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Abstract
It is generally known that risk variants segregate together with a disease within families but this
information has not been used in the existing statistical methods for detecting rare variants. Here
we introduce two weighted sum statistics that can apply to either genome-wide association data or
resequencing data for identifying rare disease variants: weights calculated based on sibpairs and
odd ratios, respectively. We evaluated the two methods via extensive simulations under different
disease models. We compared the proposed methods with the weighted sum statistic (WSS)
proposed by Madsen and Browning, keeping the same genotyping or resequencing cost. Our
methods clearly demonstrate more statistical power than the WSS. In addition, we found using
sibpair information can increase power over using only unrelated samples by more than 40%. We
applied our methods to the Framingham Heart Study (FHS) and Wellcome Trust Case Control
Consortium (WTCCC) hypertension datasets. Although we did not identify any genes as reaching
a genome-wide significance level, we found variants in the candidate gene angiotensinogen (AGT)
significantly associated with hypertension at P=6.9×10-4, whereas the most significant single SNP
association evidence is P=0.063. We further applied the odds ratio weighted method to the IFIH1
gene for type 1 diabetes in the WTCCC data. Our method yielded a P value of 4.82×10-4, much
more significant than that obtained by haplotype-based methods. We demonstrated that family
data are extremely informative in searching for rare variants underlying complex traits, and the
odds ratio weighted sum statistic is more efficient than currently existing methods.

Introduction
The recent meta-analyses of genome-wide association studies with sample sizes of over ten
thousand have uncovered a large number of genetic variants underlying complex traits
[Heid, et al. 2010; Lango Allen, et al. 2010]. Despite this success, the identified genetic
variants usually have modest effect sizes and only account for a small proportion of the trait
variation, resulting in the suggestion that many genetic variants, including both common and
rare genetic variants, contribute little to phenotypic variation [Bansal, et al. 2010; Manolio,
et al. 2009; Pritchard 2001]. In fact, recently many resequencing based studies of candidate
genes have identified collections of rare variants associated with phenotypic variation
[Bansal, et al. 2010]. Although a rare variant individually may make only tiny contributions
to phenotypic variation, collectively rare variants may uncover a substantial proportion of
missing heritability [Gibson 2010; Manolio, et al. 2009].

With recent advances, rare variants can be discovered and genotyped using next-generation
sequencing technology. Directly testing many rare variants becomes possible and such
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experiments have led to the detection of multiple functional variants in IFIH1, NPC1L1,
PCSK9, SLC12A3, SLC12A1 and KCNJ1 associated with type I diabetes, sterol absorption,
plasma levels of LDL-C and blood pressure [Cohen, et al. 2005; Cohen, et al. 2006; Ji, et al.
2008; Nejentsev, et al. 2009]. In contrast to common variants, the power of traditional
statistical methods to detect rare variants is usually poor and requires large sample sizes.
Many statistical methods have been proposed to improve statistical power, and these
methods can be divided into two categories.

The first category comprises methods based on collapsing or pooling a set of rare variants
and testing them collectively [Han and Pan 2010; Li and Leal 2008; Madsen and Browning
2009; Morgenthaler and Thilly 2007; Morris and Zeggini 2010; Price, et al. 2010;
Zawistowski, et al. 2010]. Excellent reviews of these methods can be found in the literature
[Bansal, et al. 2010; Zawistowski, et al. 2010]. Cohen et al. proposed a method to compare
the number of rare variants unique to either cases or controls using Fisher’s exact test
[Cohen, et al. 2006] while Li and Leal proposed the combined multivariate and collapsing
(CMC) method of pooling rare or functional variants and then comparing their distributions
in cases and controls using a multivariate statistic [Li and Leal 2008]. Instead of pooling rare
variants, Madsen and Browning[Madsen and Browning 2009] suggested the weighted sum
statistic (WSS) that sums a weighted rare variant count in a gene or a region [Madsen and
Browning 2009]. The weights are determined according to the variance of the variant
frequency estimated in controls, with a larger weight given for a smaller allele frequency. A
score is calculated for each individual and the scores are ranked for the cases and controls
together. A test similar to the Wilcoxon rank sum test is applied to test for association
between the set of rare variants and disease status via permutation. The WSS is more
powerful than the CMC but for more computational cost. Price et al. [Price, et al. 2010]
showed that the weights of the WSS are proportional to the log odds ratios of minor alleles
and extended the WSS to a variable MAF threshold to maximize statistical power. A similar
approach to the WSS, the cumulative minor-allele test (CMAT), was recently proposed and
applied to sequencing data and samples using imputed probabilistic genotypes to alleviate
the issue of uncertainty of genotype calls in low-coverage sequencing and imputation
[Zawistowski, et al. 2010]. The power of the existing pooling methods is dependent on the
threshold used to define a rare variant, which can result in misspecification of risk variants
by either including neutral variants or excluding risk variants [Zawistowski, et al. 2010].
Price et al. [Price, et al. 2010] addressed this issue via a variable MAF threshold at the cost
of more computation. This problem can be exacerbated for these pooling methods when
both common and rare variants contribute to disease risk. The reason for this is that, when
the MAF threshold is increased, many common neutral variants are also included - resulting
in a dilution of association evidence. Thus, study designs are often restricted to analyzing
the functional variants in a gene or a region assuming that many such variants are causal [Li
and Leal 2008; Madsen and Browning 2009; Zawistowski, et al. 2010]. In addition, these
methods only apply to unrelated samples, whereas family data have been shown to improve
power to detect rare variants [Zhu, et al. 2010].

The second category of methods compares haplotype frequencies between cases and
controls [Feng and Zhu 2010; Guo and Lin 2008; Li, et al. 2010; Zhu, et al. 2005; Zhu, et al.
2010]. A basic assumption is that the haplotypes created by the common and rare variants
are able to tag multiple rare ungenotyped variants. It is clear that rare variants are not usually
well tagged by common variants [Durbin, et al. 2010] and thus the haplotype based methods
only work for identifying rare variants with MAF >0.5% [Li, et al. 2010]. Similar to the rare
variant pooling methods, the haplotype based methods either collapse rare risk haplotypes
[Zhu, et al. 2010] or sum the haplotype scores weighted by emphasizing the haplotypes with
a low frequency in controls [Li, et al. 2010]. The haplotype based methods can be applied to
the data collected by genome-wide association studies [Feng and Zhu 2010]. However, to
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apply haplotype based methods, haplotype phases have to be inferred, which adds a
substantial computational burden. However, since we only need to infer the haplotype
phases once in any data analysis, the computation is still within feasible limits. When risk
variants are extremely rare (<0.5%), the power of haplotype based methods can be low.

In this article, we develop a sibpair based weighted sum statistic to detect both rare and
common risk variants residing in a gene or a genomic region. We argue that risk variants
will cosegregate with a disease in families and the risk variants will be enriched in
ascertained families such as affected sibpairs, as demonstrated in Zhu et al. [Zhu, et al.
2010]. We then propose a weighted method for summation of the risk variants using either
affected or discordant sibpairs. We theoretically show that the weights are proportional to
the effect sizes of risk variants. This pooling method does not require choosing a threshold
of MAF for defining whether a variant is rare, which is necessary for all the existing
weighted methods. It can be applied to sequencing or GWAS data. In addition, we also
suggest that directly using the odds ratio of a variant as a weight in the WSS can be more
powerful than the original WSS. Our methods are not affected by the directionality of effect.
Since the WSS is more powerful than other existing methods when an appropriate MAF
threshold is applied, we compared the power of our methods with the WSS using the best
threshold on case-control sequencing datasets simulated based on HapMap ENCODE data
[Frazer, et al. 2007]. We did not directly compare our methods with the haplotype based
methods in the simulation study, but we performed the comparison by applying them to real
data. As proof of principle, we applied our methods to the analysis of hypertension and type
1 diabetes using the Framingham Heart Study data [Levy, et al. 2009] and the Wellcome
Trust Case Control Consortium (WTCCC) data[2007].

Methods
Assume we will test the association of genetic variants and disease status in a candidate gene
or a genomic region. For genome-wide data, such as whole genome or whole exon
resequencing data, we can always partition the data into genes or genomic regions and test
the association in each gene or genomic region [Zhu, et al. 2010]. Our test procedure is
similar to the WSS of Madsen and Browning [Madsen and Browning 2009]. Assume we
collected ND cases and NC controls. Let xij be the number of minor alleles at the jth SNP
carried by the ith individual (both cases and controls) in a gene or a genomic region, where L
SNPs are genotyped and j = 1, 2,…, L. We define the genetic score

(1)

for the ith individual, where wj is the weight for the jth SNP. (If the weight wj is the inverse
of the jth SNP’s variance estimated in controls, this is equivalent to the WSS. We will
discuss how to calculate the weights later.) We then rank the genetic scores and calculate the
sum of the ranks for cases as

(2)

We chose the Wilcoxon rank sum test because the individuals’ genetic scores Xi can be
severely skewed and outliers may exist depending on the number of rare variants an
individual carries. Further, our weight calculation described later is also dependent on the
minor allele frequency (MAF) in controls. We then use the same permutation strategy as the
WSS [Madsen and Browning 2009] to assess the power and type I error rate. That is, we
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permute disease status among individuals 1,000 times to compute the statistic X in equation
(2) as . We next calculate the sample mean μ̂ and standard deviation σ ̂ of

. The test statistic is defined as , which follows approximately a
standard normal distribution. In what follows, we propose three different weighting methods
based respectively on affected sibpairs, discordant sibpairs and unrelated case-controls. We
call our methods the Sibpair Weighted Sum Statistic (SPWSS) and the Odds Ratio Weighted
Sum Statistic (ORWSS). In contrast to the requirement for existing weighted methods, the
proposed weighted methods do not require setting a threshold for the MAF.

Defining the weight of a variant
Previously, we demonstrated that rare risk variants will be enriched in ascertained families
such as affected sibpairs [Zhu, et al. 2010]. We thus use families, such as affected sibpairs or
discordant sibpairs, to define the weights. We will show that with the same size of genotype
effect, using family data can greatly increase statistical power in detecting rare risk variants.
We make the assumption that a minor allele is either a risk allele or neutral. We note in the
Discussion section that similar methods can be applied to detect protective variants.

(1) Affected sibpair design
We assume there are Nsib affected sibpairs. Assume a SNP has two alleles A and a, and A
always refers to the minor allele for all the SNPs we are examining. We let ~ represent either
the A or a allele at any SNP. Denote the ith sibpair’s genotypes of the L SNPs as gi = ((gi11,
gi21), (gi12, gi2L),…, (gi1L, gi2L)), where (gi1j, gi2j) refers to the jth SNP’s genotypes for the
ith sibpair. We do not differentiate the first or second sib here. Our idea is that if A at the jth
SNP is a risk allele, the weight for this allele A should be proportional to the ratio of the risk
of both affected sibs carrying A to that in the general population. In this case, we assume the
weight will only depend on the alleles carried at the jth SNP. That is, if both affected sibs
carry A at the jth SNP, the weight of A at this SNP is proportional to

(3)

Where ϕ1 = P((gi1j, gi2j) = (A ~, A ~)). If one sib carries A at the jth SNP and the other does
not, the weight of A is dependent on how many other sites have an A allele carried by the
other affected sib. That is, the weight is proportional to

(4)

where ϕ2 = P[(gi1j, gi2j) = (A ~, aa), A present at other sites of sib 2]. In Equation (4) we
always assume the first sib carries allele A when examine the other sibs carrying allele A at
the jth marker.

Based on equations (3) and (4), we can define a genotype score for each SNP in a sibpair.
That is, for the ith affected sibpair and the jth SNP, we define the genotype score as
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(5)

In equation (5) the second term was divided by 2 because either one of the sibs may carry
the A~ genotype at the jth SNP. We give the formulas for calculating ϕ1 and ϕ2 in appendix
A. ϕ1 is the function of one A allele frequency at the jth SNP and ϕ2 is a function of the other
A allele frequencies at the other SNPs; ϕ2 is dependent on the second sib’s genotypes at L
SNPs. We evaluate them using the MAFs of the SNPs in the controls. For the jth SNP, we

then calculate , which is the average of the genotype scores defined in equation
(5). Under the alternative hypothesis, in which only a subset of variants are risk variants, we
would expect these variants to be outliers. We thus define the weight for the jth SNP to be

(6)

where γ ̄ and σ is the mean and standard deviation calculated from γj, j = 1,…L, and c is a
pre-specified parameter. (The power of our test proposed later should be dependent on the
choice of c. In our simulations, we tried different values of c and found these different
values have only a slight effect on the power (Supplementary Tables 1 and 2). We then use
these weights in an association test based on equation (2). We term this method of using
weights defined by affected sibpairs as SPWSSAA.

(2) Discordant sibpair design
For discordant sibpairs, the first sib is always chosen to be affected and the second is always
unaffected. We assume there are Nsib discordant sibpairs. The weight of allele A at the jth
SNP should be proportional to

(7)

Where ϕ3 = P((gi1j, gi2j) = (A ~, aa)). For the ith discordant sibpair and the jth SNP, we
define the genotype score to be

We give the formula for calculating ϕ3 in appendix A. ϕ3 is a function of the MAF of the jth
SNP in the population and we evaluate it using the MAF in the controls. In the same way as
for affected sibpairs, we define the weights for discordant sibpairs as in equation (6). We
then use these weights in an association test based on equation (2). We call this method of
using weights defined by discordant sibpairs as SWSSAU.
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Case-control data
Most studies only recruit unrelated cases and controls and we here propose a weighted
method that for this design does not require a threshold for defining rare variants. Price et al
[Price, et al. 2010] demonstrated that the weights proposed by Madsen and Browning
[Madsen and Browning 2009] is proportional to the log odds ratio for a variant. In addition,
a coefficient in a logistic regression is equivalent to the logarithm of the corresponding odds
ratio. We therefore directly use the odd ratio of a variant as the weight for that variant, rather
than the variance estimated in controls. That is, we calculate the odds ratio between allele A
at the jth SNP and a disease status using a 2 × 2 table. Since we are interested in rare variants
and the corresponding 2 × 2 table may consist of entries with 0 observations, we applied the
amended estimator of the odds ratio by adding 0.5 to each cell. It has been suggested that the
amended estimator of the odds ratio behaves well [Agresti 2002]. We now define γj as the
logarithm of the amended odds ratio testing for the association of allele A at the jth SNP
using all the cases and controls. In the same way as for affected sibpairs and discordant
sibpairs, we define the weight for the jth SNP as

(8)

where σ is the standard deviation calculated from γj, j = 1,…L, c is a parameter and γ ̄ is the
mean. We call this method of using odds ratio weights, defined for unrelated cases and
controls, as ORWSS (Odds ratio weighted sum statistic).

Simulating Data
The HapMap ENCODE project resequenced 10 genomic regions of 500kb for samples from
three populations: CEU, YRI and JPT/CHB [Birney, et al. 2007]. We downloaded the
genotype data in ENm010 on 7p15.2 from the HapMap website (www.hapmap.org). We
inferred haplotypes using the software Beagel [Browning and Browning 2007] in each
population separately. To increase the number of rare variants we combined the CEU, YRI
and JPT/CHB samples together. We expect that most of the variants in this region have
already been discovered. After dropping the monomorphic sites, there are 808 SNPs
comprising 529 unique haplotypes for a total of 269 individuals. Table 1 lists the distribution
of rare variants in this region. We believe this size of genomic region should be comparable
with a gene or a region where association can be tested.

To simulate cases and controls, we set the cumulative frequency of the risk alleles at 10%.
We assumed two disease risk allele frequency models: 1) only the variants with MAF<2%
can be risk variants; 2) there is one common variant with MAF between 5% and 8% and the
rest of the risk variants have MAF<2%. For model 1, we randomly drew risk variants with
MAF<2% until the accumulated frequency of haplotypes in which the sampled variants fell
reached 10%. This procedure led to an average of 16±7.7 variants that are disease variants.
For the second case, we first randomly picked a common variant with MAF between 5% and
8%. We then randomly sampled the rest as rare variants until the accumulated haplotype
frequency reached 10%. This procedure led to an average of 6.3±5.5 variants being risk
variants. We considered the haplotypes in which the sampled risk variants fell as the risk
haplotypes and we further assumed their effects on the phenotype are the same, i.e. that
penetrance is only dependent on how many risk haplotypes an individual carries. We then
simulated the cases, controls and sibpairs as described in Zhu et al. [Zhu, et al. 2010].
Briefly, an individual’s genotype was simulated by randomly drawing two haplotypes
according to the haplotype frequencies. Disease status was simulated based on the
penetrances, given the haplotypes, according to three modes of inheritance: dominant,
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additive and recessive. To simulate affected sibpairs, we independently simulated two
individuals as the parents and then randomly transmitted one of the two haplotypes from
each parent to his/her offspring. We kept generating sib pairs from parent-pairs until we had
generated enough affected or discordant sibpairs.

Results
Type I error

Since we used the approximation strategy for permutation testing discussed in the Method
section in order to save computation time, we first evaluated the type I error rate for the
proposed methods and the WSS. We simulated the data under the null hypothesis: that is we
let the relative risk rr = 1.0 for any genotype an individual carries. Our simulation results
demonstrate that the type I error rates are reasonable for the proposed methods as well as for
the WSS (Table 2).

Power
Using the simulation procedure described above, we generated 2,000 cases, 2,000 controls
and 200 affected sibpairs for the SPWSS using affected sibpairs (SPWSSAA). For a fair
comparison, we simulated 2,400 cases and 2,000 controls for both the ORWSS and the
WSS. Similarly, we generated 2,000 cases, 2,000 controls and 200 discordant sibpairs for
the SPWSS using discordant sibpairs (SPWSSAU). For comparison, we simulated 2,200
cases and 2,200 controls for both the ORWSS and the WSS. Thus, the total genotyping
effort would be the same for the compared methods. The power was calculated at the
significance level α=10-6 based on 1,000 replications. Three disease models were assumed:
Dominant, Additive and Recessive. We assumed all the risk allele frequencies were less than
0.02, with a cumulative risk allele frequency of 10%. In each replication, we sampled risk
variants until the cumulative sampled risk allele frequency reached 10%. Thus, the risk
variants in the different replications were not fixed. This procedure allows us to evaluate a
wide range of risk variant distributions in a region. Figure 1 presents the power of the three
different methods: the SPWSS, ORWSS and WSS. When using the weights based on 200
affected sibpairs (Figure 1 top panel), the SPWSS is the most powerful method, followed by
the ORWSS, for all three modes of inheritance. When the relative risk is 2.0, the SPWSSAA
has 25% more power than the ORWSS, and 50% more than the WSS, for a dominant
disease model. For an additive model, the SPWSS has 40% more power when the relative
risk is 3.0. There is no power for any of the three methods for a recessive model. For the
WSS, we used a threshold 0.02, which represents the best threshold since the MAFs for all
the true risk variants were less than 2%. Thus, the power for the WSS should represent the
best power it can attain. When comparing the weights based on 200 discordant sibpairs
(Figure 1 bottom panel), for a dominant model the ORWSS is the most powerful and
SPWSSAU and the WSS have similar power. For an additive model, the three methods have
comparable power. We did not observe any power for a recessive model for any of the three
methods. When we increase the number of sibpairs for the SPWSS to 400, and
correspondingly the number of cases and controls for the ORWSS and WSS, the power
pattern is similar to that using 200 sibpirs for calculating the weights (Supplementary Figure
2).

It is possible that there may be both common and rare disease variants in a gene or a
genomic region [Momozawa, et al. 2011]. We thus investigated the power performance for
the three methods when disease variants include both common (MAF between 5% and 8%)
and rare (MAF<2%) variants. We applied the same procedure as before. However, we first
sampled a common disease variant and then the rest were rare disease variants. We set the
cumulative risk allele frequency at ~10%. For the WSS, we used three MAF thresholds:
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0.02, 0.05 and 0.08, to determine if a SNP should be filtered out. We expected the threshold
0.08 to have the best power for the WSS because all the disease variants will then be
included in the analysis. Figure 2 presents the power of the three methods when 200 sibpairs
were used for weight calculation for the SPWSS. We observed that the power of the SPWSS
and ORWSS remains. However, the power of the WSS is critically dependent on the MAF
threshold. As expected, the WSS with the threshold 0.08 gives the best power, followed by
the threshold 0.05. The power decreases substantially for the threshold 0.02, with over 30%
for a dominant model. The results are similar when the sample size is increased (Figure 3).

The power is also dependent on the number of sibpairs used in computing the weights, as
suggested in our previous study [Zhu, et al. 2010]. We thus compared the power of 200
sibpairs, 2000 case and 2000 controls with 400 sibpairs, 1800 case and 1800 controls. Thus,
the total sample sizes are the same. Figure 4 presents the power for both affected sibpairs
and discordant sibpairs. In general, we observed the power using different numbers of
sibpairs for weight calculations is similar, with slightly more power with increasing sibpairs.
This result also suggests the importance of using more family data in rare variant association
analysis.

In the above analysis we chose c=1.64. We then repeated the same analysis but with c=1.28.
Supplementary figure 2 and 3 show the power for the different c values. We observed the
power is essentially the same for the different values of c.

Application to the Framingham Heart Study and Wellcome Trust Case Control Consortium
data

Our simulation study suggests both the SPWSS and ORWSS can be more powerful than the
WSS. In addition, the SPWSS and ORWSS do not require a threshold to filter out the
common variants. As proof of principle for the methods, we applied the SPWSS and
ORWSS to the Framingham Heart Study (FHS)[Levy, et al. 2009] and Wellcome Trust Case
Control Consortium (WTCCC) hypertension dataset [2007]. We applied the same QC as did
Feng and Zhu [Feng and Zhu 2010]. For the FHS data, we further performed a Mendelian
inheritance consistency check. We set a genotype as missing if a Mendelian inheritance
error was identified. We next kept the overlapping SNPs genotyped in both the WTCCC and
the FHS, and these SNPs were mapped to genes based on map annotations provided by
Affymetrix 6.0 GeneChip
(https://www.affymetrix.com/support/technical/annotationfilesmain.affx). We only analyzed
the SNPs in 13,005 genes. We identified a total of 265 affected sibpairs in the FHS data and
these affected sibpairs were used for the weight calculation in the SPWSS. The association
tests were performed using WTCCC hypertension cases and common controls. For
comparison, we performed the ORWSS and WSS using the WTCCC data only. Because
both the SPWSS and ORWSS required calculating the mean and standard deviation of the
test statistics from permutations, it is possible for all the SNP weights in equations (6) and
(8) to be 0 when only a few SNPs are available in a gene, resulting in underestimated
variances of the test statistics. Thus, we directly used the γj in equations (6) and (8) as the
weights when the number of SNPs in a gene was less than 20. We chose 20 SNPs to ensure
that we will have at least one SNP with a weight not equal to 0. There were 9,446 genes
having less than 20 SNPs. We set the MAF at 0.05 to filter out the common SNPs for the
WSS. When there is only one SNP with MAF close to 0.05, it is also likely that all the SNP
weights in the WSS are 0 in the permutations, resulting in an underestimated variance of the
test statistic. In such cases these genes were excluded in the WSS analysis. Overall, we did
not observe any gene reaching significance by any of the three methods after correcting for
13,005 tests.
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We next focused on the association between hypertension and four genes: angiotensinogen
(AGT), renin (REN), angiotensin I-converting enzyme (ACE), and the angiotensin II
receptor, subtype 1 (AGTR1), which encodes components of the renin-angiotensin system
(RAS). RAS plays a critical physiological role in the cardiovascular system and the four
genes are considered as candidate genes for hypertension [Zhu, et al. 2003]. The P-values
for the SPWSS, ORWSS and WSS are shown in Table 3. The P-values of AGT for the
SPWSS and ORWSS are 2.56×10-3 and 4.76×10-3 but not significant for the WSS
(P=0.556). There are 8 SNPs being genotyped in AGT and Table 4 presents the single SNP
association tests with hypertension in the WTCCC data. We did not observe any significant
association evidence in the single SNP association analysis, although four of eight SNPs
have P-values less than 0.1. We examined the linkage disequilibrium (LD) among the 8
SNPs in AGT and found that three of them (rs7555650, rs7549009 and rs4628514) are in
almost perfect LD (Table 5). We then kept only rs7555650 and performed the SPWSS,
ORWSS and WSS again. The significance association evidence for the SPWSS was further
improved (P value=6.91×10-4) but for the ORWSS it remained similar (P value=4.97×10-3).
Thus, our methods identified multiple variants in this gene contributing to the association
evidence for AGT. When we applied the two-stage haplotype grouping (HG) method [Zhu,
et al. 2010], we obtained the P-value 0.011, which is significant after correcting for four
tests.

Application to the IFIH1 gene in the WTCCC type 1 diabetes data
Multiple common and rare variants in the IFIH1 gene have been identified as contributing to
the risk of type 1 diabetes (T1D). Li et al. [Li, et al. 2010] analyzed six polymorphisms in
IFIH1 genotyped in the WTCCC T1D data but excluded the common SNP rs1990760,
which has already been identified as associated with T1D [Nejentsev, et al. 2009]. Using the
weighted haplotype and imputation-based tests (WHalT), Li et al. found much stronger
association evidence between the haplotypes consisting of these six SNPs and T1D than the
existing methods, including the WSS [Li, et al. 2010], with the smallest P value 4.31×10-3.
We then applied the ORWSS and WSS to the same data because only unrelated samples are
available. However, SNP rs41463049 was not available in our data, so we applied the
ORWSS and WSS to only the other five SNPs. Because there are only five SNPs available,
the odds ratio for each SNP was used as the weight without further filtering out SNPs. The
P-values for the ORWSS and WSS are 4.82×10-4 and 0.49, respectively. We also applied the
haplotype grouping method we previously developed [Feng and Zhu 2010; Zhu, et al. 2010].
Since the haplotypes created by the five SNPs seem to have a protective effect, we grouped
haplotypes showing a protective effect together and then performed an association test based
on 10,000 permutations. We obtained a P-value of 0.0021 for the haplotype grouping test,
slightly more significant than that by Weighted haplotype and Imputation-based tests. This
result clearly demonstrates that the ORWSS can be more powerful than currently existing
methods in searching for the rare variants affecting complex diseases, and the weights by the
odds ratio is more efficient than the weights by the MAF.

Discussion
By the motivation that rare disease variants will be enriched in family data [Feng and Zhu
2010], we developed a sibpair based weighted sum statistic (SPWSS) to detect rare variants
associated with complex traits. Further, we suggested that using an odds ratio rather than
MAF as a weight can improve power for detecting rare disease variants. These methods can
be applied to either resequencing data or GWAS data. Our methods do not require a MAF
threshold, which is critical for the existing methods. Thus, our methods also have power to
detect genes when both common and rare variants exist in the data. In fact, our methods
filter out variants according to the weights calculated from either sibpairs or odds ratios. The
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reason for this is that, if a variant is a risk variant, we would choose a weight for this variant
to be proportional to the relative risk for sibs carrying the risk allele, or to the odds ratio of
carrying the risk allele. If a variant is neutral, the relative risk for sibpairs or the odds ratio of
a minor allele is close to 1. We expect the weights of risk variants to fall in the extreme tail
of the weight distribution. For a MAF threshold based method such as the WSS, noise can
be introduced by a predefined MAF threshold because of the neutrality of many rare
variants. In addition, a true risk variant may have a MAF larger than a predefined MAF
threshold. In this case, a MAF threshold based method such as the WSS will lose statistical
power. Thus, our proposed methods have substantial advantages over the existing methods.

We compared the SPWSS with weights calculated from affected and discordant sibpairs via
simulated data for a variety of disease models. We found that the SPWSS based on affected
sibpairs is more powerful than that based on discordant sibpairs. This is not surprising,
because rare variants are more frequent in affected sibpairs than in discordant sibpairs. We
thus suggest that in practice affected sibpairs should be used when they are available. Since
traditional linkage studies have collected a large number of affected sibpairs for a variety of
diseases, we argue that the affected sibpair method should be convenient in practice. In
addition, family data have a better chance to detect genotype errors than unrelated samples.
Furthermore, this method can also be used to search for protective rare variants by defining
weights based on unaffected sibpairs. Our simulations also demonstrated that the SPWSS
using affected sibpairs can dramatically improve statistical power over the methods based on
unrelated methods, suggesting family data may be extremely useful for detecting rare
disease variants.

We assumed that the penetrance is a constant and is only dependent on how many of an
individual’s haplotypes carry risk variants, rather than the total number of risk variants an
individual carries. In practice, different rare risk variants may have different disease risks.
Some of them may even be protective. Han and Pan [Han and Pan 2010] demonstrated that
the power of the WSS [Madsen and Browning 2009] and CMC [Li and Leal 2008] can be
substantially reduced when this is the case. However, our proposed methods are expected to
work well because the risk and protective alleles will likely fall into different groups and the
weight is defined according to an individual variant’s risk. For the SPWSS, the risk alleles
will be assigned large weights and the protective alleles will be assigned small weights using
the sibpair data. Therefore, the risk and protective variants will likely be in the different
groups defined by equation (6). For ORWSS, a weight is defined as the logarithm of the
odds ratio of a variant, with the result that the risk variants will likely fall in the different
groups defined by equation (8). However, it is always possible that the risk variants will be
misclassified. It should be noted that in our proposed SPWSS, the affected sibpairs are only
used for the weight calculation. A more efficient approach would be based on a mixed
model, which can include family data together with the case-control data; this will be a
direction we shall pursue in the future for rare variant association analysis.

We applied our proposed methods to the FHS and WTCCC hypertension data. We
performed association analysis in all 13,005 genes with hypertension using both the SPWSS
and the ORWSS, and we failed to identify any genes reaching significance after correcting
for multiple tests. This is not entirely surprising, given that mainly common SNPs were
available in the data and our proposed methods are targeted for resequencing data with
possible disease variants being genotyped. However, when our analysis was concentrated on
RAS genes, both the SPWSS and the ORWSS detected association evidence between AGT
and hypertension. The variants in AGT have already been suggested as associated with
hypertension, although the association evidence is not entirely consistent [Inoue, et al. 1997;
Jeunemaitre, et al. 1992; Rotimi, et al. 1994; Zhu, et al. 2003]. The haplotypes produced
from rare variants in AGT have been suggested as contributing to the variation in
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angiotensinogen levels [Zhu, et al. 2005], the substrate of the renin–angiotensin system,
which has been correlated, albeit weakly, with blood pressure and hypertension [Forrester, et
al. 1996; Jeunemaitre, et al. 1992]. Our result of rare variants analysis in AGT indicates that
there may be multiple variants, including possibly both common and rare variants,
cumulatively associated with hypertension. Our result may also provide an alternative
explanation why some studies failed to replicate the association evidence between the
variants in AGT and hypertension when only a single variant was tested [Rotimi, et al. 1994;
Zhu, et al. 2003]. Thus, AGT is an interesting candidate for further resequencing studies to
uncover rare causal variants contributing to the variation of hypertension.

Our simulations also suggested that the odds ratio based weighted sum statistic (ORWSS)
has comparable or better power than the discordant sibpair method under a variety of disease
models. It has been suggested that using odds ratios as weights is the most efficient (Dr.
Xihong Lin, personal communication). The ORWSS can follow the general model by
Hoffmann et al. [Hoffmann, et al. 2010] when weights are the odds ratios with no need to
worry about the parameter sk in their model. The ORWSS is much similar to the data
adaptive sum test by Han and Pan [Han and Pan 2010]. The difference lies that the ORWSS
allows different odds ratios while the data adaptive sum statistic indirectly assumes the same
odds ratio for different variants. The ORWSS is generally more powerful than the original
WSS of Madsen and Browning [Madsen and Browning 2009] for the disease models we
simulated, even when we applied the best MAF threshold for the WSS. This is not
surprising, because the ORWSS examines the odds ratio distribution and filters out the
variants based on the data. We applied the ORWSS and WSS to WTCCC IFIH1 data and
found the ORWSS gives a more significant result than the WSS. In fact, the result by the
ORWSS is more significant than that by haplotype based methods [Li, et al. 2010; Zhu, et
al. 2010]. The reason for this is that the ORWSS can use the information from both common
and rare variants, whereas the WSS can only include rare variants and, as pointed out by Li
et al. [Li, et al. 2010], inclusion of common variants can increase statistical power. The
ORWSS may be more comparable with the logistic kernel machine model (LKMM) by Wu
et al [Wu, et al.], who focus on a set of variants. Although the LKMM can potentially model
both common and rare variants, its performance needs further evaluation by simulations.

Both the SPWSS and the ORWSS can be extended to analyze quantitative traits and to
incorporate covariates. To incorporate covariates, we can use the same way to derive the
weights and a “genetic score” in each gene for each individual as defined in equation (1),
either using sibpairs or unrelated individuals. Then logistic regression incorporating
covariates can be applied to test the association between a disease status and the “genetic
score”, and statistical significance can be assessed via permutation of the unrelated
individuals. However, this permutation test may be very time consuming, especially when a
large number of permutations should be conducted for a small significance level. For a
quantitative trait, we can first calculate the weights by selecting extreme concordant sibpairs
and then derive the “genetic score” for each individual in a gene. If only unrelated samples
are available, we can perform a linear regression analysis for each variant separately. The
regression coefficients of the variants can be used to calculate weights and genetic scores
accordingly. Finally, the association between a gene or a region and a quantitative trait can
be tested by regressing the trait on the genetic score with the covariates incorporated into the
regression model.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix A
We let I denote the number of allele shared by a sibpair. Denote pj as the A allele frequency
at the jth SNP, j = 1, 2,…, L. At the jth SNP, we have

(A1)

The third equation in (A1) is obtained from the genotype conditional probabilities given a
sibpair shares 0, 1 or 2 alleles identical by decent, which can be obtained from Haseman and
Elston [Haseman and Elston 1972]. When allele A is rare, ϕ1 approximates pj.

Here we assumed all SNPs are in linkage equilibrium. This may not be a reasonable
assumption. However, our simulations suggest this assumption has little effect on our
results. After some algebra, we have

(A2)

Similarly, we have
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Figure 1.
Comparison of power for different relative risks. All the risk allele frequencies are less than
0.02, with a cumulative risk allele frequency of 10%. The power was calculated at
significance level α=10-6 based on 1,000 replications. Three disease modes have been
assumed: Dominant, Additive and Recessive. All the risk alleles were treated the same. Top
panel: for SPWSSAA, we simulated 200 affected sibpairs for calculating the weights, and
2,000 cases and 2000 controls for the association test. For ORWSS and WSS, we simulated
2,400 cases and 2,000 controls for the association test. Bottom panel: for SPWSSAU, we
simulated 200 discordant sibpairs for calculating the weights, and 2,000 cases and 2000
controls for the association test. For ORWSS and WSS, we simulated 2,200 cases and 2,200
controls for the association test. For WSS, we used the threshold 0.02 to define rare variants;
that is, all the risk variants belong to the rare variant group.
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Figure 2.
Comparison of power for different relative risk. For each replication, we assumed there is a
common risk variant (MAF is between 0.05 and 0.08) and the rest risk variants are rare
(MAF<0.02), with a cumulative risk allele frequency of 10%. The power was calculated at
significance level α=10-6 based on 1,000 replications. Three disease models have been
assumed: Dominant, Additive and Recessive. All the risk alleles were treated the same. Top
panel: for SPWSSAA, we simulated 200 affected sibpairs for calculating the weights, and
2,000 cases and 2000 controls for the association test. For ORWSS and WSS, we simulated
2,400 cases and 2,000 controls for the association test. Bottom panel: for SPWSSAU, we
simulated 200 discordant sibpairs for calculating the weights, and 2,000 cases and 2000
controls for the association test. For ORWSS and WSS, we simulated 2,200 cases and 2,200
controls for the association test. For WSS, we used different thresholds: 0.02, 0.05 and 0.08
to define the rare variants.
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Figure 3.
Comparison of power for different relative risk. For each replication, we assumed there is a
common risk variant (MAF is between 0.05 and 0.08) and the rest risk variants are rare
(MAF<0.02), with a cumulative risk allele frequency of 10%. The power was calculated at
significance level α=10-6 based on 1,000 replications. Three disease models have been
assumed: Dominant, Additive and Recessive. All the risk alleles were treated the same. Top
panel: for SPWSSAA, we simulated 400 affected sibpairs for calculating the weights, and
2,000 cases and 2000 controls for the association test. For ORWSS and WSS, we simulated
2,800 cases and 2,000 controls for the association test. Bottom panel: for SPWSSAU, we
simulated 400 discordant sibpairs for calculating the weights, and 2,000 cases and 2000
controls for the association test. For ORWSS and WSS, we simulated 2,400 cases and 2,400
controls for the association test. For WSS, we used different thresholds: 0.02, 0.05 and 0.08
to define the rare variants.
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Figure 4.
Comparison of power for SPWSS when the total sample size is fixed. The power was
calculated at significance level α=10-6 based on 1,000 replications. Three disease models
have been assumed: Dominant, Additive and Recessive. All the risk alleles were treated the
same. We compared 200 sibpairs, 2000 cases and 2000 controls with 400 sibpairs, 1800
cases and 1800 controls. Top panel: SPWSSAA; Bottom panel: for SPWSSAU.
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