6.1
to 30.36 11.6% of total caloric intake (P, 0.05). Of special
interest, the relative consumption of saturated fats by
obese patients was greater than that of lean control sub-
jects on enrollment and reduced by 10.5% after surgery,
becoming statistically similar to lean subjects. As expected,
all the systemic parameters reflecting the metabolic and
inflammatory status of the patients improved significantly
after massive body mass loss (Table 1), reflecting the
known impact of reduction of adiposity and caloric intake
on subclinical inflammation and glucose/lipid homeostasis
(17).

Body mass loss produced no effect on cellular and
biochemical parameters in the CSF (Table 2). Two distinct
ultra-sensitive ELISA methods were used to evaluate TNF-a
and IL-1b in CSF, but these rendered no detectable levels
in all samples evaluated. However, the CSF levels of IL-10
increased in all patients, and the CSF levels of IL-6 in-
creased in all except one patient, leading to statistically
significant increases of both these cytokines after body
mass loss (Fig. 1A and B). Both IL-6 and IL-10 levels in the
CSF were inversely correlated with BMI (Fig. 1C and D),
and IL-6 levels in the CSF were inversely correlated with
IL-6 in the blood (Fig. 1E). Compared with lean subjects,
IL-10 levels in the CSF of obese subjects were similar be-
fore surgery (15.9 6 8.6 vs. 18.1 6 7.8 pg/mL for obese and
lean subjects, respectively) and significantly higher after
body mass loss (29.8 6 10.4 pg/mL, P , 0.05). Conversely,
IL-6 levels in the CSF of obese patients were significantly
lower than in lean control subjects before surgery (1.6 6
1.3 vs. 6.4 6 5.3 pg/mL [P , 0.05] for obese and lean
subjects, respectively), reaching similar levels after body
mass loss (5.76 2.8 pg/mL). In all groups, the CSF levels of
IL-10 were similar or higher than the blood levels of this

cytokine, suggesting that, at least in part, IL-10 was pro-
duced in the central nervous system (Fig. 1F). No signifi-
cant differences in blood monocyte counts were detected
among obese and lean subjects and in obese patients be-
fore and after surgery.

Two distinct analytic methods were used to evaluate the
impact of obesity and body mass loss on the activity of the
brain: TCA and functional connectivity MRI (fcMRI). TCA
allows for the identification of maximal response to a
given stimulus in a combination of signal intensity and
spatial extent (13), whereas fcMRI defines temporal cor-
relations between remote neurophysiologic events, which
are hemodynamic in nature when evaluated by fMRI (14,18).

For TCA, a mathematic model converts a multiple-
dimension data space into a relationship between the num-
ber of voxels, reaching maximum signal intensity, and the
time (13). On a given time frame, the spatial mapping
allows for the anatomic localization of the activity. We
found that a first peak of activity occurred right after
glucose intake (Fig. 2A), as previously reported (13). This
peak was similar in lean and obese subjects both before
and after surgery (Fig. 2A). After approximately 5 min of
the glucose stimulus, lean subjects presented a second
peak that was comparable to previously reported data
(13). However, obese patients did not present such a peak,
either before or after surgery (Fig. 2A). In addition, during
the remaining 20 min of analysis, the number of voxels
reaching maximum activity became progressively different
among the groups. The highest activity was presented by
lean subjects, whereas obese subjects before surgery
presented the lowest activity and obese subjects after
surgery presented intermediate activity (Fig. 2A). Spatial
analysis was then performed at three distinct time win-
dows, labeled in yellow in Fig. 2A. In the first window
(W1), which included the first peak after glucose intake,
maximum activity was detected in the hypothalamus and
orbitofrontal cortex in all three conditions (lean subjects,

TABLE 1
Blood metabolic and inflammatory parameters

Lean Obese before surgery Obese after surgery

6 females, 2 males 11 females, 2 males

Age (years) 29.5 6 4 34.0 6 10
BMI (kg/m2) 20.9 6 2.4 39.1 6 1.9* 28.1 6 2.8*§
WC (cm) 72.2 6 9.2 110.3 6 9.9* 89.7 6 8.7*§
HC (cm) 91.3 6 7.3 127.0 6 5.2* 105.0 6 7.5*§
Glucose (mg/dL) 80.6 6 3.1 84.3 6 6.1 77.9 6 7.3
HbA1c (%) 4.8 6 0.2 5.2 6 0.3 5.1 6 0.3
Insulin (pmol/L) 25.0 6 10.3 68.7 6 38.1* 21.5 6 10.4§
HOMA-IR 0.7 6 0.3 2.1 6 1.2* 0.6 6 0.2§
Cholesterol (mg/dL) 189 6 28 153 6 24 141 6 16
HDL (mg/dL) 74.5 6 25.7 36.9 6 5.8* 52.6 6 9.1*§
LDL (mg/dL) 99.5 6 22.4 97.6 6 26.4 73.6 6 16.1
Triglycerides (mg/dL) 75.5 6 38.9 94.1 6 27.1 76.6 6 19.9
CRP (mg/dL) 0.13 6 0.02 0.91 6 0.70* 0.17 6 0.02§
ESR (mm/1 h) 14 6 12 26 6 16* 16 6 9§
Adiponectin (mg/mL) 6.9 6 1.7 2.7 6 1.8* 7.8 6 1.6§
Leptin (ng/mL) 21.4 6 6.2 36.8 6 12.0* 17.0 6 13.9§
TNF-a (pg/mL) 5.8 6 5.5 25.6 6 10.3* 12.4 6 9.8§
IL-1b (pg/mL) 2.0 6 1.8 42.9 6 26.7* 13.6 6 4.3*§
IL-6 (pg/mL) 4.1 6 4.2 26.3 6 10.2* 8.5 6 6.4§
IL-10 (pg/mL) 14.0 6 10.1 15.6 6 16.5 15.8 6 5.5

CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; HC, hip circumference; HOMA-IR, homeostasis model assessment of insulin
resistance; WC, waist circumference. *P , 0.05 vs. lean. §P , 0.05 vs. obese before surgery.
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obese subjects before surgery, and obese subjects after
surgery), in the occipital cortex in lean and obese subjects
after surgery, and in the somatosensory cortex in obese
subjects both before and after surgery (Fig. 2B, W1).
Comparisons between the groups revealed that lean and
obese subjects before surgery presented different activi-
ties in the hypothalamus (inset graph, Fig. 2B, W1) and
occipital and somatosensory cortices; lean and obese
subjects after surgery were mostly similar with discrete
differences in the somatosensory cortex; and obese sub-
jects before and after surgery presented different activities
in the hypothalamus (inset graph, Fig. 2B, W1). In the
second window (W2), which included the second peak
after glucose intake, lean subjects presented the highest
activity in the hypothalamus and somatosensory and oc-
cipital cortices; obese subjects before surgery presented
the highest activities in the somatosensory and occipital
cortices and cerebellum; and obese subjects after surgery
presented the highest activity in the somatosensory cortex
(Fig. 2B, W2). At W2, the activities in the hypothalamus
(inset graph, Fig. 2B, W2) and somatosensory cortex were

different between lean and obese subjects before surgery.
The comparison between lean and obese subjects after
surgery showed a significant difference only in the so-
matosensory cortex; the comparison between obese sub-
jects before and after surgery showed differences in the
hypothalamus (inset graph, Fig. 2B, W2) and occipital,
somatosensory, and orbitofrontal cortices. In the third
window (W3), lean subjects presented the highest activi-
ties in the hypothalamus and orbitofrontal and somato-
sensory cortices; obese subjects before surgery presented
the highest activities in the somatosensory and occipital
cortices and in the cerebellum; and obese subjects after
surgery presented the highest activity only in the somato-
sensory cortex (Fig. 2B, W3). Somatosensory and orbito-
frontal cortices and the hypothalamus (inset graph, Fig.
2B, W3) presented different activities when lean subjects
were compared with obese subjects before surgery. Only
the orbitofrontal cortex was different between lean and
obese subjects after surgery, and somatosensory and
orbitofrontal cortices were different between obese sub-
jects before and after surgery (Fig. 2B, W3).

At both resting state and after a stimulus, synchronized
fluctuations of blood oxygen levels dependent on function
in fMRI signals in remote brain areas reflect physiologic or
pathologic patterns in a neuronal network (14,15,18). The
measurements of such events, which are the basis of
fcMRI, provide maps of connectivity that indicate inte-
gration and segregation of brain information. Here, a seed
was placed on the hypothalamus to explore the connec-
tivity of this anatomic region with other brain areas. In
lean subjects, the hypothalamus presented the highest
level of functional connectivity with the orbitofrontal and
somatosensory cortices (Fig. 3A). In obese subjects before
surgery, functional connectivity was detected between

FIG. 1. Inflammatory markers in the CSF. Levels of IL-6 (A) and IL-10 (B) were determined in the CSF of obese patients before and after bariatric
surgery. Correlation between IL-6 (C) and IL-10 (D) concentrations in the CSF and BMI, and correlation between IL-6 concentrations in the CSF
and blood (E) were obtained. The mean (6SD) levels of IL-10 in the blood and CSF were obtained for lean and obese subjects before and after
surgery (F). N = 8 for lean subjects; N = 13 for obese subjects. F: *P< 0.05 vs. blood/after surgery. AS, after surgery; BL, blood; BS, before surgery;
CS, cerebrospinal fluid.

TABLE 2
Cerebrospinal fluid cellular and biochemical parameters

Lean

Obese
before
surgery

Obese
after

surgery

Glucose (mg/dL) 59.5 6 9.6 52.9 6 8.5 48.5 6 4.4
Protein (mg/dL) 26.3 6 6.8 26.6 6 11.1 23.7 6 6.8
Leukocytes/mL 1.6 6 0.8 2.0 6 1.5 2.5 6 4.3
Erythrocytes/mL 18 6 38 37 6 79 44 6 57
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the hypothalamus and the orbitofrontal cortex and cere-
bellum (Fig. 3B). After surgery, functional connectivity of
obese patients was highest between the hypothalamus
and the orbitofrontal, somatosensory, and occipital cor-
tices (Fig. 3C). Intergroup comparisons revealed the
greatest difference in functional connectivity between
lean and obese subjects before surgery, particularly in
the regions of the cerebellum and somatosensory cortex
(Fig. 3D). Functional connectivity was mostly similar be-
tween lean and obese patients after surgery (not shown).
Finally, some differences in functional connectivity between

obese subjects before and after surgery were detected in
the cerebellum, somatosensory, and orbitofrontal cortices
(Fig. 3E).

DISCUSSION

Both TCA and fcMRI analyses showed distinct patterns of
functionality between obese and lean subjects. The dif-
ferences were mostly confined to a few anatomic regions,
predominating in the hypothalamus and somatosensory
and orbitofrontal cortices. The hypothalamus harbors

FIG. 2. TCA of the human brain after glucose intake. A: Time course of the activation depicted as the means of all analyzed subjects in the re-
spective groups (black, lean; red, obese before surgery; blue, obese after surgery); W1–W3 represent the time windows selected for spatial
analysis. B: Spatial mapping of the brain activity at each of the time windows (W1–W3); individual group analyses were performed for lean and
obese subjects before and after surgery; comparisons were also performed for all pairs of groups. The inset graphs on the right represent the signal
intensity in the region of the hypothalamus for each group. N = 8 for lean subjects; N = 13 for obese subjects. A pixel clustering size of 5 and
a t-threshold of |t| >2.1 were chosen to afford a P < 0.01 level of statistical significance of the detected signal changes. This is represented by the
different colors, as defined by the normalized color bars. Color bars indicate t value for one-sample t test (lean, BS, and AS) and two-sample t test
(lean vs. BS, lean vs. AS, and BS vs. AS). In the insets in B, *P < 0.01 vs. lean and #P < 0.01 vs. before surgery. AS, after surgery; BS, before
surgery; Cb, cerebellum; Hy, hypothalamus; Oc, occipital cortex; Of, orbitofrontal cortex; Ss, somatosensory cortex. (A high-quality digital rep-
resentation of this figure is available in the online issue.)
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hormone and nutrient-sensing neurons and provides the
integration for the energy intake and expenditure respon-
ses (19). Defective leptin and insulin signaling in this re-
gion provides the basis for experimental obesity (5,19).
The somatosensory and orbitofrontal cortices integrate
feeding cues with gustatory activity and facial movements,
respectively. The activities of these regions have been
shown to be modulated after a meal or glucose ingestion
(13,20,21), and data obtained from experimental animals
reinforce their role in the control of feeding and energy
homeostasis (5,19). The massive loss of body mass obtained
after surgery produced obvious changes in the function-
ality of the brain. By either analytic method, it is clear that
changes occurred toward the patterns found in lean sub-
jects. This is particularly evident in the TCA spatial anal-
ysis, which showed only minor differences when lean
subjects were compared with obese subjects after surgery
(Fig. 2B, W1, W2, and W3 – Lean 3 AS). Another remark-
able finding was the increased levels of IL-10 and IL-6 in the
CSF of obese subjects after surgery. In a recent study, in-
creased levels of both these cytokines were shown to play
a role in the reduction of hypothalamic resistance to leptin
after physical activity (22). Although inflammatory cyto-
kines were not detected in the current study, we believe
that advancement in measurement methods will allow
quantification of these cytokines and a comparison with the
findings in animal models, which show reductions in both
TNF-a and IL-1b after body mass loss (3,4).

The human brain activity in response to glucose in-
gestion is modified by obesity, and body mass loss rees-
tablishes some of the parameters. We cannot be sure if
a longer period of time elapsed from the surgery or
whether the complete restoration of body mass to levels
similar to those of lean control subjects would completely
correct the dysfunction. As observed in experimental
obesity, neuronal apoptosis in the hypothalamus can affect
distinct cellular subpopulations, leading to a defective re-
sponse to hormonal and nutritional inputs (7). Should
a similar phenomenon occur in humans, a complete res-
toration of the functional activity may not be achieved.
Nevertheless, the increase in the anti-inflammatory activity
detected in the CSF of obese patients after the loss of body
mass is remarkable. In addition to the well-known anti-
inflammatory activity of IL-10, the inhibition of neuronal
degeneration through the reduction of apoptosis has been
reported (23). Thus, we can hypothesize that body mass
loss or other conditions that increase IL-10 in the brain
may reduce neuronal damage resulting in the restoration
of functionality. Moreover, these findings place IL-10 and
perhaps IL-6 as attractive therapeutic agents for obesity, as
recently suggested (22).

In conclusion, reduction of body mass in obese humans
increases the anti-inflammatory activity in the CSF and
partially corrects the dysfunctional activity in response to
glucose in selected brain areas. These data suggest that
obesity and body mass loss affect the human brain in
a manner similar to the animal models for this disease.
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