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SUMMARY

Two-stage design has long been recognized to be a cost-effective way for conducting biomedical stud-
ies. In many trials, auxiliary covariate information may also be available, and it is of interest to exploit
these auxiliary data to improve the efficiency of inferences. In this paper, we propose a 2-stage design
with continuous outcome where the second-stage data is sampled with an “outcome-auxiliary-dependent
sampling” (OADS) scheme. We propose an estimator which is the maximizer for an estimated likelihood
function. We show that the proposed estimator is consistent and asymptotically normally distributed. The
simulation study indicates that greater study efficiency gains can be achieved under the proposed 2-stage
OADS design by utilizing the auxiliary covariate information when compared with other alternative sam-
pling schemes. We illustrate the proposed method by analyzing a data set from an environmental epidemi-
ologic study.
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1. INTRODUCTION

Biomedical studies are often designed to assess the relationship between some exposureX of interest
and the corresponding outcomeY of individual adjusted by some confounding covariatesZ. In many
situations, due to limited budget, the assessment ofX is not feasible to be conducted on all subjects under
study. One useful approach to accommodating this issue is to use a 2-stage stratified sampling design,
originally introduced byNeyman(1938), to enhance the study efficiency while minimizing the costs. At
the first stage of a typical 2-stage design, a relatively large random sample is drawn and measurements are
conducted on outcomeY and Z, which are easier to measure, while at the second stage, ascertainments
on theX are made for a subsample drawn randomly, without replacement.

There is great literature on the variations of 2-stage sampling designs with binary outcomes. For
example,White (1982) proposed a stratified case–control design of a rare disease (i.e.Y) and a rare
exposure (i.e.X), where a large preliminary random sample is drawn at the first stage, from which strata
are identified on the basis of both the disease and the exposure. At the second stage, a subsample is drawn
from within the strata identified in the first stage and measurements of the potential confounding variables
are made on the subsample. Compared with the simple random sampling at the second stage regardless of
either the disease or the exposure status, great efficiency gains can be achieved by selecting the desirable
number of cases and controls within each stratum identified in the first stage.Rathouzand others(2002)
considered a matched case–control study with binary outcome using the conditional logistic regression
method. Recently,Schildcrout and Rathouz(2010) extended this stratified case–control design to a more
general case where the response is a longitudinal binary variable.

On the other hand, when there exists an additional auxiliary variableW for the expensiveX, which is
easily obtained for all subjects under study at the first stage, it is necessary to incorporate the information
implied by W into the statistical analysis. For instance, in a lung cancer biomarker study, one of the
aims is to assess the epidermal growth factor receptor (EGFR) mutations (X) as a predictive biomarker
for whether a subject responds to a greater extent to EGFR inhibitor drugs (Y). Due to high cost of
genotyping EGFR genes, it is prohibitive to ascertain the genotype of EGFR genes on all samples at the
first stage. However, the likelihood score of EGFR mutations (W) obtained by a designed questionnaire
has been shown to relate to the EGFR mutations and can be easily observed for all patients inPaezand
others(2004). Wang and Zhou(2010) considered inference of the 2-stage outcome-auxiliary-dependent
sampling (OADS) design to increase the study efficiency by utilizing the auxiliary covariate information
when the outcome is categorical.Zhangand others(2008) andLu and Tsiatis(2008) also showed that
using the available baseline auxiliary covariate information can achieve more efficient estimators in the
analysis of randomized clinical trials and survival data, respectively.

As the scope of biomedical studies inquiry grows, it is important to investigate the relationships be-
tween continuous biological outcomes and exposure of interest adjusted by other covariates. It is cost-
effective to adopt a 2-stage design when the exposure is hard to obtain. However, most current 2-stage
designs have been developed for categorical outcomes, the statistical method for the 2-stage design with
continuous outcome is limited. When an auxiliaryW does not exist,Chatterjeeand others(2003) con-
sidered a pseudoscore estimator for regression parameter with a 2-stage sampling.Weaver and Zhou
(2005) proposed a 2-stage outcome-dependent sampling (ODS) design for continuous outcome regres-
sion models, wherein the subsample was drawn at the second stage within the stratum that was achieved
by subdividing the range of continuous outcome variable into class intervals.

In this paper, we proposed a 2-stage OADS design when outcomeY is continuous and there exists
auxiliary variableW at the first stage. Specifically, outcomeY, auxiliary variableW for exposureX, and
other covariatesZ are all observed for all patients at the first stage. Then we selected the subsample within
each stratum defined by the partition of the domain ofY × W to ascertain the value ofX at the second
stage. An estimated likelihood function by estimating its infinite-dimensional nuisance parameter through
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the kernel smoother is proposed and the estimator maximizing the estimated likelihood is used to estimate
the regression parameter. The proposed 2-stage OADS design with continuous outcome is shown to be
more efficient than other alternative competing sampling schemes.

The rest of this paper is structured as follows. We describe the 2-stage OADS design, data structure,
and the model in Section2. The estimated likelihood function method and the asymptotic properties of
the resulting estimator are presented in Section3. We conduct a simulation study to assess the small
sample approximation under the 2-stage OADS design in Section4. In Section5, a real data example is
analyzed to illustrate our proposed method. Some conclusions are provided in Section6, and the proof of
the asymptotic properties of proposed estimator is investigated in the supplementary material available at
Biostatisticsonline.

2. DESIGN AND MODEL

2.1 Two-stage OADS design and data structure

To fix notation, letY denote a continuous outcome variable,{Z, X} be a covariate vector, andW be a
continuous auxiliary variable forX. We assume that the conditional distribution ofY given Z and X is
known up to a finite vector of unknown parameters, that is,

f (Y|Z, X) = f (Y|Z, X; β0), (2.1)

whereβ0 is the true value ofq-vector regression parameterβ of interest. Assume thatW offers no addi-
tional information regarding the outcomeY given covariateX.

Assume that the domain of(Y, W) is denoted byY×W. LetY be partitioned intoJ mutually exclusive
and exhaustive strata by the known constants−∞ = a0 < a1 < ∙ ∙ ∙ < aJ−1 < aJ = ∞, and let thej th
stratum be denoted byAj = (aj −1, aj ], for j = 1, . . . , J. Similarly, letW be partitioned intoT mutually
exclusive and exhaustive strata by the known constants−∞ = b0 < b1 < ∙ ∙ ∙ < bT−1 < bT = ∞,
and let thet th stratum be denoted byBt = (bt−1, bt ], for t = 1, . . . , T . For subsequential use, we define
B0 = (−∞, ∞) whenT = 0, which indicates that there is no partition onW. Therefore, we haveY ×W
partitioned intoJ × T mutually exclusive and exhaustive rectanglesAj × Bt , for j = 1, . . . , J and
t = 1, . . . , T . For simplicity, we rewrite these rectangles as1k for k = 1, . . . , K . Hence,{Aj × Bt : j =
1, . . . , Jandt = 1, . . . , T} = {1k: k = 1, . . . , K } andY ×W =

⋃J
j =1

⋃T
t=1 Aj × Bt =

⋃K
k=1 1k.

At the first stage,N subjects are sampled at random from a population with(Yi , Zi , Wi )
N
i =1 being

observed. Suppose that there areNk observations of(Y, W) falling into stratum1k, thenN =
∑K

k=1 Nk.
The second stage, whereX is observed, are comprised of 2 components: (i) a simple random sample (SRS)
of sizen0 and (ii) a supplemental OADS sample of sizenk from thekth stratum1k for k = 1, . . . , K . Let
Ri be an indicator for thei th subject whetherXi is observed(Ri = 1) or not(Ri = 0). Let n0k denote the
number of subjects in the SRS falling into thekth stratum1k. Furthermore, let̃V0 denote all the subjects
in the SRS and defineVk = {i : Ri = 1, (Yi , Wi ) ∈ 1k} and V̄k = {i : Ri = 0, (Yi , Wi ) ∈ 1k}, then
nk + n0k = |Vk| andNk = |Vk| + |V̄k|, where and hereafter, we use notation|A| to denote the cardinality
of a setA. Let Ṽk = Vk−Ṽ0 representing the supplemental OADS samples in the stratum1k, whereA−B
is defined as the set consisting of elements that are in setA but not in setB. Let V =

⋃K
k=1 Vk andV̄ =

⋃K
k=1 V̄k, representing the validation set (set withX observed, i.e. the second-stage set) and nonvalidation

set (i.e. the first stage set that are not sampled at the second stage), respectively. Hence, the observed data
structure for the proposed 2-stage OADS design with continuous outcome can be summarized as follows:
the first stage:{Yi , Zi , Wi } for i = 1, . . . , N; the second stage: (i) the SRS sample:{Yi , Xi , Zi , Wi } for
i ∈ Ṽ0; (ii) the OADS sample:{Xi |(Yi , Wi ) ∈ 1k, Zi } for i ∈ Ṽk and k = 1, . . . , K ; and (iii) the
nonvalidation sample:{Yi , Zi , Wi } for i ∈ V̄ .
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Fig. 1. Illustration for the proposed 2-stage OADS design with continuous outcome.Y-axis denotes outcome variable
Y. X-axis denotes auxiliary variableW.

To better illustrate the proposed OADS design with continuous outcome, we present Figure1 when
J = T = 3. At the second stage, except for the SRS samples, the supplemental OADS samples are
selected within strata at the 4 corners11 = A1 × B1,12 = A1 × B3,13 = A3 × B1, and14 = A3 × B3
based on the consideration that these combinations of the extreme values of bothY andW contain more
information for the relationship of interest between outcomeY and exposureX. Hence, the advantage of
such 2-stage OADS design is that, while providing overall information about the population from the SRS
samples, it allows the investigator to oversample certain segments of the population that are believed to
be more informative.

The 2-stage ODS design proposed byWeaver and Zhou(2005) assumed that only the outcome variable
is observed in the first stage and the covariates are ascertained for a subsample drawn at the second stage
from strata defined by the outcome. Our proposed 2-stage OADS design includes this design whenT = 0
and the information inZ andW is discarded. We call this design a 2-stage ODS design with only the
outcome observed at the first stage. However, in many studies, some covariates such age, gender, and race
so forth can be observed for all subjects in the cohort study. To this point, we extended the design by
Weaver and Zhou(2005) to this more practical situation. When the auxiliary information is available for
all subjects, our proposed 2-stage OADS design can accommodate the 2-stage ODS design with outcome,
some covariates, and auxiliary observed at the first stage by lettingT = 0. It is worth noting that the
subsequential methodology development on the 2-stage OADS design is still valid for the 2-stage ODS
design in several above mentioned scenarios.

2.2 Likelihood function

Let G(x|z, w) andg(x|z, w) be the conditional cumulative distribution function and the conditional prob-
ability function of X given (Z, W). We will construct the likelihood function based on all the observa-
tions under the 2-stage OADS design. First, the contribution from the SRS at the second stage to the full
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likelihood is proportional to
LS(β) =

∏

i ∈Ṽ0

f (Yi |Zi , Xi ; β). (2.2)

Second, the likelihood for the supplemental OADS sample at the second stage can be shown to be
proportional to (Zhouand others, 2002)

K∏

k=1

∏

i ∈Ṽk

[ f (Yi |Zi , Xi ; β)g(Xi |Zi , Wi )/Pr((Yi , Wi ) ∈ 1k)] . (2.3)

Furthermore, the observations in the nonvalidation sample contribute the following term to the full-
information likelihood function:

K∏

k=1

∏

i ∈V̄k

[ f (Yi |Zi , Wi ; β)/Pr((Yi , Wi ) ∈ 1k)] , (2.4)

where f (Y|Z, W; β) =
∫
X f (Y|Z, x; β)dG(x|Z, W).

Finally, as shown byWeaver and Zhou(2005), conditional on the component size of the OADS being
fixed, thekth stratum size for the nonvalidation samplen̄k ≡ Nk − nk − n0k follows a multinomial law
such that

Pr({n̄k}) =
(N − n0)!

∏K
k=1(Nk − n0k)!

K∏

k=1

{Pr((Yi , Wi ) ∈ 1k)}
(Nk−n0k). (2.5)

Conditional on the observed sizen̄k, the observations in the nonvalidation sample are independent of
those in the validation sample. After combining and simplifying terms (2.2–2.5), we have derived the full
likelihood based on all the observations under the 2-stage OADS design, which is proportional to

LF(β) =




K∏

k=0

∏

i ∈Ṽk

f (Yi |Zi , Xi ; β)g(Xi |Zi , Wi )








K∏

k=1

∏

i ∈V̄k

∫

X
f (Yi |Zi , x; β)dG(x|Zi , Wi )



 . (2.6)

The presence of the nuisance functionG(x|z, w) makes the inference forβ challenging. Obviously, direct
maximization ofLF(β) is not feasible since the functionG(x|z, w) cannot be factored out. A simple
method is to assume a parametric distribution forG(x|z, w), but this could lead to a biased conclu-
sion if the underlying model is misspecified in that, generally, the relationship betweenW and X may
not be known to be specified through a parametric model. A more attractive approach is to model it
nonparametrically.

3. AN ESTIMATED LIKELIHOOD METHOD

In the estimated likelihood method, an unspecified nuisance parameter, such as the conditional distribu-
tion functionG(x|z, w) in (2.6), is replaced by a consistent estimator. When the validation sample is a
simple random sample, one could estimateG(x|z, w) using data from validation sample by an empirical
imputation method for discrete auxiliary (Pepe and Fleming, 1991) and by kernel smoothing (Carroll and
Wand, 1991) for continuous auxiliary.Zhou and Pepe(1995), Zhou and Wang(2000), andLiu and others
(2009) applied the estimated likelihood approach to time-to-event data subject to random censoring.

Due to the 2-stage OADS design, the validation sample is not a simple random sample so we cannot
use a simple global empirical distribution function to estimateG(x|z, w). Hence, one should account
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for the sampling mechanism under the 2-stage OADS design to estimateG(x|z, w) nonparametrically.
Let S denote the informative components of(Z, W) in the sense thatG(X|Z, W) = G(X|S) almost
surely. Without loss of generality, assume thatS is a continuous variable with dimensiond. Note that
G(x|s) =

∑K
k=1 πk(s)Gk(x|s), whereπk(s) = Pr((Y, W) ∈ 1k|s) andGk(x|s) = G(x|s, (Y, W) ∈ 1k).

Then we estimateπk(s) andGk(x|s), respectively, bŷπk(s) =
∑N

i =1 I ((Yi ,Wi )∈1k)φhN (Si −s)
∑N

i =1 φhN (Si −s)
andĜk(x|s) =

∑
i ∈Vk

I (Xi6x)φhN (Si −s)
∑

i ∈Vk
φhN (Si −s) , whereI (∙) is an indicator function andφhN (∙) = φ( ∙

hN
) is ad-dimensional kernel

function with the bandwidthhN . For simplicity, we suppress the subscript ofhN hereafter. Hence,G(x|s)
can be subsequently estimated bŷG(x|s) =

∑K
k=1 π̂k(s)Ĝk(x|s), which is a consistent estimator as

shown in the supplementary material available atBiostatisticsonline.
The estimated likelihood function is obtained by substitutingG(x|s) in (2.6) with Ĝ(x|s) and the

corresponding estimated log-likelihood function is denoted byl̂F(β), where

l̂F(β) =
K∑

k=1

∑

i ∈Vk

log f (Yi |Zi , Xi ; β) +
K∑

k=1

∑

j ∈V̄k

log f̂ (Yj |Z j , Wj ; β) + C,

with

f̂ (Yj |Z j , Wj ; β) =
∫

X

f (Yj |Z j , x; β)dĜ(x|Sj ) =
K∑

r =1

π̂r (Sj )

∑

l∈Vr

f (Yj |Z j , Xl ; β)φh(Sl − Sj )

∑

l∈Vr

φh(Sl − Sj )
,

andC =
∑K

k=1
∑

i ∈Vk
log ĝ(Xi |Si ), which is not dependent onβ.

The solution to the estimated score equationsÛF(β) = 0, denoted bŷβ, is used to estimateβ0, where

ÛF(β) ≡
∂ l̂F(β)

∂β

=
K∑

k=1

∑

i ∈Vk

f ′(Yi |Zi , Xi ; β)

f (Yi |Zi , Xi ; β)
+

K∑

k=1

∑

j ∈V̄k











K∑

r =1

π̂r (Sj )

∑

l∈Vr

f ′(Yj |Z j , Xl ; β)φh(Sl − Sj )

∑

l∈Vr

φh(Sl − Sj )






/





K∑

r =1

π̂r (Sj )

∑

l∈Vr

f (Yj |Z j , Xl ; β)φh(Sl − Sj )

∑

l∈Vr

φh(Sl − Sj )










,

with f ′(y|z, x; β) = ∂ f (y|z, x; β)/∂β. One can adopt the Newton–Raphson iteration method to obtain
the estimator̂β. A simplead hocbandwidth selectionh = σ̂w,k(nk + n0k)

−1/3 can be used ifS = W
almost surely, wherêσw,k is the sample standard error of{Wi , i ∈ Vk}.

The true value of parameters are indicated by superscript “0.” LetEk denote a conditional expectation
given(Y, W) ∈ 1k, under the true parameters. Assume that|V |/N → ρV > 0 andnk/|V | → ρk > 0 for
k = 0, . . . , K , as N → ∞. Let γk = Pr{(Y, W) ∈ 1k}. The regularity conditions needed to derive the
asymptotic properties are given in the supplementary material available atBiostatisticsonline. Then the
asymptotic properties of the proposed estimatorβ̂ are summarized in the following theorem.
THEOREM 1. Under the regularity conditions,̂β converges in probability toβ0, while

√
N(β̂ − β0)

converges weakly to a normal distribution with mean zero and covariance6(β0), where

6(β0) = I −1(β0) +
K∑

k=1

(γ 0
k )2

ρkρV + γ 0
k ρ0ρV

I −1(β0)6k(β
0)I −1(β0),
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I (β) = −ρ0ρV E

[
∂2 log( f (Y|Z, X; β))

∂β∂βT

]

−
K∑

k=1

ρkρV Ek

[
∂2 log( f (Y|Z, X; β))

∂β∂βT

]

−
K∑

k=1

[γ 0
k (1 − ρ0ρV ) − ρkρV ]Ek

[
∂2 log( f (Y|Z, W; β))

∂β∂βT

]

,

6k(β) = Vark

{
K∑

l=1

[γ 0
l (1 − ρ0ρV ) − ρl ρV ]πl (S)El (MX,S(Y, Z, W; β)|S)

}

,

MX,S(Y, Z, W; β) =
∂ f (Y|Z, X; β)/∂β

f (Y|Z, W; β)
−

∂ f (Y|Z, W; β)/∂β

[ f (Y|Z, W; β)]2
f (Y|Z, X; β).

The proof of Theorem 1 is provided in the separate supplementary material available atBiostatistics
online. The consistent variance estimator is stated in the following theorem.
THEOREM 2. Under the regularity conditions, a consistent estimator for the asymptotic covariance matrix
6(β0) is

6̂(β̂) = Î −1(β̂) +
1

N

K∑

k=1

N2
k

nk + n0k
Î −1(β̂)6̂k(β̂) Î −1(β̂),

where Î −1(β) = − 1
N

∂Û (β)
∂βT and6̂k(β) = V̂ar{Xi ,i ∈Vk}

{
K∑

l=1

|V̄l |
N π̂l (Si )Êl (MXi ,Si (Y, Z, W; β)|Si )

}
with

Êl (MXi ,Si (Y, Z, W; β)|Si ) =

{
∑

j ∈V̄l

MXi ,Si (Yj , Z j , Wj ; β)φh(Sj − Si )

}/{
∑

j ∈V̄l

φh(Sj − Si )

}

.

4. SIMULATION STUDY

We conducted a simulation study to assess the small sample performance of our proposed estimator. The
data were generated from a linear regression model of the form:

Y = β0 + β1X + β2Z + 2ς,

whereX, Z, andς were generated independently from standard normal distribution. Thus, the conditional
distribution ofY given X andZ is normal with meanβ0 + β1X + β2Z and variance 4. LetW = X + ε,
whereε was generated from a zero-mean normal distribution with varianceσ 2. Note that the value ofσ 2

indicates the strength of information contained inW for X. We setσ = 1 in simulation, which represents
a moderate association between theW andX. Here, we takeS = W.

Suppose there areN subjects available at the first stage. Letai andbi denote thei /3 percentile ofY
andW, respectively, fori = 1, 2. First, we use the method depicted in Figure1 to obtain the second stage

samples for the 2-stage OADS design. Then the size of the validation set is|V | =
4∑

k=0
nk. Second, while

selecting the same SRS sample of sizen0, we also select the 2 supplemental ODS samples in the stratum
A1 of sizen1 + n2 and stratumA3 of sizen3 + n4, respectively, to mimic the design proposed byWeaver
and Zhou(2005). Note that the sizes of validation setV obtained at the second stage through the above 2
sampling designs are the same.

Having obtained the data under the 2-stage OADS design, we denote the proposed estimator by
β̂P2. We also denote the reduced proposed estimator byβ̂P1 for the 2-stage ODS design with(Y, Z, W)
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observed at the first stage. We compare estimatorsβ̂P1 andβ̂P2 with some competing estimators. The first
estimator, denoted bŷβW, is the inverse probability weighted estimator (Horvitz and Thompson, 1952)
based on the 2-stage OADS design. The second estimators to be compared, as discussed in the Section
2.1, are the estimator̂βY2 for the 2-stage ODS design with(Y, Z) observed at the first stage and, similarly,
the estimator̂βY1 for the 2-stage ODS design with onlyY observed at the first stage and(X, Z) observed
at the second stage. The bandwidthh = 1

2σ̂w,k(nk +n0k)
−1/3 is used for these estimators involving kernel

smoothing, wherêσw,k is the sample standard error of{Wi , i ∈ Vk}. Finally, as a benchmark, we also con-
sider the efficient linear regression estimator, denoted byβ̂E, which is a hypothetical situation in which
all subjects at the first stage haveX observed, and the ordinary linear regression estimator, denoted by
β̂R, from a simple random sample of the same size as the validation set at the second stage. Note that the
efficiency difference for methodsβY1, βY2, βP1, andβP2 should be attributed to the study design instead of
estimating procedure. However,βP2 andβW are different estimating procedures under the same 2-stage
OADS design.

For narrative simplicity, we define an allocation function denoted by allocation(μ, ν) to allocate the
validation set of sizeμ + 4ν at the second stage, which means thatn0 = μ andn1 = n2 = n3 = n4 = ν
under the 2-stage OADS design as illustrated in Figure1. Under the 2-stage ODS design, allocation(μ, ν)
means SRS sample of sizeμ and 2 supplemental ODS samples in the stratumA1 of size 2ν and in
stratumA3 of size 2ν are allocated. We also investigate the impact on the parameter estimation of different
allocations of total validation sample size between the SRS sample and the supplemental OADS (ODS)
samples at the second stage, with(N, β0, β1, β2) = (1500, 0.5, 0.3, 0.5) fixed.

For each simulation configuration, 1000 replicated samples were generated and the results were pre-
sented in Table1. Under the model studied, we make the following observations on the estimatorβ̂1, the
parameter of interest. Note that the estimatorβ̂2 works quite well in all scenarios. First, all the methods in
all the scenarios yield consistent estimators, the variance estimators accurately reflect the true variations,
and the confidence intervals have proper coverage probabilities. Second, the proposed estimatorsβ̂P11 and
β̂P21 are more efficient than the estimatorsβ̂Y11 andβ̂Y21, which indicates that taking auxiliary informa-
tion into consideration indeed gains substantial estimation efficiency. Furthermore,β̂P21 is more efficient
thanβ̂P11. This fits our expectation sincêβP21 not only utilizes the auxiliary in the stratification (i.e. study
design) but also incorporates it into the estimation procedure, whileβ̂P11 uses it just in the estimation
procedure. On the other hand, although the precision of estimatorβ̂Y21 and that ofβ̂Y11 are almost the
same in the scenarios considered, the efficiency gains ofβ̂Y22 over β̂Y12 are apparent due to the fact that
the covariateZ is observed for all subjects in̂βY2. The estimator̂βW1 is less efficient than̂βP21 sinceβ̂W1
just utilizes the second-stage sample and sampling probability under the 2-stage OADS design. Third,
when we increase the size of the validation set from|V | = 240 to|V | = 360, more accurate estimators
(including β̂P11, β̂P21, β̂Y11, β̂Y21, β̂W1, andβ̂R1) are obtained as expected. Here, we consider 3 different
ways to add the additional 120 samples to the validation set|V | = 240. It can be seen that more efficiency
gains are achievable through the way from allocation(120, 30) to allocation(180, 45), that is, putting half
of the additional 120 samples to the SRS part and the other half to the OADS part averagely, than that
from allocation(120, 30) to allocation(240, 30), that is, putting the additional 120 samples to the SRS
part. Efficiency gains are also achieved through the way from allocation(120, 30) to allocation(120, 60),
which puts the additional 120 samples to the OADS part evenly. These different allocation patterns in-
dicate that adding the additional sample to both the SRS part and the supplemental OADS part or the
supplemental OADS part is better than to the SRS part only. Finally, under the allocation(120, 60), when
the cutpoints vary from the

(1
3, 2

3

)
to
(1

4, 3
4

)
, that is, when the product sample spaceY×W is stratified by

more extreme cutpoints, more precise estimators (includingβ̂Y11, β̂Y21, β̂P11, andβ̂P21) are obtained, and
the efficiency advantage of̂βP21 over β̂P11 becomes more obvious. We also investigate the effect of the
strength ofW for X, represented byσ , on the efficiency of estimator̂β1, under the methods considered.
Please see Figure A.1 in the supplementary material available atBiostatisticsonline.
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Table 1. Simulation study for the proposed estimators. Results are based on 1000 replicated data sets
with 1500 subjects at the first stage for each data set†

Cutpoints |V | Method β̂1 β̂2

Mean SE ŜE CI Mean SE ŜE CI

— — βE 0.299 0.050 0.052 0.966 0.497 0.052 0.052 0.946
— 240 βR 0.298 0.124 0.130 0.962 0.500 0.126 0.130 0.958
— 360 βR 0.297 0.107 0.106 0.943 0.496 0.105 0.106 0.943

allocation(120, 30)(1
3, 2

3

)
240 βW 0.303 0.113 0.123 0.978 0.502 0.138 0.134 0.931

βY1 0.304 0.113 0.112 0.955 0.505 0.121 0.102 0.906
βY2 0.305 0.116 0.116 0.953 0.499 0.050 0.052 0.960
βP1 0.305 0.072 0.068 0.941 0.500 0.050 0.052 0.957
βP2 0.301 0.070 0.068 0.948 0.500 0.050 0.052 0.953

allocation(180, 45)(1
3, 2

3

)
360 βW 0.302 0.095 0.100 0.967 0.494 0.110 0.109 0.951

βY1 0.299 0.094 0.093 0.951 0.502 0.092 0.087 0.941
βY2 0.300 0.096 0.096 0.952 0.500 0.053 0.052 0.943
βP1 0.307 0.068 0.066 0.940 0.500 0.053 0.052 0.947
βP2 0.303 0.064 0.065 0.954 0.500 0.053 0.052 0.945

allocation(240, 30)(1
3, 2

3

)
360 βW 0.303 0.091 0.099 0.971 0.496 0.103 0.105 0.952

βY1 0.301 0.099 0.095 0.936 0.498 0.096 0.089 0.936
βY2 0.305 0.098 0.098 0.947 0.500 0.053 0.052 0.939
βP1 0.308 0.070 0.066 0.933 0.500 0.053 0.052 0.948
βP2 0.302 0.069 0.066 0.932 0.503 0.053 0.052 0.939

allocation(120, 60)(1
3, 2

3

)
360 βW 0.302 0.100 0.107 0.967 0.504 0.118 0.120 0.952

βY1 0.295 0.093 0.091 0.950 0.502 0.093 0.086 0.935
βY2 0.304 0.097 0.093 0.931 0.500 0.053 0.052 0.943
βP1 0.308 0.069 0.065 0.928 0.502 0.053 0.052 0.943
βP2 0.299 0.067 0.065 0.938 0.502 0.053 0.052 0.944(1

4, 3
4

)
360 βW 0.303 0.114 0.114 0.942 0.510 0.135 0.131 0.940

βY1 0.303 0.085 0.085 0.954 0.505 0.086 0.082 0.942
βY2 0.300 0.084 0.086 0.949 0.500 0.053 0.052 0.942
βP1 0.304 0.067 0.064 0.936 0.499 0.051 0.052 0.956
βP2 0.293 0.061 0.063 0.963 0.499 0.051 0.0520.958

†Results are based on the modelY = β0+β1X+β2Z+2ς with true valuesβ0 = 0.5, β1 = 0.3, andβ2 = 0.5,
whereX, Z, andς are mutually independently standard normal variables. The auxiliary variableW is defined
to be equal toX plus a standard normal error term.β̂E : the regression estimator whenX is observed for all
subjects at the first stage;̂βR: the regression estimator from a simple random sample of the same size as the
validation set at the second stage;β̂W: the inverse probability weighted estimator using the validation set under
the 2-stage OADS design;̂βY1: the estimator for the 2-stage ODS design with onlyY observed at the first stage
and(X, Z) observed for the second-stage sample;β̂Y2: the estimator for the 2-stage ODS design with(Y, Z)

observed at the first stage;̂βP1: the estimator for the 2-stage ODS design with(Y, Z, W) observed at the first
stage;̂βP2: the estimator for the proposed 2-stage OADS design with(Y, Z, W) observed at the first stage.

It should be noted that in above simulation results, the covariateX was generated independently from
Z. Therefore, we tookS = W and then adopted a univariate kernel smoothing method to estimate the
functiong(X|Z, W) = g(X|W) nonparametrically. As suggested by one of the referees, here we intend
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Table 2. Simulation study for the proposed estimators. Results are based on 1000 replicated data sets
with 1500 subjects at the first stage and allocation pattern allocation(120, 60) at the second stage under

the cutpoints
(1

3, 2
3

)
for each data set†

g(X|W) Method β̂1 β̂2

Mean SE ŜE CI Mean SE ŜE CI

Specified βW 0.302 0.100 0.107 0.967 0.504 0.118 0.120 0.952
βY1 0.295 0.093 0.091 0.950 0.502 0.093 0.086 0.935
βY2 0.304 0.097 0.093 0.931 0.500 0.053 0.052 0.943
βP1 0.308 0.069 0.065 0.928 0.502 0.053 0.052 0.943
βP2 0.299 0.067 0.065 0.938 0.502 0.053 0.052 0.944
βSP 0.302 0.060 0.059 0.951 0.504 0.052 0.052 0.947

Misspecified βW 0.307 0.104 0.108 0.969 0.505 0.121 0.121 0.955
βY1 0.307 0.098 0.095 0.932 0.504 0.096 0.090 0.931
βY2 0.310 0.099 0.096 0.925 0.508 0.059 0.057 0.941
βP1 0.309 0.075 0.074 0.926 0.503 0.058 0.057 0.947
βP2 0.306 0.071 0.068 0.934 0.505 0.057 0.056 0.941
βSP 0.269 0.066 0.063 0.903 0.512 0.059 0.0510.929

†See note for Table1.

to investigate our proposed estimators wheng(X|W) is specified parametrically instead of being estimated
by kernel smoothing. Note that in our above simulation setupsg(X|W) is a normal density function with
meanW and variance 2. The resultant estimate is denoted byβ̂SP. Furthermore, we also consider this
estimate in the misspecified situation in which theX was generated from the modelX = W1/3 +ε but the
working model remains to beX = W + ε. The related results are formulated in Table2. Obviously, when
g(X|W) is correctly specified, the estimatêβSP outperforms the nonparametric methods. However, when
g(X|W) is misspecified, the estimatêβSP is biased with low coverage probability while the nonparametric
smoothing estimates, including our proposed estimatesβ̂P1 andβ̂P2, still work well.

On the other hand, as suggested by another referee, in some practice,d, the dimension ofW, could
be greater than one, and then multivariate kernel smoothing method would be involved. Hence, it is of
practical importance to see how sensitive the resulting inference on the parameters of interest is with
regard to the dimensiond of kernel smoothing. We explore this issue with some modifications of the
simulation models, where we generateZ from modelZ = W2 + ε2, whereW andε2 are both generated
independently from a standard normal distribution. We keep the remaining parametric simulation settings
unchanged. We use 2 dimensional product standard normal kernels to estimateg(X|Z, W) with bandwidth
matrix diag(h1, h2), whereh1 = 1

2σ̂z,k(nk + n0k)
−1/3, h2 is defined in a similar pattern, and̂σz,k is the

sample standard error of{Zi , i ∈ Vk}. The corresponding estimates are listed in Table3. It can be seen
that when the dimension of kernel smoothingd equals 2, the resultant estimates ofβ1 of main interest are
slightly biased with low coverage probability except for the inverse probability estimateβ̂W. Even then,
our proposed estimatorŝβP1 andβ̂P2 outperformβ̂Y1 andβ̂Y2.

5. ANALYSIS OF THE COLLABORATIVE PERINATAL PROJECT DATA

As an illustration, we applied our proposed method to a data set from the Collaborative Perinatal Project
(CPP) to evaluate the effect of maternal pregnancy serum level of polychlorinated biphenyls (PCB) of
a mother on her children’s intelligence quotient (IQ) test performance. Pregnant mothers were enrolled



Two-stage OADS design with continuous outcome 531

Table 3. Simulation study for the proposed estimators. Results are based on 1000 replicated data sets
with 1500 subjects at the first stage and allocation pattern allocation(120, 60) at the second stage under

the cutpoints
(1

3, 2
3

)
for each data set with S= (Z, W)†

Method β̂1 β̂2

Mean SE ŜE CI Mean SE ŜE CI

βE 0.302 0.053 0.054 0.957 0.506 0.057 0.056 0.949
βR 0.294 0.113 0.110 0.941 0.498 0.107 0.109 0.949
βW 0.297 0.109 0.109 0.953 0.506 0.115 0.117 0.956
βY1 0.315 0.101 0.100 0.929 0.512 0.098 0.092 0.930
βY2 0.317 0.099 0.096 0.926 0.503 0.059 0.058 0.949
βP1 0.315 0.076 0.074 0.927 0.505 0.059 0.058 0.946
βP2 0.287 0.072 0.071 0.929 0.506 0.059 0.0570.941

†See note for Table1.

through university-affiliated medical clinics and data were collected on the mothers each prenatal visit.
The children born during the study were also followed for various outcomes for up to 8 years. One hy-
pothesis is that PCB levels are related to the performance on the Weschler Intelligence Scale for children
at 7 years of age (Longneckerand others, 1997). To investigate thein uteroexposure of PCB in relation
to neurodevelopmental abnormality, the PCB levels were measured by analyzing the third trimester blood
serum specimens that had been preserved from mothers in the CPP study. Due to the expense of conduct-
ing the blood serum assay to measure the PCB level, the study investigators decided to assess the PCB
levels for an overall simple random sample of 849 subjects from the underlying population. In addition to
the PCB level as the exposure variable of interest, other confounding variables available for all subjects
under study include socioeconomic status of the child’s family (SES), gender (SEX) and race (RACE) of
the child indicating for female and black, respectively, the mother’s education (EDU) and age (AGE).

To illustrate our methods, we use the simple random sample of 849 subjects as our underlying popu-
lation. We then construct a 2-stage OADS design for this base population as an illustration. The first stage
sample is the 849 subjects, that is,N = 849. We first explore the relationship between SES and PCB
based on the first-stage sample data. A linear model fit for PCB given SES yields the estimate of slope
0.154(p < 0.0001), which indicates a linear association between SES and PCB. On the other hand, in
terms of practical consideration in environmental epidemiology, higher SES usually leads to higher PCB
level. Hence, we use SES as the auxiliary variable for PCB.

The 1/3 and 2/3 sample quantiles of IQ are 3.7 and 5.3, and the 1/3 and 2/3 sample quantiles of
SES are 90 and 101, respectively. Hence, we can takea1 = 3.7, a2 = 5.3, b1 = 90, andb2 = 101. With
respect to the second-stage samples, assume that 60 SRS samples and 30 supplemental OADS samples in
each corner are selected under the allocation pattern allocation(60, 30). We use the chi-square statistics
to test the independence between IQ and SES, given PCB. In particular, we discretize PCB by dPCB=
(PCB>median(PCB)). Under condition dPCB= 0, we can also define dIQ and dSES in a similar pattern,
and then use the chi-square test yieldingp-value 0.6038. Similarly, under condition dPCB= 1, the chi-
square test yieldsp-value 0.4386. Hence, we think conditioning on PCB level, IQ does not further depend
on SES. The fitted model is

IQ = βint + β1PCB+ β2EDU + β3SES+ β4AGE + β5RACE+ β6SEX+ ε,

whereε is a zero-mean normal variable with unknown variance.
The results for the CPP data analysis are summarized in Table4. Note that since the other confounding

covariates such EDU, SES, AGE, and so on are observed for all subjects, the methodβY1 which assumes



532 H. ZHOU AND OTHERS

Table 4. Analysis results for the CPP study†

Method Intercept PCB EDU SES AGE RACE SEX

βE Est. 80.025∗ 0.256 1.258∗ 1.078∗ 0.018 −7.942∗ −0.590
ŜE 2.795 0.228 0.223 0.266 0.070 0.927 0.842
LCI 74.546 −0.190 0.822 0.558 −0.118 −9.759 −2.240
UCI 85.504 0.702 1.694 1.599 0.155 −6.125 1.060

βR Est. 77.897∗ 0.711 1.122∗ 0.847 0.131 −7.355∗ −0.423
ŜE 6.912 0.496 0.534 0.619 0.167 2.071 1.934
LCI 64.349 −0.262 0.076 −0.367 −0.195 −11.414 −4.214
UCI 91.446 1.683 2.168 2.061 0.458 −3.296 3.368

βW Est. 78.391∗ 0.414 1.322∗ 0.592∗ 0.199∗ −7.752∗ −1.085
ŜE 2.732 0.428 0.207 0.245 0.061 0.876 0.779
LCI 73.036 −0.425 0.916 0.112 0.079 −9.469 −2.612
UCI 83.746 1.253 1.728 1.072 0.319 −6.036 0.442

βY2 Est. 79.154∗ 0.386 1.264∗ 1.102∗ 0.028 −7.841∗ −0.611
ŜE 3.015 0.468 0.222 0.263 0.068 0.917 0.839
LCI 73.245 −0.531 0.830 0.586 −0.106 −9.638 −2.255
UCI 85.063 1.303 1.699 1.617 0.162 −6.044 1.034

βP1 Est. 79.759∗ 0.179 1.268∗ 1.088∗ 0.031 −7.825∗ −0.597
ŜE 2.947 0.495 0.222 0.273 0.068 0.917 0.839
LCI 73.982 −0.791 0.833 0.553 −0.103 −9.623 −2.242
UCI 85.536 1.149 1.702 1.623 0.165 −6.027 1.048

βP2 Est. 80.722∗ 0.285 1.269∗ 1.174∗ 0.034 −7.732∗ −0.588
ŜE 2.894 0.366 0.222 0.273 0.068 0.921 0.839
LCI 75.049 −0.432 0.834 0.639 −0.100 −9.538 −2.232
UCI 86.395 1.002 1.703 1.709 0.168 −5.926 1.055

†The outcome is the IQ scores for children at 7 years of age. PCB is the level measured from the third-trimester blood serum
specimens, EDU is the mother’s education level, SES is the socioeconomic status of the child’s family, AGE is the mother’s
age, and RACE and SEX are the race and gender of the child, respectively. The fitted model is IQ= βint + β1PCB+
β2EDU + β3SES+ β4AGE + β5RACE+ β6SEX+ ε, whereε is zero-mean normal variable with unknown variance. The
auxiliary variable is SES, the cutpoints are

( 1
3 , 2

3

)
, and the allocation pattern is allocation(60, 30). “Est.” is the estimation

of the covariate’s effect, “̂SE” is the estimated standard error, “LCI” is the lower bound of the 95% confidence interval, and
“UCI” is the upper bound of the 95% confidence interval. The symbol “∗” means the corresponding parameter estimate is
significant at 5% level.

that only the outcome is observed at the the first stage is not considered in the data analysis. First, we
are interested in the estimate for PCB under various methods. It is evident that all the analyses confirm
that the PCB level of mother’s third-trimester blood serum specimen is not significantly related to the IQ
scores for children at 7 years of age. Second, a more precise 95% confidence interval(−0.432, 1.002) is
achieved for the estimate of PCB using methodβP2. For example, the 95% confidence intervals for the
estimates of PCB are(−0.425, 1.253), (−0.531, 1.303), and(−0.791, 1.149) using methodsβW, βY2, and
βP1, respectively. Meanwhile, the estimated standard error for the estimate of PCB in the hypothetical case
βE is the smallest one among all the methods considered. Also, the methodβE yields the most accurate
95% confidence interval(−0.190, 0.702) for the estimate of PCB. Third, the estimators for the remaining
covariates under various methods considered are all almost the same as confirmed in the simulation study.
Finally, despite that slightly different conclusions are obtained under methodsβR andβW, the methods
βE, βY2, βP1, andβP2 all confirm that SES, EDU, and RACE have a positive impact on the IQ scores of
children while there is no evidence that both the AGE and SEX have any effect on the IQ scores.
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6. CONCLUDING REMARKS

We proposed a new 2-stage OADS design in which the selected supplemental samples at the second stage
are allowed to depend on both a continuous outcome variable and a continuous auxiliary variable. This
2-stage OADS design can be easily reduced to the 2-stage ODS design with auxiliary covariate infor-
mation. An estimated likelihood function based on nonparametric kernel smoothing method is developed
to accommodate the 2-stage OADS design with continuous outcome variable. The proposed estimator is
shown to be consistent and asymptotically normal. The simulation study suggests that greater efficiency
can be gained in estimating the effect of the exposure variable on the outcome using the proposed 2-stage
OADS design over the existing or other competing 2-stage ODS designs. Additionally, using the available
auxiliary data information can also substantially improve the efficiency of the study. A real data analysis
is provided to illustrate our proposed method.

When the dimensiond of S is moderately large (e.g.d>= 3), the proposed method will not work well
due to the curse of high dimensionality. One possible way is to specifyg(X|S) parametrically. However,
this parametric method could lead to some biased results wheng(X|S) is misspecified. In practice, we
suggested using our proposed method whend<= 2 and using the parametric method whend>= 2.

The proposed 2-stage OADS design allows the investigators to focus their attention on the subjects
who are more informative for study aims. Generally, the issue of how to appropriately divide the domain
of Y ×W to obtain the strata1′

ks may affect the efficiency of estimators. Taking the CPP data as an
example, we want to select those subjects with very high or low IQ scores and SES values as much as
possible. On the other hand, the number of those subjects that we can sample is decreasing along with
higher or lower values of both the IQ scores and SES. Hence, one needs to balance between the 2 above
points when using a 2-stage OADS design. Our experience shows that the cutpoints consisting of 1/3 (or
1/4) and 2/3 (or 3/4) quantiles of both the outcome and auxiliary are usually feasible in practice.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://www.biostatistics.oxfordjournals.org.
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