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The ultimate goal of quantitative ultrasound (QUS) imaging methods based on backscatter coeffi-

cient (BSC) estimates is to obtain system-independent structural information about samples. In the

current study, three BSC estimation methods were compared and evaluated using the same back-

scattered pressure datasets in order to assess their consistency. BSC estimates were obtained from

two phantoms with embedded glass spheres and compared to theoretical BSCs calculated using

size distributions estimated using optical microscopy. Effective scatterer diameter and concentra-

tion estimates of the glass spheres were also obtained from the estimated BSCs. One estimation

method needed to be compensated by more than an order of magnitude in amplitude in order to

produce BSCs comparable to the other two methods. All calibration methods introduced different

frequency-dependent effects, which could have noticeable effects on the bias of QUS estimates

derived from experimental BSCs. Although in most cases the experimental QUS estimates obtained

with all three methods were observed to differ by less than 10%, larger differences are expected

depending on both the pressure focusing gain of the transducer (proportional to the ratio of the

square of the aperture radius to the product of the wavelength and focal length) and ka range used

in the estimation. VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3557036]

PACS number(s): 43.35.Bf, 43.80.Ev, 43.80.Qf, 43.80.Vj [TDM] Pages: 2903–2911

I. INTRODUCTION

The backscatter coefficient (BSC) is a fundamental

quantity that contains information about material microstruc-

ture. Extraction of microstructural properties through analysis

of BSCs has been extensively studied in the past for tissue

characterization applications in biomedical ultrasound.1–4

The ultimate goal of quantitative ultrasound (QUS) imaging

methods based on BSC estimates is to obtain meaningful,

system-independent information about the analyzed tissues.

Therefore, ideally any instrumentation dependence should be

removed when estimating BSCs.

Many practical implementation aspects, however, may

have an impact on the estimation of BSCs from tissues. Sev-

eral transducer geometries have been studied in the past

including unfocused5 and focused6,7 single-element trans-

ducers, as well as array systems.8,9 Even for a fixed experi-

mental system, several spectrum calibration methods have

been proposed resulting in several methodologies for BSC esti-

mation. Two of the most common ways of compensating for

system-dependent effects are the substitution10–12 and refer-

ence phantom13–15 methods. Finally, several methods for com-

pensating attenuation effects have also been proposed.16,17

Given the availability of several methods for BSC estima-

tion, it becomes of high importance to evaluate the feasibility

of obtaining accurate and consistent BSC estimates. To that

effect, inter-laboratory comparisons of ultrasonic BSC esti-

mates have been performed in the past18,19 but only a limited

agreement among BSC estimates obtained at different labora-

tories was observed. The goal of the current study is to evalu-

ate three different BSC estimation methods using the same

experimental datasets. This approach allows eliminating ex-

perimental discrepancies in order to assess the consistency of

these BSC estimation methods and determine under what con-

ditions a particular method may be preferred. The three

approaches for obtaining BSC estimates are representative of

the methods commonly used in the literature. All measure-

ments were obtained using focused transducers having differ-

ent center frequencies and focal numbers for the analysis of

two well-characterized physical phantoms. Estimated BSCs

were compared to the theoretical BSCs obtained given the

knowledge of the scatterer distributions in both phantoms.

II. METHODS

A. BSC estimation methods

In this section, details of BSC estimation using a planar

reflector to compensate for the imaging transducer character-

istics will be provided. BSCs are estimated from pulse-echo

data corresponding to regions of interest (ROIs) within the

sample under study. An acoustic aperture receives pulse-echo

pressure waveforms sm(t) when located at several positions

along the Y axis, as shown in Fig. 1. The backscattered data is

gated between depths (F�Dz=2) and (FþDz=2) using a rec-

tangular window, where F is the transducer focal length and

Dz is the gate length. BSC estimates from a ROI require the

calculation of the normalized power spectrum j�S0ðkÞj2 defined as

jS0ðkÞj2 ¼
hjSmðkÞj2i
jS0ðkÞj2

HðkÞ; (1)a)Author to whom correspondence should be addressed. Electronic mail:

lavarell@illinois.edu.
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where hjSm(k)j2i is the average of the power spectra of sev-

eral adjacent, gated scan lines sm(t), H(k) is a function that

compensates for attenuation effects, and S0(k) is the Fourier

transform of a reference waveform. The normalized power

spectrum j�S0ðkÞj2 can be related to BSCs after properly com-

pensating for the transducer geometry.

Three different estimation methods have been studied in

this work and are summarized below for completion. All

methods assume S0(k) is obtained by measuring the reflec-

tion of ultrasound from a planar reflector located at the cen-

ter of the ROI and perpendicular to the transducer axis.

Furthermore, the methods assume that circular, single-ele-

ment focused transducers are used to perform the measure-

ments with the center of the ROI located at the acoustic

focus of the transducer.

1. Estimation method 1

The first estimation method used in this study was

derived by Insana et al.11 The volumetric integral wave

equation derived under the first order Born approximation

was used to estimate the power spectrum of both weakly

scattering random media (Ref. 11, Secs. II A and II B) and

the planar reflector (Ref. 11, Sec. II C). BSC estimates can

be estimated using [Ref. 11, Eqs. (34), (35), and (41)]

ĝHann
1 ðkÞ ¼ 0:3625

c2F2

A0Dz
j�S0ðkÞj2; (2)

where A0¼ pR2 is the aperture area of the transducer of

radius R and c is the pressure reflection coefficient of the

planar reflector. The expressions in Ref. 11 were derived

assuming a Hanning window to gate the radiofrequency data.

Different windows can be used by updating the value of

Bg(0) in Ref. 11, Eq. (40) which is equal to 0.375Dz and Dz
for Hanning and rectangular windows, respectively. There-

fore, BSCs can be estimated using a rectangular window as

ĝ1ðkÞ ¼
BHann

g ð0Þ
BRect

g ð0Þ ĝ
Hann
1 ðkÞ ¼ 0:375ĝHann

1 ðkÞ: (3)

A notation inconsistency in the development of ĝ1ðkÞ
can be tracked back to Ref. 11, Sec. II C, where the corre-

sponding equations for spectral calibration were derived. In

particular, the source function corresponding to a planar

reflector was defined as c(r0)¼ c0h(z0 – zc) [Ref. 11, Eq. (32)]

with h(z0 – zc) a step function located at the center of the gate

and c0 defined to be the planar reflection coefficient by the

authors. However, if j0 ¼j0(lþ dj) and q0 ¼ q0(1þ dq) and

under the weak scattering assumption (i.e., dj, dq� 1) used

by the authors

c0 ¼ c0j � c0q � dj� dq � 2
DZ

z0

� 4
Z � Z0

Z þ Z0

¼ 4c; (4)

where Z0 and Z ¼ (Z0þDZ) are the characteristic acoustic

impedances of the background and planar reflector, respec-

tively. Therefore, c0 is equal to four times the pressure reflec-

tion coefficient c of the planar reflector and not to c as stated

in Ref. 11. As a result, the expression in Eq. (3) is off by a fac-

tor of 16. A corrected version of the BSC estimation method

is given by

g1ðkÞ ¼ 16ĝ1ðkÞ ¼ 2:17D1ðGpÞ
c2F2

A0Dz
j�S0ðkÞj2; (5)

where Gp ¼ (kR2=2F) is the pressure focusing gain of the

transducer20,21 and D1(�)¼ 1 has been defined for conven-

ience when comparing the studied BSC estimation methods.

It must be stressed that Eq. (5) is not equal to the final

expression given in Ref. 11, but rather an updated expression

that corrects a magnitude inconsistency in the BSC estima-

tion derivation.

2. Estimation method 2

The second estimation method was derived by Chen

et al.12 The authors determined the theoretical reference

power spectrum using the mirror image method assuming a

perfectly reflecting plate.22 The resulting expression for

jS0ðkÞj2 was scaled by the power reflection coefficient of the

plate to account for its finite reflectivity. BSCs can be esti-

mated as [Ref. 12, Eqs. (31), (54), and (57)]

g2ðkÞ ¼ 2:17D2ðGpÞ
c2F2

A0Dz
j�S0ðkÞj2;

D2ðGpÞ ¼ j expð�iGpÞ½J0ðGpÞ þ iJ1ðGpÞ� � 1j2; (6)

where Jm(�) is the mth order Bessel function.

3. Estimation method 3

The third estimation method was developed by Ueda

and Ozawa.10 The reference power spectrum was derived in

Ref. 10, Sec. VI using the boundary integral wave equation

under the first order Born approximation [Ref. 10, Eq. (4)].

An approximate closed form solution for estimating BSCs

FIG. 1. (Color online) Schematic of the configuration for backscatter meas-

urements from a phantom with randomly positioned scatterers.
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assuming a Gaussian profile for the transducer radiation pat-

tern was proposed and developed by the authors and is given

by [Ref. 10, Eq. (73)]

gG
3 ðkÞ ¼ 2:17DG

3 ðGpÞ
c2F2

A0Dz
j�S0ðkÞj2; (7)

DG
3 ðGpÞ ¼ 0:92

ðGp=2Þ2

1þ ðGp=2Þ2
: (8)

The BSC for a circular focused transducer can be calcu-

lated as [Ref. 10, Eq. (74)]

g3ðkÞ ¼
LðkR; kFÞ

0:92
gG

3 ðkÞ ¼ 2:17D3ðkR; kFÞ c
2F2

A0Dz
�SðkÞ; (9)

where L(kR, kF) is a frequency-dependent correction factor

and D3ðkR; kFÞ ¼ ½DG
3 ðGpÞ � LðkR; kFÞ=0:92�. The proce-

dure for numerically calculating L(kR, kF) was outlined in

Ref. 10, Sec. VI.

B. Experimental methods

1. Experimental setup

In order to evaluate the reported estimation methods,

experimental BSC estimates were obtained from two agar

phantoms with glass bead inclusions.23 The first phantom,

labeled “41 lm phantom,” contained 47 glass spheres/mm3

ranging in diameter from 36 to 48 lm. The second phantom,

labeled “150–180 lm phantom,” contained 20 g/l of glass

spheres (approximately 3.2 glass spheres/mm3) ranging in

diameter from 144 to 204 lm. The scatterer size distribu-

tions of the glass spheres for both phantoms were estimated

from optical microscopy images, and the estimated scatterer

size probability distribution functions (PDFs) p(a), i.e., the

probability that the spherical inclusion radius takes the value

a, for both phantoms are reported in Fig. 2. The correspond-

ing attenuation coefficients were estimated with through-

transmission techniques and approximated with a third- and

fifth-order polynomial for the 41 lm and 150–180 lm phan-

toms, respectively. Ultrasound was transmitted into the

phantoms through a layer of thin plastic film. The transmis-

sion coefficient through the film was compensated using the

method outlined in Ref. 19.

It has been previously reported in the literature24 that

using a reference from a planar reflector at a single location

to estimate S0(k) may affect the estimated BSCs especially

when using tightly focused transducers and long gate

lengths. To reduce these effects, in this work the reference

spectrum S0(k) was estimated by averaging the power spectra

obtained at several depths between (F�Dz=2) and

(FþDz=2) from a planar Plexiglas
VR

reflector (c� 0.37).

BSC estimates were obtained using all three estimation

methods described in Sec. II A. The phantoms were raster

scanned in one plane over a 4 cm by 4 cm area at 2 mm steps

for a total of 441 scan locations. Attenuation compensation

was performed using Ref. 17, Eq. (16). The properties of the

transducers used for the experiments are listed in Table I.

For all transducers, the radio frequency data was gated using

a gate length Dz of 18 wavelengths at the nominal center fre-

quency of the transducer.

The theoretical BSC corresponding to the experimental

phantoms were calculated assuming the analyzed media con-

sisted of randomly located spherical scatterers embedded in

an otherwise homogeneous background at a concentration of

b scatterers per unit of volume. Neglecting coherent and

multiple scattering effects, the theoretical BSC g(k)th can be

expressed as

gthðkÞ ¼
b
4p

ð1
0

pðaÞrðk; aÞda; (10)

where r(k, a) is the backscattering cross-section of an indi-

vidual scatterer. In this work, r(k, a) was calculated using the

analytic solution of the scattering of a plane wave by a solid

sphere.25,26 The values of density, longitudinal sound speed,

FIG. 2. (Color online) Estimated scatterer size

probability distribution functions for the 41 lm

(left) and 150–180 lm (right) phantoms.

TABLE I. Properties of the transducers used for the experimental BSC

measurements. In the first column, f0 represents nominal center frequency of

the transducer. Gp was calculated using the experimentally estimated focal

distance F.

f0
(MHz) f# Diameter

Analysis bandwidth

(MHz) Gp range

2.25 2.7 0.75 in. (19.05 mm) [1.2–3.4] [3.6–9.9]

5 3 0.75 in. (19.05 mm) [2.3–7.3] [7.7–24.5]

7.5 4 0.75 in. (19.05 mm) [3.1–11.5] [8.0–29.4]

10 4 0.5 in. (12.7 mm) [5.7–16.1] [8.9–25.3]

10 2 1 in. (25.4 mm) [4.3–14.4] [28.2–95.0]

13 3 0.5 in. (12.7 mm) [7.0–19.1] [15.8–43.2]

15 2 0.5 in. (12.7 mm) [7.1–20.1] [23.4–66.9]

20 4 0.25 in. (6.35 mm) [8.6–27.0] [6.9–21.9]

20 3 0.25 in. (6.35 mm) [8.9–28.6] [8.9–28.6]
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and Poisson’s ratio of the glass spheres were assumed to be

equal to 2.38 g/ml, 5.57 mm/ls, and 0.21, respectively.11

2. Performance assessment

In order to experimentally assess the performance of the

different BSC estimation methods, QUS estimates were

obtained from the estimated BSCs. Effective scatterer diam-

eter (ESD) estimates were obtained by solving the optimiza-

tion problem11,27

ESD ¼ 2 arg min
a

1

N

XN

i¼1

½XðgðkiÞ; rðki; aÞÞ � �X�2; (11)

Xðr; sÞ ¼ 10 log10ðr=sÞ; (12)

where �X is the mean value of X(k, a) within the analysis

wave number bandwidth ki [ [kmin, kmax]. Other methods for

ESD estimation such as least mean squares (LMS)15 have

also been studied in the literature. However, no significant

difference was observed when using LMS to obtain ESD

estimates (results not shown in this manuscript). Once an

estimate of the ESD has been obtained, the effective scat-

terer concentration (ESC) can be estimated as

ESC ¼ 4p

PN
i¼1

gðkiÞrðki;ESD=2Þ

PN
i¼1

r2ðki;ESD=2Þ
: (13)

The fit between the estimated g(k) and theoretical gth(k)

BSCs corresponding to both phantoms was also quantified.

For consistency, the fit was quantified using the first- and

second-order moments of the error function in Eq. (12), i.e.,

Errl ¼
1

N

XN

i¼1

XðgðkiÞ; gthðkiÞÞ; (14)

Errr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

½XðgðkiÞ; gthðkiÞÞ � Errl�2
vuut : (15)

The quantities Errl and Errr are measures of the amplitude

and frequency dependence agreements, respectively, between

the estimated g(k) and theoretical gth(k) BSCs.

III. RESULTS

A. Frequency-dependent effects of the estimation
methods

For all three BSC estimation methods, it was independ-

ently demonstrated that only the amplitude, and not the fre-

quency dependence, of hjSm(k)j2i depended on the transducer

geometry when measurements were conducted near the trans-

ducer focus.10–12 However, the frequency dependence of

jS0(k)j2 varies depending on which estimation method is used.

Further, it follows from Eqs. (5), (6), (7), and (9) that the

studied BSC estimation methods can be related to each other

using the relationships

g1ðkÞ
D1ðGpÞ

¼ g2ðkÞ
D2ðGpÞ

¼ gG
3 ðkÞ

DG
3 ðGpÞ

¼ g3ðkÞ
D3ðkR; kFÞ : (16)

All BSC estimation methods were compared by plotting

the diffraction correction factors D1(Gp), D2(GP), D3(kR, kF),

and DG
3 ðGpÞ, which relate the estimated BSCs as given by

Eq. (16). Both D2(GP) and DG
3 ðGpÞ depend exclusively on the

pressure focal gain Gp. In contrast, D3(kR, kF) does not

depend on Gp but rather on kR and kF separately. Therefore,

nine different D3(kR, kF) curves were computed and plotted,

each one corresponding to the geometry of all nine trans-

ducers listed in Table I. The results are shown in Fig. 3 for

Gpvalues between 10�1 and 103.

Observation of Fig. 3 indicates that all nine D3(kR, kF)

curves were almost perfectly overlapping and virtually indis-

tinguishable from each other, which suggests L(kR, kF) is

mainly dependent on Gp for moderate to large kR values.

This observation is consistent with numerical evaluations

presented by Ueda and Ozawa in Ref. 10, Fig. 5. Further, all

D3(GP) curves were in excellent agreement with the curve

corresponding to DG
3 ðGpÞ for all Gp values. The curve corre-

sponding to DG
3 ðGpÞ had good agreement with D2(GP) and

D3(kR, kF) for low Gp values and with D1(Gp) for large Gp

values. The curves corresponding to D2(GP), D3(kR, kF), and

DG
3 ðGpÞ agreed with G1(Gp) to within 1 dB for Gp> 25,

Gp> 25, and Gp> 5, respectively.

B. BSC and QUS estimates

A total of 21 experimental BSC estimates per transducer

per phantom were obtained using all estimation methods by

using backscattered data from 21 independent scan lines per

BSC estimate. The average BSCs obtained using the estima-

tion methods from Eqs. (5), (6), and (7) together with the

theoretical BSC curves expected from using Eq. (10) are

shown in Fig. 4 for both experimental phantoms. The BSCs

estimated using Eq. (9) were not plotted because of their

high correlation with the BSCs obtained using g2.

FIG. 3. (Color online) Comparison of the frequency-dependent calibration

terms in the denominator of Eq. (16). The curves correspond to g1 (solid

line), g2 (dotted line), gG
3 (dashed line), g3 and (nine dash-dotted lines).
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All methods produced BSC estimates that had similar

agreement with the theoretical BSCs (also plotted). The

errors between the experimentally estimated and theoretical

BSCs are reported in Tables II and III for the 41 lm and

150–180 lm phantoms, respectively. As expected from the

results in Sec. III A, the Errl values corresponding to differ-

ent methods are close to each other, i.e., less than 2 dB error

difference among all estimation methods for a fixed phantom

and transducer combination. Further, the difference in Errl
values for a fixed phantom and transducer combination is

reduced when using transducers with higher Gp values.

Mean and standard deviations of ESD and ESC estimates

obtained from all 21 estimated BSCs per transducer are reported

in Table IV for the 41 lm phantom and Table V for the 150–

180 lm phantom. In general, a larger difference in mean QUS

values corresponding to different estimation methods was

observed for transducer and phantom combinations with lower

ka values. The most dramatic difference was observed when

analyzing the 41 lm phantom with the 2.25, f/2.7 transducer.

IV. DISCUSSION

Three representative methods for BSC estimation have

been studied in this work. It should be mentioned that other

approaches presented in the literature can be related to the

methods evaluated here. For example, D’Astous and Foster28

presented a estimation method based on geometrical consid-

erations that resulted in expressions similar to those provided

by Insana et al. in Ref. 11. Another study in BSC estimation

was presented by Madsen et al.29 Analytic expressions for

BSC calculation were provided, but such expressions

depended on integrals that required numerical evaluation.

The formulation by Madsen et al. was shown to be equiva-

lent to g2 by Chen et al.12 The advantage of using the results

from Ref. 12 is the availability of explicit expressions for

normalizing BSC estimates.

All studied estimation methods have an effect on the

magnitude and frequency dependence of the estimated

BSCs. Both effects are discussed below.

A. BSC amplitude effects

All estimation methods studied in this work can be com-

pared in the large Gp limit, for which it holds that

D2ðGp !1Þ ! 1;

DG
3 ðGp !1Þ ! 0:92;

D3ðkR; kF;Gp !1Þ ! 1:

The first limit can be derived by using the approximate

expression D2(k)! exp[�(2/p)(Gp/p)�1/2] valid for large Gp

FIG. 4. (Color online) BSC estimates from the

41 lm (left) and 150–180 lm (right) phantoms

estimated using methods 1 (solid lines),

2 (dashed lines), and 3 (dash-dotted lines)

together with the theoretical BSC derived from

the scatterer size PDFs reported in Fig. 2 (dot-

ted lines).

FIG. 5. (Color online) Fractional error (ESD=2a – 1) when estimating ESDs

as a function of ka when the input g to the estimator is set proportional to

gth�D2(GP) (solid lines) and gth=D2(Gp) (dashed lines). The Gp=ka ratio

was set to 50 (top), 500 (center), and 5000 (bottom).
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values given in Ref. 12, Eq. (58). The second limit follows

directly from the expression in Eq. (8). The third limit was

validated through numerical simulations. Therefore, the as-

ymptotic values of the relationships in Eq. (16) are given by

g1ðGp !1Þ ¼ g2ðGp !1Þ ¼
gG

3 ðGp !1Þ
0:92

¼ g3ðGp !1Þ: (17)

The expressions given in Eq. (17) indicate an excellent agree-

ment in BSC amplitude for all studied BSC estimation meth-

ods. Methods g1, g2, and g3 have a perfect agreement in the

Gp!1 limit, and in the asymptotically large Gp limit these

methods differ from gG
3 by less than 10%. This analysis is con-

sistent with the experimental values of Errl reported in Tables

II and III where differences of less than 2 dB in Errl among

different estimation methods were observed. Further, the Errl
absolute values were less than 1.6 and 2.8 dB for the 41 lm

and 150–180 lm phantoms, respectively. The small error indi-

cates a very good correspondence between the estimated and

expected BSC magnitudes. The slightly larger magnitude dis-

agreement for the 150–180 lm phantom may be due to a less

accurate assumed value for the scatterer concentration.

It should be noted that g1 agreed with the other BSC

estimation methods and experimental measurements only af-

ter the magnitude correction described in Sec. II A 1 was

applied. Therefore, the use of the expressions provided in

Ref. 11 is expected to result in a BSC magnitude underesti-

mation by slightly more than an order of magnitude.

As for the validity of the g1 magnitude correction pre-

sented in Sec. II A 1, it should be acknowledged that the

approximations in Eq. (4) only hold for weakly scattering

media and may appear inappropriate to characterize the

reflection off a planar reflector with high impedance mis-

match from water, e.g., a Plexiglas reflector. However, the

scattering by a planar reflector in the original work presented

in Ref. 11, Sec. II C was derived under the first order Born

approximation for which weakly scattering media is assumed,

and therefore the correction factor is self-consistent. Further,

excellent agreement was found between methods g2 and g3

although expressions for the reflection off a planar reflector

were derived by Chen et al. in Ref. 12 by assuming the plate

to be a perfect acoustic reflector and Ueda and Ozawa in Ref.

10 by invoking first order Born scattering. Therefore, it

appears reasonable to assume expressions for reflection off a

plate derived under limiting scattering conditions (such as

weak scattering conditions) can be generalized to materials

of finite reflectivity by scaling the resulting expressions by

the reflectivity c at the plate surface.

Finally, other estimation methods available in the litera-

ture also suffer from discrepancies in BSC magnitude. For

example, D’Astous and Foster proposed in Ref. 28, Eq. (6)

to estimate BSCs as

gDAFðkÞ ¼
c2

Dz

1

2pð1� cos htÞ
j�S0ðkÞj2; (18)

where ht is the half angle of the transducer subtended at its

focus. If a small angle approximation is performed,

ð1� coshtÞ � h2
t =2 � 0:5ðR=FÞ2 and therefore

gDAFðkÞ �
c2F2

A0Dz
j�S0ðkÞj2: (19)

Therefore, this estimation method has the same frequency

dependence of g1, but its amplitude for large Gp is off by

roughly a factor of 2.2 when compared to methods g1, g2,

and g3.

TABLE III. Experimental BSC estimation errors when analyzing the 150–180 lm phantom.

Transducer

Errl Errr

g1 g2 gG
3 g3 g1 g2 gG

3 g3

2.25 MHz, f/2.7 2.54 6 0.19 0.63 6 0.19 1.74 6 0.19 0.63 6 0.19 1.13 6 0.14 1.13 6 0.14 1.12 6 0.14 1.13 6 0.14

5 MHz, f/3 2.24 6 0.28 0.96 6 0.28 1.79 6 0.28 0.99 6 0.28 1.31 6 0.17 1.26 6 0.16 1.30 6 0.17 1.26 6 0.16

7.5 MHz, f/4 2.71 6 0.31 1.53 6 0.31 2.27 6 0.31 1.53 6 0.20 1.27 6 0.16 1.20 6 0.14 1.24 6 0.15 1.20 6 0.14

TABLE II. Experimental BSC estimation errors when analyzing the 41 lm phantom.

Transducer

Errr Errl

g1 g2 gG
3 g3 g1 g2 gG

3 g3

2.25 MHz, f/2.7 1.34 6 0.16 �0.51 6 0.16 0.59 6 0.16 �0.50 6 0.16 1.04 6 0.09 1.04 6 0.09 1.04 6 0.09 1.05 6 0.09

5 MHz, f/3 0.60 6 0.16 �0.66 6 0.16 0.15 6 0.16 �0.65 6 0.16 1.05 6 0.12 1.07 6 0.11 1.05 6 0.12 1.07 6 0.11

7.5 MHz, f/4 0.84 6 0.20 �0.35 6 0.20 0.40 6 0.20 �0.34 6 0.20 0.95 6 0.08 0.97 6 0.07 0.95 6 0.07 0.97 6 0.07

10 MHz, f/4 0.18 6 0.17 �1.04 6 0.17 �0.26 6 0.17 �1.04 6 0.17 0.97 6 0.11 0.97 6 0.11 0.97 6 0.11 0.97 6 0.11

10 MHz, f/2 �0.06 6 0.27 �0.71 6 0.27 �0.43 6 0.27 �0.71 6 0.27 1.10 6 0.11 1.05 6 0.11 1.10 6 0.11 1.05 6 0.11

13 MHz, f/3 1.17 6 0.25 0.25 6 0.25 0.79 6 0.25 0.26 6 0.25 0.98 6 0.09 0.98 6 0.09 0.97 6 0.09 0.98 6 0.09

15 MHz, f/2 1.37 6 0.34 0.60 6 0.34 0.99 6 0.34 0.61 6 0.34 1.05 6 0.14 1.01 6 0.14 1.05 6 0.14 1.01 6 0.14

20 MHz, f/4 1.53 6 0.28 0.13 6 0.28 1.02 6 0.28 0.14 6 0.28 1.30 6 0.22 1.28 6 0.20 1.30 6 0.22 1.28 6 0.20

20 MHz, f/3 0.62 6 0.58 �0.41 6 0.58 0.22 6 0.58 �0.41 6 0.58 1.54 6 0.22 1.47 6 0.21 1.53 6 0.22 1.47 6 0.21
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B. Frequency-dependent effects

The diffraction correction curves presented in Fig. 3

illustrate the different frequency dependencies of all studied

estimation methods, which arise from the different assump-

tions involved in the derivation of the corresponding BSC

estimation expressions.

When deriving g2, and following the seminal formula-

tion by O’Neil,30 the incident field was assumed proportional

to $$Sexp(�jks)=s dS, where s is the distance between a sur-

face element dS on the surface S of the transducer and the

observation point. When deriving g3 the incident field was

assumed to be proportional to jinc(kR sin h)exp(�jkr), where

jinc(x)¼ 2J1(x)=x with J1(�) the first order Bessel function,

and r is the radial coordinate of the observation point. As

shown by O’Neil in Ref. 30 both expressions are in good

agreement in the focal plane of the transducer. Therefore,

the use of almost equivalent models for both amplitude and

phase of the incident field resulted in very good agreement

between g2 and g3.

Although Insana et al. used the same incident field model

as Ueda and Osawa, the phase front was assumed to be plane

instead of spherical in the evaluation of jS0ðkÞj2 (see Ref. 11,

Sec. II C). The use of a different expression for the incident

field phase caused frequency-dependent discrepancies between

g1 and g2, g3. For large Gp values, however, these three meth-

ods become essentially equivalent, i.e., frequency-dependent

effects in g2, g3 become weak. For a focused transducer, the

�6-dB angular beamwidth at the transducer focus can be

approximated as Dh� arctan(kf#=F)¼ arctan(p=4Gp), where

f# is the transducer focal number. Therefore, the incident field

can be safely approximated as a local plane wave as Gp!1,

which is the cause for the asymptotic agreement among g1, g2,

and g3.

As for gG
3 , although it was derived assuming a spherical

wave front the use of a different amplitude function (i.e., a

Gaussian function instead of a jinc function) resulted in

frequency-dependent discrepancies with g2 and g3. There-

fore, both the amplitude and phase modeling of the assumed

incident field have an effect on the frequency-dependent

behavior of BSC estimation methods.

The results presented in this work suggest g1 is signifi-

cantly different than g2, g3, and gG
3 at very low Gp values, i.e.,

Gp< 1. This is due to the fact that the local plane wave

approximation used in g1 breaks down in the low Gp limit. In

practice, however, these effects may not be observed. It has al-

ready been discussed in the literature that energy focusing can-

not occur in the far field of the equivalent flat transducer, i.e,

for R2=kF< 1 or equivalently Gp=p< 1.31 Therefore, trans-

ducers with Gp< p (the region where most of the significant

differences in the curves presented in Fig. 3 were observed)

will most likely not be used in experimental practice.

The experimental results suggest all methods are capa-

ble of producing similar frequency dependencies of BSC

estimates, as suggested by the Errr values in Tables II and

III. The experimental Errr corresponding to different estima-

tion methods had mean absolute and relative values that dif-

fered among each other in all cases by less that 0.1 dB and

6%, respectively.

C. Implications for QUS estimation

Both amplitude and frequency-dependent effects intro-

duced by BSC estimation methods will affect QUS esti-

mates. Amplitude differences will only change estimates of

ESC. It was observed in this study that g1, g2, g3, and gG
3

were successful in approximately reproducing the expected

BSC magnitude from two well-characterized experimental

TABLE V. ESD and ESC estimates derived from experimental data corresponding to the 150–180 lm glass bead phantom. ka and Gp were calculated using

the transducer nominal center frequency, with ka corresponding to a scatterer diameter of 165 lm.

Transducer ka Gp

ESD (lm) ESC (scatt.=mm3)

g1 g2 gG
3 g3 g1 g2 gG

3 g3

2.25 MHz, f/2.7 0.78 6.6 169.4 6 4.4 161.2 6 4.8 163.3 6 4.7 161.1 6 4.8 5.9 6 0.6 4.6 6 0.6 5.7 6 0.7 4.6 6 0.6

5 MHz, f/3 1.73 16.8 163.5 6 5.9 165.3 6 5.5 164.0 6 5.9 165.3 6 5.5 5.4 6 0.8 4.0 6 0.6 4.8 6 0.7 4.0 6 0.6

7.5 MHz, f/4 2.59 19.2 131.8 6 49.9 135.8 6 48.9 131.1 6 50.7 135.8 6 48.9 88.7 6 121.3 63.8 6 94.7 84.8 6 114.2 63.9 6 94.9

TABLE IV. ESD and ESC estimates derived from experimental data corresponding to the 41 lm glass bead phantom, ka and Gp were calculated using the

transducer nominal center frequency, with ka corresponding to a scatterer diameter of 41 lm.

Transducer ka Gp

ESD (lm) ESC (scatt.=mm3)

g1 g2 gG
3 g3 g1 g2 gG

3 g3

2.25 MHz, f/2.7 0.19 6.6 49.1 6 19.1 15.6 6 19.8 21.2 6 22.81 15.4 6 19.6 (2.4 6 10.7)� l08 (1.3 6 1.5)� l09 (7.2 6 12.2)� l08 (1.3 6 1.5)� l09

5 MHz, f/3 0.43 16.8 54.8 6 3.6 50.7 6 4.0 53.8 6 3.7 50.8 6 4.0 16.7 6 5.7 19.3 6 8.1 16.7 6 6.1 19.3 6 8.2

7.5 MHz, f/4 0.64 19.2 42.6 6 1.4 40.4 6 1.5 42.1 6 1.5 40.4 6 1.5 52.4 6 7.7 51.3 6 8.8 50.1 6 7.6 51.3 6 8.8

10 MHz, f/4 0.86 15.7 41.6 6 0.8 40.8 6 0.8 41.4 6 0.8 40.8 6 0.8 48.5 6 3.6 39.0 6 3.0 44.5 6 3.3 39.0 6 3.0

10 MHz, f/2 0.86 65.9 44.9 6 1.0 44.4 6 1.0 44.9 6 1.1 44.4 6 1.0 36.2 6 3.9 32.5 6 3.6 33.3 6 3.6 32.6 6 3.6

13 MHz, f/3 1.12 29.4 41.7 6 0.9 41.4 6 1.3 41.7 6 1.0 41.4 6 1.3 61.9 6 5.7 51.2 6 5.4 56.8 6 5.3 51.2 6 5.4

15 MHz, f/2 1.29 49.8 41.4 6 0.6 41.4 6 0.6 41.4 6 0.6 41.4 6 0.6 66.9 6 6.0 56.4 6 5.1 61.4 6 5.5 56.4 6 5.1

20 MHz, f/4 1.71 16.2 39.2 6 0.9 39.6 6 0.9 39.3 6 0.9 39.6 6 0.9 79.4 6 8.1 57.5 6 5.9 70.9 6 7.2 57.5 6 5.9

20 MHz, f/3 1.71 20.0 38.0 6 1.0 38.3 6 1.0 38.0 6 1.0 38.3 6 1.0 76.1 6 9.8 58.8 6 7.7 69.1 6 8.8 58.9 6 7.7
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phantoms. Other methods reported in the literature such as

ĝ1 in Eq. (3) and gDAF in Eq. (19) had amplitude disagree-

ments that would result in BSC amplitude under-determination

factors of 12 and 3.4 dB, respectively. Therefore, different

estimation methods reported in the literature can potentially

introduce significant BSC amplitude variations.

Frequency-dependent effects are expected to affect primar-

ily ESD estimates, although it is worth remarking that errors in

ESD will ultimately propagate to ESC estimates through the

use of Eq. (13). Two adimensional, frequency-dependent pa-

rameters are expected to affect the mean ESD estimate values.

(1) Gp: Because different BSC estimation methods introduce

different frequency-dependent corrections which depend

on Gp, mean ESD estimates are expected in principle to

change depending on the chosen BSC estimation method.

However, the Gp range of the transducers should deter-

mine the extent of the spread of mean ESD estimates.

This is expected because the results in Sec. III A suggest

all estimation methods become nearly equivalent when

Gp!1 but are significantly different when Gp<p.

(2) ka: The accuracy and precision of ESD estimates can be

compromised depending on the ka range used for BSC

analysis. In particular, for low ka values the dependence

of BSC on the actual scatterer size becomes weak which

degrades the precision of ESD estimates.32 On the other

hand, for large ka values the scattering model becomes

too complex which may cause convergence of the ESD

estimator to inaccurate solutions due to convergence to

local minima.6 It has been proposed that ka values satis-

fying 0.5< ka< 1.2 provide good ESD estimates when

analyzing glass bead phantoms.11

Therefore, all estimation methods are only expected to

provide similar QUS estimates under certain circumstances.

Simulations were conducted to explore the dependence of

ESD estimates on ka and Gp values. The theoretical BSC,

gth, corresponding to a single glass sphere was calculated for

0.1< ka< 2. Two modified BSCs were set proportional to

gth�D2(GP) and gth=D2(Gp). These two curves represent the

hypothesis that g1 is the correct estimation method but either

g2 or g3 [because D2(GP) is almost equivalent to D3(kR, kF)]

are used to estimate BSCs and vice versa. Portions of these

modified BSCs with different center frequencies and 100%

fractional bandwidths were used as input for the estimator in

Sec. II B 2. The fractional error (ESD=2a – 1) when obtain-

ing ESD estimates using the modified BSCs are shown in

Fig. 5 for the cases where Gp=ka¼ 50, Gp=ka¼ 500, and

Gp=ka¼ 5000. It can be observed that the ESD estimation

error spread was indeed dependent on both ka and Gp. The

variation induced by the ka range was the most significant,

but the results predict the ESD estimation error spread

should be significant only when approaching Rayleigh scat-

tering, i.e., ka< 0.5. Although the results also confirm the

spread is reduced for increasing Gp, reducing the ESD esti-

mation error spread below 616% for ka> 0.25 required sig-

nificantly large Gp values (i.e., Gp=ka ratios of around 500).

The experimental results validated the dependence of

the spread of ESD mean estimates on ka range. The results

from Table IV obtained from the 41 lm phantom suggest

that the differences in ESD mean values introduced by the

choice of estimation method became significant when low ka
values (i.e., ka< 0.5) were used. For example, the absolute

spread was 33.7 lm (15.4 lm for g3 vs 49.1 lm for g1) when

using the 2.25 MHz, f/2.7 transducer. This corresponds to a

relative spread of 82% when compared to the assumed mean

particle diameter of 41 lm. Similarly, for the 5 MHz, f/3

transducer the absolute and relative maximum spreads were

4.1 lm and 10%, respectively. In contrast, for the 20 MHz,

f/4 transducer the absolute and relative spreads of ESD mean

values were 0.3 lm and 0.7%, respectively, even though the

spread of Errr for this transducer was larger than those of the

2.25 MHz, f/2.7 and 5 MHz, f/3 transducers. However, in all

cases the spread of ESD mean values was comparable to the

standard deviation of the ESD estimates. The results pre-

sented in Table V obtained from the 150–180 lm phantom

further supports the dependence of the spread of mean ESD

values on ka range. With the same 2.25 MHz, f/2.7 trans-

ducer used when analyzing the 41 lm phantom the absolute

and relative (considering a mean diameter size of 165 lm)

spreads of mean ESD estimates were 8.3 lm and 5%, respec-

tively. It can also be observed that the spread of mean ESD

values increased for the 7.5 MHz transducer. For this trans-

ducer, the estimates followed a binomial distribution due to

high ka convergence problems discussed above.

The dependence of the QUS estimates on Gp was also

supported by the experimental results. As discussed in Sec.

III A, all estimation methods agree within less than 1 dB for

Gp> 25. Two transducer pairs covered very similar fre-

quency ranges with different Gp ranges and at least one of

them satisfying Gp> 25 for most of the analysis bandwidth.

The first pair was the 10 MHz, f/4 (Gp [ [8.9,25.3]) and 10

MHz, f/2 (Gp [ [28.2,95.0]) transducers for which the spreads

of mean ESD values were 0.8 and 0.5 lm, respectively,

when analyzing the 41 lm phantom. The second pair was

the 13 MHz, f/3 (Gp [ [15.8,43.2]) and 15 MHz, f/2

(Gp [ [23.4,66.9]) transducers for which the spreads of mean

ESD values were 0.3 and 0 lm, respectively, when analyzing

the 41 lm phantom. Therefore, the limited experimental

data in this study supports the fact that the use of sufficiently

large Gp values helps reduce the dependence of mean ESD

estimates on the method used for normalizing BSC esti-

mates. However, it should be noted that the spread of mean

ESD estimates for the discussed cases corresponded at most

to 2% of the actual mean scatterer size present in the phan-

tom. Therefore, and as the results from Fig. 5 suggest, the

spread of mean ESD estimates was not significant when

ka> 0.5 even for moderate (i.e., Gp< 100) Gp values.

Although all estimation methods provided similar

experimental BSCs in this work with good fits to the theoret-

ical BSCs as evidenced by the results in Tables II and III,

the subtle frequency-dependent effects of each method had

in some cases noticeable effects on the bias of QUS esti-

mates. These differences in mean QUS estimates can be

reduced by proper choice of ka and Gp ranges. Given that Gp

only depends on transducer properties whereas ka depends

on properties of the imaging target, in practice it should be

easier to control the Gp rather than the ka range. If Gp is

made sufficiently large, the spread of mean estimation values
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introduced by the different estimation methods would be

reduced and relatively good BSC estimation consistency

would also imply relatively good QUS estimation consis-

tency. However, in this work it was found that for the Gp val-

ues encountered in practice the frequency-dependent effects

of the studied BSC estimation methods did not have a signif-

icant effect on the spread of mean QUS estimates, and any

of them can be safely used for BSC estimation.

Finally, significant deviations in mean ESD values from

the actual mean glass bead diameter introduced by estima-

tion methods were noticeable for low ka values. This obser-

vation is important because it has been commonly

understood that the precision and not the accuracy of ESD

estimates should suffer at low ka.32 Furthermore, it has been

demonstrated that methods such as spatial compounding can

be used to effectively reduce the standard deviation

without affecting the mean of ESD estimates.33 However,

the ill-conditioning of ESD estimation in the low ka regime

may cause the ESD estimates to be too sensitive to even

slight experimental errors due to compensating for the trans-

mission through the plastic film, nonlinear behavior of the

amplifiers used to measure the data, attenuation compensa-

tion, measurement noise, and improper modeling of the

transducer radiation pattern. Therefore, it was not possible to

determine which BSC estimation method may be preferred

when analyzing near Rayleigh (ka< 0.5) data. This may be

yet another reason to advocate for large Gp values in order to

reduce frequency-dependent effects on BSC estimates.
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