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Abstract

Restrictions to molecular motion by barriers (membranes) are ubiquitous in porous media, 

composite materials and biological tissues. A major challenge is to characterize the microstructure 

of a material or an organism nondestructively using a bulk transport measurement. Here we 

demonstrate how the long-range structural correlations introduced by permeable membranes give 

rise to distinct features of transport. We consider Brownian motion restricted by randomly placed 

and oriented membranes (d − 1 dimensional planes in d dimensions) and focus on the disorder-

averaged diffusion propagator using a scattering approach. The renormalization group solution 

reveals a scaling behavior of the diffusion coefficient for large times, with a characteristically slow 

inverse square root time dependence for any d. Its origin lies in the strong structural fluctuations 

introduced by the spatially extended random restrictions, representing a novel universality class of 

the structural disorder. Our results agree well with Monte Carlo simulations in two dimensions. 

They can be used to identify permeable barriers as restrictions to transport, and to quantify their 

permeability and surface area.

Brownian motion in a uniform medium is characterized by a single parameter, the diffusion 

coefficent D, which is a measure of mean square molecular displacement. A packet of 

random walkers spreads with time t according to a Gaussian distribution with variance 〈x2〉 

= 2Dt. Complexity in the microscopic structure of a sample, such as heterogeneity in 

diffusive properties and restrictions to molecular motion, results in non-Gaussian 

evolution1,2. In particular, diffusion becomes dispersive, leading to the time-dependence of 

the diffusion coefficient D(t).
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A fundamental question is how specific complexity features manifest themselves in the 

dispersive dynamics. Random drifts are known to drastically slow the dynamics down to 

〈x2〉 ~ ln4 t, thereby suppressing the diffusion, D|t→∞ = 0, in one dimension3,4. Their effect 

in higher dimensions is less profound5–9. Short-range disorder in local diffusion coefficient 

preserves Gaussian diffusion for t → ∞, resulting in the finite macroscopic diffusion 

constant D∞ ≡ D(t)|t→∞. However, it causes a long-time tail10,11 in the velocity 

autocorrelator (t) = 〈v(t)v(0)〉 ~ t−(d+2)/2, with the power-law exponent depending on the 

spatial dimensionality d. Equivalently, the diffusivity 

 acquires non-analytic dispersion at low 

frequencies10,11. Studying dispersive diffusion, therefore, is a way to characterize the type 

of disorder and of restrictions to molecular motion in a complex sample.

Here we consider a novel class of restrictions to diffusion, represented by extended barriers 

(membranes). Practically, membranes regulate the transport of ions12, water molecules13–

16 and gases17 in biological tissues18. Permeable barriers may partition cell membranes, 

modulating phospholipid motion19–21. Barriers also restrict molecular motion in porous 

and composite materials22–27. On a fundamental level, extended barriers may introduce 

significant long-range correlations into the sample structure. We show that these correlations 

give rise to distinct transport features, qualitatively different from those due to short-range 

disorder which is a default assumption in the models of transport10,11,28.

We develop a minimal model of a d-dimensional medium with spatially extended disorder, 

assuming that diffusion is restricted by randomly placed and oriented infinite flat 

membranes with a given permeability, such as in the d = 2 example of Fig. 1. Based on the 

renormalization group analysis, we find an accurate approximation for the diffusion 

coefficient as a function of time or frequency, for all membrane concentrations and 

permeabilities, as confirmed numerically for d = 2 in Fig. 2.

Remarkably, the spatially extended disorder introduced by the membranes in any d results in 

a long-term memory, that manifests itself in the long-time tail  (t) ~ t−3/2 in the velocity 

autocorrelator (Fig. 3); in a non-analytic dispersive diffusivity (ω) ≃ D∞ + const · ω1/2 at 

low frequencies; and in a characteristically slow decrease of the diffusion coefficient, D(t) = 

D∞ + const · t−1/2 as t → ∞, Fig. 2, causing the mean square displacement to increase as 

〈x2〉 ≃ 2D∞t + const · t1/2. The ω1/2 ~ t−1/2 dispersive diffusion is shown to be a 

consequence of anomalously strong structural fluctuations in a sample with spatially 

extended barriers. For membranes with finite extent or correlation length rc, the signature 

ω1/2 dispersion will switch to its short-ranged counterpart ωd/2 after the diffusion length 

exceeds rc.

Our model represents a novel universality class of the structural disorder in classical random 

media. An essential feature of the ω1/2 ~ t−1/2 dispersion is that, at sufficiently long times, it 

dominates the short-range disorder contribution for d > 1. Hence, if observed, this dispersion 

can serve as a “fingerprint” of spatially extended restrictions within the complexity of 

heterogeneous samples. Practically, such a dependence can manifest itself in a variety of 

transport measurements, such as the electrical29 or heat conduction, or the diffusion-

weighted NMR15.
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Model

A membrane is an idealization of a thin slice of a poorly diffusive material, as long as its 

thickness is negligible compared to the shortest observable diffusion length. In the limit 

when both the diffusion coefficient Dm of the membrane material and its thickness lm 

vanish, the ratio κ ≡ Dm/lm is by definition the permeability. The effect of a membrane is 

described by the boundary condition18,30

(1)

Here D0 is the unrestricted diffusion coefficient. The condition (1) means that, at each point 

rm of the membrane, the density ψ of random walkers experiences a jump proportional to the 

component of the current J along the normal n to the membrane surface.

The permeability has the dimensions of velocity. In what follows, we find it useful to 

associate an effective thickness, 2ℓ = D0/κ, with a membrane. This length scale is defined 

relative to the free diffusion coefficient D0. Its physical meaning is derived from the 

condition (1) and is illustrated in Fig. 3a; the membrane indeed appears D0/Dm ≫ 1 times 

thicker than its “nominal” vanishing thickness lm.

Consider now diffusion in a macroscopic sample embedded with multiple membranes, each 

one imposing the condition (1). The diffusion propagator depends on their number, shape, 

and spatial distribution. The number of membranes is characterized by the ratio S/V of their 

total surface area to the sample volume. Here we adopt the convention from the porous 

media literature16,24: as the random walkers can approach a membrane from both faces, the 

membrane’s surface area is counted twice in S. The shape and the spatial distribution of the 

membranes vary greatly depending on the physical context. The distinct dispersive features 

of transport due to spatially extended restrictions can be captured by making the simplest 

assumption which also allows us to keep the number of parameters to a minimum. Namely, 

below we consider the membranes as infinite d − 1 dimensional planes placed and oriented 

in a completely random (uncorrelated) way, dividing the sample into pores with random 

shapes, as shown in Fig. 1 for d = 2. In this case, the ratio S/V is all that is needed to 

characterize the geometry.

In what follows, we first outline our main results for the model medium. Next, we derive 

them, compare with numerical simulations, discuss and generalize.

Results for randomly oriented flat membranes

In the t → ∞ limit, the diffusion becomes Gaussian with the reduced diffusion coefficient

(2)

Here the dimensionless parameter ζ quantifies the ability of membranes to hinder the 

diffusion. It is the “volume fraction” occupied by the membranes based on the effective 
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thickness ℓ defined above. The result for D∞ is exact in d = 1, ref. 31. As follows from Fig. 

2, it is a good approximation for d > 1, with 1/d in equation (2) arising from the mean-field 

orientational averaging, cf. Methods section. Strong restrictions correspond to ζ > 1, when 

the domains of thickness ~ ℓ associated with each membrane overlap, such that transport 

across a membrane is affected by its neighbors.

For finite t, we shift to the frequency representation since the restrictions are stationary. 

Technically, we focus on the diffusion propagator G averaged over the disorder in positions 

and orientations of the random membranes. After disorder averaging, the propagator 

becomes translation invariant. Its pole in the frequency – wave vector representation, 

, defines the dispersive diffusion coefficient (diffusivity) (ω) 

which is a retarded response function that relates the disorder-averaged particle current Jω,r 

= − (ω)∂rψω,r to the density gradient32.

The corresponding time-dependent diffusion coefficient

(3)

is given32 by a contour integration along the real axis with all the singularities in the lower 

half-plane of complex ω.

We find (ω) in three steps. First, we develop a scattering approach for the transmission 

events described by the boundary conditions (1) at each membrane. Second, we solve the 

problem perturbatively in the volume fraction ζ at the mean-field level, starting from 

infinitely permeable limit (ω) ≡ D0. These two steps are done in the Methods section. The 

resulting diffusivity

(4)

with  and τ = ℓ2/D0 = D0/(2κ)2, is exact in the limit when the correction ζ|ϕ̃(ω)| 

≪ 1 is small. This condition holds either for sufficiently permeable membranes, ζ ≪ 1, or 

at short times  for arbitrary permeability. The corresponding velocity 

autocorrelator (t) = D0 [δ(t) − ζϕ(t)] contains a nonlocal in time memory kernel

(5)

Fig. 3b, which will be discussed in detail below.

At the third step, we extend equation (4) onto the non-perturbative domain ζ ≫ 1 using the 

real-space renormalization group to account for the multiple transmission events self-

consistently, as described below. Thereby we obtain our main result for all ζ,
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(6)

Effective circuit

Before deriving our main result (6), we note that the perturbative limit (4) can be 

represented as a simple effective circuit. As the random walkers are uncharged, the current J 
has only the diffusive component, and the diffusivity (ω) defines its response to a density 

gradient ∂rψ rather than to a potential bias. With this important distinction29, the (ζ) result 

(4) can be viewed as an “impedance” Z(ω) of a hypercube Ld, Ld−2Z(ω) ≡ 1/ (ω) ≈ 1/D0 + 

nZm(ω), which acts as a one-dimensional disordered transmission line of length L with point 

impedances Zm = ϕ̃(ω)/κ placed at random positions in series, with density n = S/(2V d). 

Adding independent contributions Zm is tied to the Poissonian statistics in the positions of 

the barriers (see the sections on the origin of the  dispersion, and Methods).

In the dc limit, a membrane acts as a resistor with the “resistance” 1/κ ≡ Zm(0); as ζ = 2ℓn, 

each membrane effectively adds the length 2ℓ to the original clean wire L if its dc resistance 

were to match Z(0) ∝ 1/D∞. At finite frequencies the resistor is shunted by the Warburg 

element33 with the “conductance”  independent of the 

permeability. The Warburg impedance ~ 1/gW, first observed at a flat metal electrode in an 

electrolyte by Kohlrausch34 and Wien35 in the 19th century, is associated with the 

diffusion-limited response33. Incidentally, the impedance Z(ω) matches the empirical Cole 

form36,37 with power law exponent .

Renormalization group

To calculate the response (ω) of the disordered transmission line for finite ζ, we employ 

the following scaling argument, which we first develop for d = 1. Consider a slab of length L 

with the diffusivity (ω)|L. Let us extend the slab to the length L′ = bL, b > 1, and rescale; 

now the slab’s length L′ in new units is back to L, while the original, shorter slab has length 

L → L/b. The rescaled slab conductance decreases due to adding extra N′ − N = Nδb 

membranes, δb = b − 1. The diffusivity is then reduced as

(7)

according to equation (4), as long as the added membrane density δn = (N/L)δb is small, δb 

≪ 1. Since we assumed from the beginning that the membrane positions are uncorrelated, 

adding a small number of membranes in an uncorrelated way at each step is consistent. 

Choosing an infinitesimal dn ∝ db, we represent equation (7) in the differential form, 

obtaining the real-space renormalization group (RG) equation
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(8)

This is a telegraph equation for a disordered transmission line. Equivalently, it can be 

obtained by adding membranes in small increments δn in a macroscopic sample of a fixed 

length with bare diffusivity D0, and applying the relation (4), treating all previously added 

membranes in the effective-medium fashion38–40 at each RG step. The diffusivity thus 

decreases as long as κ < ∞. In d dimensions, rescaling a hypercube Ld as in ref. 41 is 

equivalent to rescaling a d = 1 slab in which the effective one-dimensional membrane 

concentration n = S/(2V d). At the mean-field level, the problem is always one-dimensional, 

with the fraction 1/d of membranes exerting full resistance.

Integrating equation (8) yields our main result (6). In the dc limit (0) ≡ D∞, the RG flow 

1/D∞|L′ = 1/D∞|L + (N′ − N)/(κLd) recovers the above exact result (2) for d = 1, if one 

identifies L with the microscopic scale such that D∞|L ≡ D0 (the bare diffusivity) and (N′ − 

N)/Ld → n, the final membrane density. Written as RG flow, however, the evolution of the 

diffusivity is not tied to a particular microscopic cutoff; indeed, the diffusivity D∞|L can 

itself originate from “more microscopic” membranes on the scale finer than L, and so forth.

We also note an interesting equivalent way of looking at the RG flow: Formally identifying 

the particle number density ψ entering the diffusion equation with an electrostatic potential, 

the dc limit corresponds to the electrostatic screening of the one-dimensional electric field 

(the slope ∂xψ) by the dipoles (membranes acting as double layers). Coarse-graining 

corresponds to more dipoles contributing to the screening42, which renormalizes the 

effective dielectric constant, 1 → 1 + ζ.

Regimes for D(t) and numerical simulations

Consider first the most general case, which corresponds to the strong disorder, ζ ≫ 1. In this 

case, there are three distinct regimes in D(t), Fig. 2, separated by the two time scales, τr ≫ 

τD, defined below.

The initial decrease of the diffusion coefficient

(9)

exactly reproduces the well-known universal short-time -expansion24. The correction to 

free diffusion arises from the random walkers within the diffusion length  from the 

barriers; the term ∝ t is the permeability effect27 of flat pore walls. The limit (9) is valid as 

long as only a small fraction of random walkers has encountered the barriers, i.e. for t ≪ τD, 

where τD = ā2/2D0 is the diffusion time across the typical pore size ā ≃ 1/n = 2V d/S. 

Equation (9) follows already from the perturbative limit (4) universally valid for high 

frequencies, ωτD ≫ 1. It corresponds to the t ≪ τ limit of the memory kernel (5), Fig. 3b, 
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exemplifying negative velocity autocorrelation near a wall43, which diverges as t−1/2 at 

short t. There is a perfect agreement between theory and simulations in this regime for all ζ.

Highly restrictive membranes look completely impermeable for t ≪ τr, where τr = V/(κS) is 

the residence time18 within a typical pore; in our notation, τr = (ζ/d)τD. As a result, the 

mean square displacement 〈x2〉 is bounded by ~ ā2, and D(t)/D0 ~ τD/t. For our RG result 

(6), the “impermeable” behavior occurs for , and yields the purely 

imaginary ζ-independent limit (ω) ≃ −iωā2 (similar to the purely reactive electrical 

conductivity), corresponding to D(t)/D0 ≃ 2τD/t, or, equivalently, to D(t)/D∞ ≃ 2d τr/t, Fig. 

2b. Both our result (6) and the simulations display the 1/t dependence for ζ ≳ 100, with the 

theory somewhat overestimating the D(t) obtained from the numerics for very large ζ (as 

discussed in the Methods section).

For times longer than τr, the system becomes aware of the finite leakage across the 

membranes, with D(t) approaching the limit (2) which can be qualitatively estimated as 

hopping on a d-dimensional lattice with a step ā over the time τr, D∞ ~ ā2/(τrd).

Remarkably, the way D(t) approaches D∞ slows down from 1/t to -decrease in any 

dimensionality d, defining the novel disorder universality class:

(10)

This follows in our model (6) from  in the 

, with  and . The 

regime (10) can be clearly seen from the simulation results of Fig. 2b where time is in the 

units of τr for a set of permeabilities. In this limit, the relative deviation [D(t) − D∞]/D∞ ≲ 

1. We emphasize that for ζ → ∞, the dependence (10) approaches a universal scaling law 

with a fixed Cd = Cd(∞), which can be represented only in terms of the effective parameters 

D∞ and τr, independent of the original microscopic parameters D0, κ and S/V. Approaching 

this law corresponds to the collapse of the simulation curves in Fig. 2b onto one universal 

curve for ζ ≳ 100 and t ≳ τr. Our RG approximation (6) overestimates the C2(∞) obtained 

from the fit of the numerical curves to equation (10), as illustrated in Fig. 2c. For finite ζ, the 

parameters Cd(ζ) and D∞ [equation (2)] agree with the simulations within about 15% and 

30% correspondingly, even in the strongly non-perturbative regime of ζ ≳ 100. For the 

moderate disorder, ζ ~ 1, the agreement between theory and simulations is very good.

The fact that the RG solution works fairly well even when the “small parameter” ζ ≫ 1 can 

be understood in terms of the flow to the moderately disordered limit with strongly 

renormalized parameters, D0 → D∞ and τ → τr. Indeed, for t ≫ τr, the medium effectively 

looks as if it had a decreased diffusion coefficient D∞. This, in turn, reduces the contrast 

between the diffusion coefficient inside the membrane and of its surroundings, effectively 

changing D0 → D∞ in the boundary condition (1), thereby reducing the effective thickness ℓ 

→ ℓ̃ = D∞/(2κ) ≃ ℓ/ζ ~ ā down to the mean distance between membranes. Hence, the 

renormalized disorder strength is reduced, ζ → ζ̃ ≡ Sℓ̃/Vd ~ 1. Likewise, the renormalized 
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time scale τ → τ̃ ≡ ℓ̃2/D0 ~ τr matches the residence time. At this point the perturbative 

limit (4) is matched.

Conversely, when the membranes are highly permeable, ζ ≪ 1, the residence time in a pore 

is of the order of τD, and the time scale τr defined above becomes obsolete. In this limit, our 

result (4) becomes exact, the intermediate 1/t regime does not appear, and the short-time 

behavior (9) directly crosses over to the nonanalytic dispersion of the form (10),

(11)

which follows from the expansion of Cd(ζ) using τ = ζ(d/2)τr, and corresponds to the t ≫ τ 

limit of the kernel (5), Fig. 3b.

Origin of the  dispersion

Consider first the perturbative ζ ≪ 1 limit, which already contains the necessary physics. 

Here the two important time scales are τD and . We first focus on the case t ≪ τD, 

where adding independent contributions, as done in the Effective circuit and Methods 

sections, is justified since multiple scatterings off different membranes are not yet important. 

In this case, the dispersive behavior (11) for τ ≪ t ≪ τD is a result of scattering off 

individual barriers. As described in the Methods section, it represents slow density 

equilibration across a barrier, following the t−1/2 decrease of the probability of a random 

walker to never return to the origin.

For longer times t ≫ τD, multi-barrier scatterings determine the time dependence of D(t) 

which becomes sensitive to spatial correlations between membranes. Indeed, by the time t, 

the medium is effectively coarse-grained into domains of the size . 

These domains have slightly different diffusion coefficients Dj due to a different amount of 

restrictions falling into them as a result of the disorder. The net diffusion coefficient D(t) ≡ 

〈Dj〉 is the ensemble average over the domains; in d dimensions, D(t) ≃ D∞ + 〈(δDj)2〉/

dD∞, where δDj = Dj − 〈Dj〉. The distribution variance 〈(δDj)2〉 ~ 1/Ld(t) scales inversely 

with the domain volume for the short-range disorder due to the Poissonian statistics, 

yielding the ωd/2 ~ t−d/2 dispersion10,11,44–46. This disorder effect should be contrasted 

with the much faster decrease of D(t) and (t) in the absence of spatial fluctuations, both for 

the strictly periodic barriers in d = 1,47,48 and for the single-scale dominated disorder in any 

d, ref. 32.

Remarkably, the spatially extended disorder introduced in this work produces qualitatively 

stronger fluctuations in the coarse-grained distribution of {Dj}, with the variance 〈(δDj)2〉 ~ 

1/L(t) decreasing much slower than 1/Ld(t) in d > 1. This signature scaling in fact holds for 

any ζ, resulting in the ω1/2 ~ t−1/2 dispersion as long as L(t) ≫ ā, both for t ≫ τD (when ζ 

≪ 1) and for t ≫ τr (when ζ ≳ 1). To see this, one can first assume the membranes oriented 

normal to the orthogonal basis vectors (with otherwise random positions). In this basis, the 

eigenvalues of the isotropic diffusion tensor correspond to the d = 1 disorder, with the 

scaling 〈(δDj)2〉 ~ 1/L(t) due to the Poissonian disorder along each basis direction, 
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effectively bringing us back to the d = 1 case10,11,44–46. The observed ω1/2 ~ t−1/2 

dispersion attests to the fact that tilting each membrane in a random direction (Fig. 1) does 

not qualitatively alter this scaling.

Finally, we note that the above single-barrier and coarse-graining pictures are equivalent for 

our model, i.e. the connection with the return-to-origin probability can be formally extended 

onto t ≫ τD or t ≫ τr, by substituting the rest of the system via a “featureless” effective 

medium with diffusivity D∞. Indeed, by adopting the lattice calculation44 to barriers 

randomly placed on a line, we observe that the prefactor C1(ζ) for ζ ≪ 1, and, with it, 

equation (11), is exact in d = 1. This means that, for ζ ≪ 1, adding independent barrier 

contributions in a mean-field way (4) is fully compatible with the Poissonian statistics of the 

disorder for L(t) ≫ ā. For finite ζ, the equivalence between the Poissonian disorder in 

barrier positions and the return-to-origin probability persists in the RG solution, as it is 

utilized at every RG step (7). As a result, these two pictures remain equivalent even in the ζ 

≫ 1 limit, after the effective-medium substitution τ → τr, yielding the scaling behavior (10) 

for all ζ and t.

Outlook

In this work we have introduced a novel disorder class, the extended disorder, represented 

by straight permeable membranes which are randomly placed and oriented. A random 

medium of this type has dispersive diffusion (ω) = D∞ + const · ω1/2 in any 

dimensionality d as a result of anomalously strong structural fluctuations. According to the 

coarse-graining argument, any medium with extended structural blocks (e.g. infinite 

membranes with finite thickness) falls into this class.

The ω1/2 dispersion for d > 1 is notably more singular than its well studied ωd/2 counterparts 

arising due to short-range disorder10,11. As the ω1/2 singularity originates from long-range 

spatial correlations introduced by the membranes, the dispersive behavior of the form (10) 

will persist in a variety of samples with random extended restrictions, and will become 

increasingly important for longer diffusion times when the contributions from short-range 

disorder components vanish. However, the behavior (10) will eventually terminate if the 

membranes cease to be extended past their intrinsic correlation radius rc, i.e. for 

, when the structural memory is forgotten, and the short-range dispersion 

ωd/2 of a coarse-grained random medium sets in.

Methods

A single barrier in one dimension

The boundary condition (1) can be represented as a local scattering term in the diffusion 

equation

(12)

Here δ′(x) is the derivative of the Dirac delta-function at the position x = 0 of the membrane.
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We focus on the Green’s function  of the problem (12), defined by the initial condition 

 = δ(x − x′). As the problem is stationary, we shift to the frequency domain, ∂t → −iω. 

In this representation, the Green’s function  is formally an operator inverse

(13)

where the coordinates x play a role of indices in infinite-dimensional matrices, and the free 

propagator

(14)

The result of inversion (13) is the Born series

(15)

where the exact vertex V (the T-matrix) satisfies the Dyson’s equation, which in the Fourier 

representation reads

(16)

In our case, the bare vertex is separable,

(17)

The solution of equation (16), the exact vertex

(18)

Throughout this work, ω is understood as having an infinitesimal positive imaginary part +i0 

due to causality; this way the retarded response functions are analytic in the upper-half-plane 

of the complex variable ω.

The ω1/2 singularity in ϕ̃(ω) parallels that of the energy-dependent quantum scattering off a 

localized potential λδ(x) in one dimension, identifying iω → ε + i0. In the quantum problem, 

however, energy comes with a negative power ε−1/2 in the denominator of the corresponding 

exact vertex λ̃(ε), so that the high-energy scattering corresponds to the Born limit λ̃ → λ, 

whereas the low-energy amplitude . For the diffusion, the Born approximation 

Vω;k,k′ → Vk,k′ corresponds to the dc limit, whereas at high frequencies , 

as the scope of the p barrier is reduced down to the particles within the diffusion length 

.

Novikov et al. Page 10

Nat Phys. Author manuscript; available in PMC 2011 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Return to origin probability and impedance

The Green’s function  describes the density equilibration after injecting a unit packet of 

random walkers at the point x0 at t = 0. For x0 > 0, the excess number of walkers 

 that has not yet leaked out across the barrier, 

asymptotically follows the survival probability  of a particle 

released at a distance x̃0 = x0 + ℓ, to never return to the origin. This relation is valid for 

, such that the resulting density gradient is uniform on either side of the barrier, 

and relaxes as t−1/2, following the fraction Psurv(t, x̃0) of the walkers who have managed to 

wander around the “biased” side (x > 0) and have not yet encountered the barrier. The finite 

permeability κ in this picture is substituted by the minimal effective distance  to 

the origin, and perfect transmission. The leakage current , where p(t) = 

−Ṗsurv(t; x0 + ℓ) is the probability density for time intervals t between successive returns to 

the origin. For x0 ≪ ℓ,  (Fig. 3b).

In general, driving the current J0(ω), e.g. by the source J0(ω) [δ(x − x0) − δ(x + x0)], results 

in the current J(ω) = ϕ̃(ω) J0(ω) across the barrier for . The “potential drop” 

−Δψ(ω) ≡ J(ω)/κ = Zm(ω)J0(ω) across the barrier is then related to J0(ω) via the 

“impedance” Zm(ω) = ϕ̃(ω)/κ. The excess current in the previous example is equivalent to 

, yielding .

Multiple barriers

Averaging over positions of randomly placed barriers with concentration n is done in a 

standard way1,2,10,11,28,32, by introducing the self-energy part Σω,q,

(19)

On the mean-field level, we keep in Σω,q only the exact interaction vertex with a single 

barrier,

(20)

The mean-field approximation is correct in the first order in barrier concentration n = S/2V 

for all frequencies, as justified in the section on the origin of the  dispersion.

The self-energy shifts the pole of the propagator Gω,q, thereby changing the diffusive 

dynamics due to disorder-averaged interaction with random membranes. Remarkably, on 

this level there are no higher-order terms in powers of q2. This allows us to represent 

interaction with membranes solely as renormalization of the effective diffusivity D0 → 

(ω), equation (4), which acquires frequency dependence ϕ̃(ω) dictated by that of the vertex 

(18). The role of (ω) is similar to that played by the dispersive refraction index. Indeed, the 

relation (20) is analogous to the mean-field relation between the refraction index and the 
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forward scattering amplitude49. In our case, the presence of “scatterers” (barriers) 

introduces the memory kernel (5) into the current-density response.

In higher dimensions d > 1, averaging is performed both over positions of the barrier in the 

direction n normal to its surface, and over its orientations. This amounts to a frequency shift 

, Σω,q;n = (S/2V)Vω(q);qn,qn, with q|| = q − (qn)n the conserved 

momentum parallel to the barrier, and subsequent orientational average Σω,q ≡ 〈Σω,q;n〉n. 

Substituting the latter self-energy part in equation (19), obtain the result (4) for any d.

Effective medium picture

The RG approach assumes that the boundary condition (1) is adjusted accordingly, D0 → 

(ω)|L at each RG scale L. Strictly speaking, this is valid only for sufficiently small 

frequencies , corresponding to diffusing past many membranes, when the 

system can be treated as a uniform effective medium at each RG step. Luckily, for the 

opposite case of large frequencies the full result (6) matches the exact  limit (4), 

corresponding to the original boundary condition (1). This allows us to keep the frequency 

simply as a parameter in equation (8).

From this discussion one expects that the agreement of the RG result (6) with the 

simulations to be the worst in the intermediate regime, when , equivalent to t ~ 

τr. Fig. 2a shows that the discrepancy between the RG result and the simulations is indeed 

highest around t ~ τr and remains under 25%. The agreement improves for t ≫ τr to within 

10% even for the largest ζ.

We note that in d = 1, the RG limit C1(∞) overestimates the exact result for the one-

dimensional lattice model11,44–46, , by the factor of two. We also observe this in the 

one-dimensional simulations (not shown). There are no exact results for this problem for d > 

1. As it is often true with mean-field-like description, the accuracy of our solution is likely 

to improve for increasing d. This is consistent with the notably better agreement (Fig. 2c) of 

the theoretically obtained coefficient C2(ζ) with that determined from the d = 2 simulations.

Monte Carlo dynamics was realized on a square patch with periodic boundary conditions, 

embedded with randomly placed and oriented membranes, cf. Fig. 1, of nearly identical S/V 

in each disorder realization. For every ζ value in Fig. 2, the diffusion coefficient D(t) was 

calculated by averaging the displacement variance 〈x2〉, cf. equation (3), over a total of 4 × 

105 random walkers evenly split between 40 disorder realizations, with an average of 385 

membranes per patch. The trajectory of each random walker was a sequence of moves in a 

randomly chosen direction over a distance  during a time step dt, with the total 

diffusion time t up to 100 τr, corresponding to a maximum of 4 × 106 time steps per walker. 

Transmission across a membrane occurred with probability P ∝ κdr/D0 ≪ 1, cf. refs. 30,50. 

The disorder strength ζ was varied by changing κ. The time step dt for each ζ was chosen so 

that P < 0.007, and the ratio dr/ā = Sdr/4V < 0.1. We calibrated our results for a quasi-one-

dimensional disorder (random parallel membranes), which reproduced the exact limit (2) 
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with about 1% accuracy. The random walk simulator was developed in C++. Simulations 

were performed on the NYU General Cluster. With an average of 200 CPU cores used 

simultaneously, all simulations took a total of about 100 hours.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. 
A fragment of a two-dimensional patch with randomly placed and oriented membranes (one 

of the disorder realizations used in the simulations).
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FIG. 2. 
Time-dependent diffusion coefficient D(t) for the two-dimensional random medium of Fig. 

1. a, Comparison of the RG solution (6), red, with the Monte Carlo simulations, blue, for the 

set of decreasing permeabilities, corresponding to ζ = 0.5, 1, 2, 4, 10, 20, 40, 100, 200, 400 

(top to bottom). The diffusion time τD is marked by blue circles. b, Scaling behavior of D(t). 

As the strength ζ of the restrictions increases from bottom to top, the numerical curves begin 

to collapse as a signature of the universal behavior (10). Dashed lines show the ζ → ∞ 

limits from our RG solution: the “impermeable” limit D(t)/D∞ = 2d τr/t and the scaling limit 

(10) with . c, Parameters of the scaling limit (10), C2(ζ) (filled circles) and 

D∞(ζ) (open circles), determined from the fit of the simulations in b to equation (10), 

compared with the RG predictions (solid and dashed red lines). Thin solid line is the RG 

limit .
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FIG. 3. 
Effect of a single membrane. a, Meaning of effective membrane thickness: 2ℓ = D0/κ is the 

distance by which one should shift the density profile ψ(x) on each side of membrane if one 

were to heal p the jump discontinuity (1). b, The memory kernel ϕ(t), equation (5), together 

with its limits  for t ≪ τ, and  for t ≫ τ.
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