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Abstract

Chlamydia trachomatis is a common sexually transmitted pathogen and is associated with infant pneumonia. Data from the
female mouse model of genital tract chlamydia infection suggests a requirement for TLR2-dependent signaling in the
induction of inflammation and oviduct pathology. We hypothesized that the role of TLR2 in moderating mucosal
inflammation is site specific. In order to investigate this, we infected mice via the intranasal route with C. muridarum and
observed that in the absence of TLR2 activation, mice had more severe disease, higher lung cytokine levels, and an
exaggerated influx of neutrophils and T-cells into the lungs. This could not be explained by impaired bacterial clearance as
TLR2-deficient mice cleared the infection similar to controls. These data suggest that TLR2 has an anti-inflammatory function
in the lung during Chlamydia infection, and that the role of TLR2 in mucosal inflammation varies at different mucosal
surfaces.
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Introduction

Chlamydia trachomatis is the most common bacterial sexually

transmitted pathogen worldwide [1], and the etiologic agent of

blinding trachoma [2]. Complications of infections in women

include the development of pelvic inflammatory disease, which can

lead to tubal infertility and chronic pelvic pain. Infants born to

women with active cervical chlamydia infection are at risk of

developing conjunctivitis and pneumonia [3,4]. While the

induction of an inflammatory immune response is clearly essential

for the survival of a host following an infectious challenge, it is also

true that an exaggerated inflammatory response can be detrimen-

tal, as in the case of severe sepsis and some autoimmune chronic

inflammatory states. Likewise, the pathology associated with

genital chlamydia infection and ocular trachoma is thought to

result from bystander injury during an aggressive inflammatory

response. Thus, proinflammatory pathways must be tightly

regulated.

The interaction of Chlamydia with innate immune receptors

expressed at mucosal surfaces likely triggers the initial wave of

proinflammatory mediators, which in turn recruit additional

inflammatory cells, leading to further modulation of the immune

response. The inflammatory pathways utilized by Chlamydia

appear to primarily involve TLR2, and a number of studies have

shown a dependence on expression of TLR2 in cellular activation

by C. trachomatis in vitro [5,6,7,8]. However, the TLR2 ligand remains

unidentified, although lipoproteins expressed in the outer mem-

brane of the organism are likely candidates [5]. Chlamydia species

also express lipopolysaccharide (LPS) in the outer membrane, a

recognized ligand for TLR4. However, unlike enteric LPS

preparations, which are some of the most potent inducers of

inflammation known, chlamydia LPS is of low endotoxic activity,

and appears to be more dependent on membrane CD14 than has

been reported for other species of LPS [9,10,11]. In addition,

Chlamydia has been reported to activate type I interferon signaling

in a TLR2- independent manner, possibly via a yet unidentified

cytosolic DNA sensor [12].

Several small animal models exist for studying the pathogenesis

of chlamydia infections. Significant data has been gathered from

the female mouse model of ascending genital tract infection that

closely parallels C. trachomatis infections and pelvic inflammatory

disease in humans. When inoculated intravaginally into mice, C.

muridarum, the mouse biovar of C. trachomatis (formerly known as

MoPn), establishes an active infection of the endocervix, then

ascends to the upper genital tract where it infects the oviducts.

Consequences of oviduct infection in the mouse include dilatation

(hydrosalpinx) and infertility [13,14,15]. In addition to being used

in a model for genital tract infections, C. muridarum is a respiratory

pathogen in mice, and produces pneumonia following intranasal

inoculation [16]. In vivo data using TLR2-deficient mice [6]

demonstrates an association between TLR2 expression and the

development of inflammation and oviduct pathology following

genital tract challenge with C. muridarum in the mouse model.

While the bacterial burden and course of infection in the genital

tract is unchanged in the absence of TLR2, expression of

proinflammatory cytokines and chemokines in the genital tract is
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reduced, and upper tract pathology is diminished or absent.

Similar results were obtained when mice were challenged with

plasmid-cured mutants of C. muridarum that fail to activate TLR2

[17]. No studies to date have monitored the course of infection in

the absence of TLR2 following respiratory challenge with C.

muridarum.

We hypothesized that the role of TLR2 in regulating mucosal

inflammation varies depending on the specific site. In order to

determine the role of TLR2 signaling at the respiratory mucosal

surface, we infected wild type and TLR2-deficient mice with C.

muridarum. We found that while both mouse strains cleared the

infection over time in a similar manner, the disease was more

severe in TLR2-deficient mice, and these mice developed

significantly higher lung cytokine levels with exaggerated neutro-

phil and T-cell influx in the lungs. Similar results were obtained

when wild type mice were infected with plasmid-cured mutants of

C. muridarum that fail to activate TLR2. Thus, our data suggests

that TLR2 plays an important anti-inflammatory role in the lung

during respiratory infection with Chlamydia.

Materials and Methods

Reagents
LPS (Escherichia coli serotype O111:B4) was purchased from

List Biological Laboratories, INC (Campbell, CA); RPMI-1640

was purchased from BioWhittakerH (Lonza Walkersville, MD).

Fetal Bovine Serum (FBS) was from Hyclone (Logan, Utah).

Renografin-60 was purchased from Bracco Diagnostics Inc.

(Princeton, NJ).

Bacterial preparation
Chlamydia muridarum strains Nigg (wild type) and plasmid-cured

strains CM 972 and CM 3.1 have been previously described

[8,17,18]. Chlamydiae were propagated in L929 fibroblasts

growing in RPMI medium supplemented with 10% FBS at

37uC in a 5% CO2 environment. Following 42 to 45 hours of

infection, cells were harvested, disrupted by glass beads or

sonication (Sonicator 4000, Misonix Sonicators, Newtown, CT),

and chlamydiae were separated from cell debris by ultracentrifu-

gation through 32% Renografin. Chlamydial EBs were further

purified by ultracentrifugation on a discontinuous Renografin

gradient. After washing twice, the EB pellets were suspended in

SPG (sucrose–phosphate–glutamate buffer, pH 7.2) and stored at

280uC prior to use. Bacterial titers were calculated as inclusion

forming units (IFU) per ml. The stocks of C. muridarum strains used

in this study were negative for Mycoplasma sp. by PCR [19].

Mice
C57BL/6J mice were purchased from Jackson Laboratory (Bar

Harbor, ME). TLR2-deficient mice generated by targeted deletion

of mouse tlr2 have been previously published [20] and were used

with permission from Dr. Shizuo Akira. A colony of TLR2-

deficient mice, back bred at least 10 generations on the C57BL/6

background, was maintained in our animal facility for use in these

studies. All animals were housed in groups of 3–5 mice per cage in

a controlled environment (temperature 20–22uC; 12:12 hours

light:dark cycle), given free access to food and water, and

maintained under the supervision of veterinary staff from the

Laboratory Animal Science Center at Boston University Medical

Center. All experimental procedures were carried out with

approval from the Institutional Animal Care and Use Committee

and the Institutional Biosafety Committee at Boston University

Medical Center (Animal Welfare Assurance number A-3316-01).

Preparation of alveolar macrophages and bone marrow
derived macrophages

Alveolar macrophages (AM) were prepared from C57BL/6 and

TLR2-deficient mice by bronchoalveolar lavage (BAL). Briefly,

groups of 6–8 mice aged 6 to 8 weeks were euthanized by CO2

inhalation and the intact lungs lavaged with ,1 ml of Hank’s

Balanced Salt Solution (HBSS). Collected AM were pooled and

washed with PBS, then plated at 1.56105 cells/well on 48-well

plates. Bone marrow derived macrophages (BMDM) were

prepared from mice as follows. The bone marrows of femurs

and tibiae from mice aged 6–8 weeks were flushed with

RPMI1640 supplemented 10% FBS, 20 mg/ml gentamicin. The

recovered cells were cultured in RPMI 1640 supplemented with

10% FBS, 20 mg/ml gentamicin, with 20–30% (v/v) of L929

conditioned medium (containing M-CSF) and incubated at 37uC,

5% CO2 for 7–9 days to facilitate macrophage differentiation

before being infected with C. muridarum. Cells were inoculated with

C. muridarum as described below.

In vitro infection of cells with C. muridarum
Macrophages were seeded on tissue culture plates and rested

overnight. The following day cells were inoculated with C.

muridarum at the indicated multiplicity of infection (MOI). The

plate was then centrifuged at 3000 rpm, 35uC for 1 h; this point

was then considered as the 0 h time point. The inoculated

macrophages were then incubated at 37uC, 5% CO2. At the

designated time points, supernatant was collected and cells were

washed twice with PBS, and then detached in 100 ml SPG and

stored at 280uC for quantitative chlamydial culture.

Murine intranasal infection model
Groups of 6–8 male or female mice aged 6 to 8 weeks were

inoculated intranasally under light anesthesia using ketamine/

xylazine mix (60–100/5–10 mg/kg i.p.). All infected mice received

20 ml bacterial suspension in phosphate buffered saline (PBS)

containing 56103 IFU gradient purified chlamydiae unless

otherwise noted in the text; mock infected mice received 20 ml

of SPG diluted in PBS. Mice were weighed daily and observed for

signs of distress that would require early euthanasia. At the

indicated time points, mice were euthanized by CO2 inhalation.

Lung tissue was process in one of two ways. For lung cytokines,

flow cytometry and bacterial quantitation, lungs were homoge-

nized in PBS using a Medimachine System (BD Biosciences, San

Jose, CA). For histopathology and immunohistochemistry, lungs

were inflated with 10% neutral formalin via the trachea, removed

en bloc for further formalin fixation, and embedded in paraffin.

Spleen homogenates were prepared in a similar fashion. All

experiments involving mice were carried out with approval from

the Institutional Biosafety Committee and the Institutional Animal

Care and Use Committees at Boston University Medical Center.

All in vivo experiments were repeated two to three times, as noted

in the text.

Quantification of C. muridarum
Bacterial load was determined by both quantitative culture and

quantitative PCR. For culture of tissue, 150 ml of SPG was added

to 50 ml of tissue homogenate, mixed, and briefly spun to pellet

tissue debris. Serial dilutions were inoculated in duplicate onto

L929 fibroblasts seeded to confluence in a 96-well plate. After

incubation for 24–35 h at 37uC, 5% CO2, the cells were fixed with

ice-cold methanol. Chlamydial inclusions in infected cells were

detected using a Chlamydia-specific LPS monoclonal antibody

(gift of Dr. You-Xun Zhang, Boston Medical Center), followed by

Site-Specific Role of TLR2 in Chlamydia Infections
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FITC-conjugated secondary antibody; cells were counter stained

with Evans blue (Sigma). The inclusions were counted under

fluorescent microscopy, and calculated as the number of IFU per

well/per lung.

Quantitative PCR was carried out from the same homogenates

as follows: Genomic DNA was extracted from 5 ml of sample by

addition to 195 ml of QuickExtract (Epicentre; Madison WI) and

processed according to the manufacturer’s instructions. The

sample extracts were further diluted 1:100 before being assayed

via quantitative RT-PCR using primers directed against the 16S

gene [21]. Genome equivalents per sample were extrapolated from

a standard curve with adjustment for the presence of two copies of

16S on the C. muridarum genome.

Detection of cytokines and chemokines
Lung homogenates and cell culture supernatants were assayed

for cytokines and chemokines by individual ELISA and/or

Milliplex 22-plex multiplex assay (Millipore Corp.; Billerica,

MA), according to the manufacturer’s instructions. ELISA kits

for mouse IP-10 and TNF-a were purchased from R&D Systems

(Minneapolis, MN) and eBioscience (San Diego, CA), respectively.

ELISA plates were read in an ELx800 Universal Microplate

Reader (BIO-TEX Instrument Inc.) and multiplex assays were run

on the LiquiChip 200 Workstation (Qiagen, Valencia, CA). Each

sample was assayed in triplicate (single ELISA) or duplicate

(Multiplex), and p-values were calculated using an unpaired t-test.

All in vitro studies were repeated at least three times.

Flow cytometric analysis
Lung homogenates were digested in HEPES buffer (10 ml

HEPES pH7.4, 150 mM NaCl, 5 mM KCl, 1 mM MgCl2,

1.8 mM CaCl2), containing collagenase D and DNase I at room

temperature for 15 minutes and homogenized using a Medima-

chine System. A single-cell suspension was obtained by filtering the

cells through a 70 mm mesh cell strainer. After lysis of the

erythrocytes using RBC Lysis Buffer (eBioscience), cells were

blocked using 1 mg goat IgG per ml, and incubated on ice with

antibody at a final concentration of 0.5 mg/ml in phosphate

buffered saline containing 1% fetal bovine serum for 30 minutes.

The following directly conjugated fluorescent Abs were used for

FACS analysis in these studies: F4/80-PE-Cy5 (clone BM8, from

eBioscience) for the detection of macrophages; Ly-6G (Gr-1)-PE-

Cy5 (clone RB6.8C5, from eBioscience) for the detection of

neutrophils; CD19-PE (clone 6D5) and CD3-RPE (clone

C363.29B; both from Southern Biotech, Birmingham, AL) for

detection of B-cells and T-cells, respectively. Labeled cells were

analyzed by flow cytometry using a fluorescence-activated cell

sorter (FACScan) microfluorimeter (BD Biosciences) and analyzed

using FlowJo software (Ashland, OR).

Histopathology and immunohistochemical analysis
Following euthanasia, lungs were inflated with 10% neutral

formalin via the trachea, removed en bloc for further formalin

fixation, and embedded in paraffin. Lungs were cut completely in

7–8-mm sections, and every 10th section was stained with

hematoxylin and eosin (H&E). For quantification of PMNs in

lungs, chloroacetate esterase (CAE) stain was performed and

PMNs were counted using ImageJ software. At least 10 fields were

randomly reviewed from each lung. Immunohistochemistry was

carried out on deparaffinized tissue that was stained with

monoclonal antibodies recognizing mouse CD19 (clone MRQ-

36; Cell Marque Corporation) vimentin (clone V9; Ventana), or

their respective isotype controls, followed by an appropriate

secondary antibody with horseradish peroxidase for detection. All

slides were reviewed by a veterinary pathologist who was blinded

as to the experimental design.

Statistics
Significant differences for the in vivo studies were determined as

follows. Statistical comparisons between the mouse strains for

weight loss over the course of infection were made by a two-factor

(days and mouse strain) repeated measures ANOVA with post hoc

Bonferroni test. Statistical comparisons were made between

murine strains for infectious burden at the time of euthanasia

using a Mann-Whitney U test. Significant differences for the in vitro

studies were determined using a two-tailed t-test. GraphPad Prism

software was used for all statistical analyses.

Results

TLR2 expression is required for the induction of some
inflammatory cytokines by macrophages in vitro in
response to C. muridarum infection

Macrophages play a key role in the induction of a variety of

proinflammatory cytokines, and they are rapidly recruited to

mucosal surfaces along with other professional immune cells during

infectious challenges. We first examined bone marrow derived

macrophages from C57BL/6 vs. TLR2-deficient mice on the same

background for induction of various cytokines in response to

productive infection with C. muridarum. We observed the induction

of cytokines such as TNF-a was largely dependent on expression of

TLR2 (Fig. 1A), while a subset of cytokines, including IP-10, were

TLR2 independent (Fig. 1B). The presence of resident macro-

phages is a unique property of the lung. We compared alveolar

macrophages (AM) prepared from the lungs of control and TLR2-

deficient mice with BMDM derived from the same mice to

determine if alveolar macrophages differed in their response to

chlamydia infection. We found TLR2 expression was also required

for the induction of TNF-a by AM, (Fig. 1C) although when

compared with BMDM, the absolute concentration is lower and the

peak is markedly delayed. Thus, we anticipated that in vivo cytokine

induction following intranasal challenge would also be largely

TLR2-dependent, as has been observed in the genital tract [6].

Disease following intranasal challenge is more severe in
TLR2-deficient mice

Intranasal infection of mice with C. muridarum is a well-

established model for chlamydia-induced pneumonia. Previous

studies have demonstrated that immune competent mice have

peak bacterial burden at around 7 days post infection followed by

bacterial clearance, and that IFN-c and IL-12 are required for

resolution of infection and protective immunity [22,23]. To

determine the role of TLR2 expression during respiratory

infection with C. muridarum, we infected C57BL/6 and TLR2-

deficient mice on the same background intranasally with a

sublethal dose of bacteria (56103 IFU per mouse), and monitored

for weight loss and survival. All infected mice, regardless of TLR2

expression, survived intranasal challenge, and while there was a

trend towards exaggerated weight loss in the TLR2 deficient mice,

it did not reach statistical significance (data not shown). However,

when mice were challenged with a high inoculum of bacteria

(2.56104 IFU per mouse), TLR2-deficient mice did show more

exaggerated body weight loss over time compared to control

C57BL/6 mice, particularly during the latter half of the course of

infection, between days 5–9, suggesting more severe disease

(Fig. 2A). Despite having more severe disease, we observed no

difference in the peak bacterial burden or duration of infection

Site-Specific Role of TLR2 in Chlamydia Infections
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Figure 1. Cytokine induction in wild type vs. TLR2-deficient macrophages. (A) BMDM from C57BL/6 or TLR2 KO mice on the same
background were left untreated, or infected with the indicated MOI of C. muridarum Nigg (Cm). Synthetic lipopeptide Pam3Cys-Ser-Lys4 (Pam3;
100 ng/ml) or LPS was used as a control. The supernatants were harvested at 24 hr post treatment and assayed for TNF-a and IP-10 by ELISA. The
values showed are the mean 6 SEM from triplicate samples. (B) BMDM and alveolar macrophages (AM) from C57BL/6 or TLR2 KO mice on the same
background were infected with C. muridarum Nigg at MOI of 3:1. LPS (100 ng/ml) was used as control. The supernatants were harvested at
the indicated time points and assayed for TNF-a by ELISA. Significance was calculated as follows using a two-tailed t-test: *, p#0.05; **, p#0.01;
***, p#0.001; ****, p#0.0001.
doi:10.1371/journal.pone.0020846.g001

Site-Specific Role of TLR2 in Chlamydia Infections

PLoS ONE | www.plosone.org 4 June 2011 | Volume 6 | Issue 6 | e20846



between the two mouse strains regardless of the inoculum size

(Fig. 2B and data not shown). The bacterial burden for infected

C57BL/6 and TLR2-deficient mice peaked between days 2–4,

and while there was a trend towards higher bacterial burden at

day 4 in the TL2-deficient mice, it did not reach statistical

significance.

Infected TLR2-deficient mice develop higher
inflammatory cytokine levels and more severe lung
inflammation compared to wild-type mice when
challenged via the intranasal route

The trend towards increased weight loss following challenge

that we observed in the TLR2-deficient mice suggested that they

might have suffered more severe inflammation during the course

of infection compared to the controls. Indeed, when we examined

lung homogenates from infected mice at various points in time,

we found that nearly all of the cytokines and chemokines tested,

were increased in the infected TLR2-deficient mice relative to the

control mice (Fig. 3 and data not shown). This included classic

proinflammatory cytokines, such as TNF-a, IL-6, and chemo-

kines, such as MCP-1 and IP-10. Moreover, IFN-c, IL-12 and IL-

17, which have been shown to be required for bacterial clearance,

were also elevated in the TLR2-deficient mice, possibly

facilitating resolution of the infection in spite of more severe

disease. Thus, in contrast to the in vitro infection, TLR2

expression was not required for the induction of cytokines in vivo

following intranasal challenge.

Figure 2. Weight change and bacterial clearance of C. muridarum infected wild type vs. TLR2-deficient mice. C57BL/6 or TLR2 KO mice
on the same background were intranasally inoculated with PBS (mock; N = 6) or 2.56104 IFU/mouse of C. muridarum Nigg (N = 8), as described in the
Methods. (A) Mice were weighed daily for 9 days post infection. Shown above is the weight change relative to the starting weight of each individual
mouse (weight day X/weight day 0). Significance is as follows: p = 0.0474 infected BL/6 vs infected TLR2 KO over time, using RM ANOVA as described
in the methods using a two-factor RM ANOVA with post hoc test. No significant difference in weight was observed between uninfected strains. (B)
Mice were infected with 56103 IFU C. muridarum Nigg, and were euthanized on day 2, 4, 7, 14 and day 20. Quantitative bacterial cultures were
determined from whole lung homogenates, as described in the Methods. Quantitative culture data was confirmed by quantitative PCR (data not
shown). Statistical analysis of the infectious burden over time using a Mann-Whitney U test was not significant. This figure is representative of three
independent experiments performed.
doi:10.1371/journal.pone.0020846.g002
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We next examined the lung tissue for evidence of inflammation.

Both control and TLR2-deficient mice developed a patchy

pneumonia, with inflammatory exudates visible in the alveolar

space. As shown in figure 4, histological examination of lungs from

infected mice by routine H&E staining at day 7 post infection

revealed various size foci of pneumonia. In some of the foci the

alveoli are packed with neutrophils, while in other foci the alveoli

contained only few neutrophils but had proliferating fibroblasts.

Overall, the TLR2-deficient mice had more severe neutrophilic

infiltration while the wild type C57BL/6 mice displayed more

prominent fibroblast proliferation, suggesting superior repair

(Fig. 4A, 4B). PMN infiltration from infected mouse lungs was

quantified, and is shown in Fig. 5A. Consistent with this

observation, only lung tissue from the wild type mice stained for

the intermediate filament vimentin at 5 days post infection

(Fig. 4E, 4F), although by day 14 vimentin staining was similar in

both mouse strains (data not shown). By 14 days post infection,

inflammation was still visible in the TLR2-deficient mice while

inflammation was largely resolved in the wild type mice (Fig. 4C,
4D). Moreover, in more than half of the TLR2-deficient mice, we

observed prominent, well-developed bronchus associated lym-

phoid tissue (BALT) containing CD19-expressing B lymphocytes

at 5 days post infection, consistent with inducible BALT (iBALT)

(Fig. 4G, 4H). In contrast, while there were a few areas of poorly

developed lymphoid aggregates seen in one of the C57BL/6 mice,

it did not develop into the prominent BALT seen in the knockout

mice (data not shown).

To confirm the observation that TLR2-deficient mice experi-

enced more severe lung inflammation in response to their

infection, we examined the recruitment of neutrophils and

macrophages to the lung using flow cytometry. Lungs from

infected mice were removed at 7 days post-infection, digested to

obtain a single cell suspension, and stained for expression of GR1,

a marker for neutrophils, F4/80, a marker for macrophages,

CD19, a marker for B-cells, and CD3, a marker for T-cells. As

shown in Fig. 5B, we found that TLR2-deficient mice had a

significantly higher percent of infiltrating neutrophils and T-cells

in the lungs when compared to control mice. Elevated levels of

macrophages were also detected in these mice. Interestingly, B-

cells appeared to be decreased in response to infection in the

TLR2-deficient mice compared to wild type mice when analyzed

by this method, although, as noted above, immunohistochemistry

demonstrated the formation of B-cell aggregates into areas of

BALT.

Plasmid-cured strains of C. muridarum induce more
inflammation compared to wild-type strain when
inoculated via the intranasal route

We previously described two plasmid-deficient C. muridarum

Nigg strains, CM 972 and CM 3.1, which are impaired in their

ability to activate TLR2 in vitro and in the murine genital tract

infection model. Moreover, mice infected with these plasmid-

cured strains fail to develop oviduct pathology in vivo [17]. Based

on our data with the TLR2-deficient mice, we hypothesized that

these mutants, although attenuated when inoculated in the genital

tract, would display enhanced virulence when inoculated via the

intranasal route. Indeed, we observed striking differences between

mice infected with the wild type plasmid-containing Nigg strain

Figure 3. Intranasal infection of TLR2-deficient mice with C. muridarum induces more exaggerated lung inflammatory cytokine
response compared to infected wild type mice. C57BL/6 or TLR2 KO mice on the same background were intranasally inoculated with PBS
(mock) or 56103 IFU/mouse of C. muridarum Nigg, as described in the Methods. At seven days post infection, lung homogenates were assayed for a
panel of 22 inflammatory cytokines and chemokines. Shown above are representative results for 6 of the cytokines assayed. Each data point
represents one mouse, and the horizontal bar represents the mean. Significance was calculated as follows using a two-tailed t-test: **, p#0.01 and
***, p#0.001 for the infected C57BL/6 vs. infected TLR2-deficient mice. NS, not significant. This figure is representative of three independent
experiments performed.
doi:10.1371/journal.pone.0020846.g003

Site-Specific Role of TLR2 in Chlamydia Infections
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Figure 4. Intranasal infection with C. muridarum induces more extensive inflammatory changes in the lungs of TLR2-deficient mice
compared to wild type mice. C57BL/6 or TLR2 KO mice on the same background were intranasally inoculated with PBS (mock) or 56103 IFU/
mouse of C. muridarum Nigg. At the indicated time points, mice were euthanized and lungs were removed for tissue processing, as described in the
Methods. A–D and G show routine H&E staining; P = dense PMN infiltrate, shown as deep purple-staining cells. E–F and H show vimentin and CD19
staining by immunohistochemistry, respectively. (A) C57BL/6, day 7; (B) TLR2-deficient, day 7; (C) C57BL/6, day 14; (D), TLR2-deficient, day 14. (E–F)
Lungs from infected TLR2-deficient mice (F) fail to stain for vimentin (V) at 5 days post infection compared to C57BL/6 mice (E). (G–H) Lungs from
infected TLR2-deficient mice show evidence of iBALT (*) at 7 days post infection when stained with H&E (G) or anti CD19 Ab to detect CD19-
expressing B cells (H). Original magnification 406. This figure is representative of three independent experiments performed.
doi:10.1371/journal.pone.0020846.g004
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compared with mice infected with either of the two plasmid-cured

mutants. Mice infected with CM 972 or CM 3.1 strains were

subjectively more ill-appearing compared to the Nigg-infected

mice, and while there was a trend towards more exaggerated

weight loss in the plasmid-cured infected mice, it did not reach

statistical significance (data not shown). Upon histological

examination, the lungs from all infected mice displayed evidence

of pneumonia that was characterized by the presence of edema,

with alveolar infiltration by neutrophils. However, mice infected

with either CM 972 or CM 3.1 were grossly more edematous and

necrotic when compared with the Nigg-infected mice (data not

shown), and upon histologic examination they displayed signifi-

cantly more interstitial edema and more extensive parenchymal

involvement (Fig. 6). Furthermore, the CM972 and CM3.1

infected mice displayed significantly increased lung cytokines and

chemokines compared to Nigg infected mice (Fig. 7 and data not

shown), although we observed no difference in bacterial clearance

at 7 and 14 days post-infection (data not shown). These data

resembled the results obtained from TLR2-deficient mice, and

suggested that the inability of the plasmid-cured strains to activate

TLR2-dependent signaling pathways led to an exaggerated

inflammatory response in the lung. Thus, while the presence of

the plasmid enhances chlamydial virulence in the genital tract it

has the opposite effect in lung.

Discussion

Mucosal surfaces are important sites of tolerance and infection

in the respiratory, urogenital and gastrointestinal tracts and there

is a growing interest in the development of vaccines capable of

inducing both mucosal and systemic immunity in the fight against

a variety of pathogens. However, immune defenses in these

complex and unique mucosal compartments are not identical, and

careful studies are needed to characterize the defense responses

specific to each site. The murine pathogen, C. muridarum, provides

an opportunity to compare innate immune defenses at two

different mucosal sites because it infects both the genital tract and

the lung of mice. Thus, inflammatory differences identified in our

study between the lung and the genital tract may be ascribed to the

site-specific immune response rather than the pathogen.

We observed that in the absence of TLR2 expression, mice had

more severe disease when inoculated with C. muridarum via the

intranasal route, with TLR2-deficient mice demonstrating more

severe weight loss as well as a more exaggerated and prolonged

inflammatory response in the lungs, as demonstrated by increased

lung cytokines and cellular inflammatory cell infiltrate. The

observation of enhanced induction of BALT in the lungs of TLR2-

deficient mice is consistent with the overall exaggerated inflam-

matory response observed, as iBALT has been shown to develop in

response to infection or chronic inflammation [reviewed in [24]].

Interestingly, mice infected with plasmid-cured strains of chla-

mydia that fail to activate TLR2 displayed a similarly exaggerated

inflammatory response. Thus, TLR2 activation in the lung

appears to be necessary for moderation of the inflammatory

response both with regard to attenuating the induction of

inflammatory cytokines and the inflammatory cellular response.

This is the opposite of what has been observed in the genital tract

where TLR2 activation is required for peak cytokine induction

and the subsequent development of oviduct pathology [6,17]. We

do not believe that gender differences account for the difference in

the host inflammatory response between mucosal sites, as we used

both male and female mice in the lung infection model and we

observed no significant difference in the clinical course and

cytokine induction between male and female mice (data not

shown). Instead, we believe that the role of TLR2 in driving

inflammation and pathology at the two mucosal sites differs, likely

driven by differences in the cellular composition and physiologic

roles of the specific tissues.

The explanation for enhanced inflammation in the lung in

response to chlamydial infection in the absence of TLR2

expression does not appear to be explained by impaired bacterial

clearance or increased bacterial load because both wild type and

TLR2-deficient mice displayed identical kinetics with regard to

clearance of the infection. This observation was consistent with

Figure 5. TLR2 deficiency leads to exaggerated PMN and T cell
response in the lungs of C. muridarum infected mice. C57BL/6 or
TLR2 KO mice on the same background were intranasally inoculated
with 56103 IFU/mouse of C. muridarum Nigg. At the indicated day post
infection, lungs from infected mice were processed to evaluate
inflammatory cell infiltrates. (A) At day 5 and day 7 post-infection,
lungs were fixed, sectioned and stained using CAE to quantify the PMN
infiltration, as described in the Methods. Significance was calculated
using an unpaired t-test, and the p-value is noted. (B) Single-cell
suspensions of infected lungs at day 7 were prepared, stained, and
analyzed by flow cytometry, as described in the Methods. F4/80-PE Cy5
was used as a marker for macrophages; Gr-1-PE Cy5 for neutrophils;
CD19-PE for B lymphocytes and CD3-PE for T lymphocytes. The bar
graph represents the percentage of positive cells from total lung cells,
as determined by histogram data. Significance is as follows: *, p#0.05;
**, p#0.01 for the infected C57BL/6 vs. infected TLR2-deficient mice
using an unpaired t-test. This figure is representative of two
independent experiments performed.
doi:10.1371/journal.pone.0020846.g005
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prior studies in the genital tract model indicating that that TLR2

expression is not necessary for clearance of the bacterial infection

at that site as well [6]. However, it is possible that a transiently

elevated bacterial load in the TLR2-deficient mice compared to

the wild type mice that we could not detect might expose the tissue

to other TLR ligands, thus driving inflammation. Others have

reported an essential role for IL-17 and Th17 responses in the

protection of mice against respiratory infection with C. muridarum

[25,26,27]. However, we found no evidence of impaired IL-17

production in the TLR2-deficient mice that could explain the

more severe infection. In fact, we observed an enhanced IL-17

response in the lung, which would be consistent with the

exaggerated neutrophil response we also observed. Moreover,

the induction of IL-10, an anti-inflammatory cytokine, was not

impaired in the absence of TLR2 signaling.

One possible mechanism for our observation that TLR2-

deficient mice developed exaggerated PMN response in the lung

involves altered alveolar macrophage function. Alveolar macro-

phages have long been known to play an important role in the

resolution of inflammation in the lung by virtue of their ability to

phagocytose and clear apoptotic PMNs [28]. Given that

Chlamydia-infected TLR2-deficient macrophages were impaired

in their ability to secrete proinflammatory cytokines, they might

also be impaired in their ability to clear PMNs from the lung, thus

allowing inflammation to persist for longer. In addition, it was

recently reported that engagement of TLR2 promotes the survival

of regulatory T-cells [29], which might also be important in

turning off inflammation in the lung. Regarding the observed

differences between the lung and genital tract mucosal responses to

the same pathogen, further studies are needed to determine

whether differences in the expression of TLR2 on cell types that

are specific to these two compartments might account for the

differential role of TLR2 in inflammation in different tissues.

A protective role for TLRs in respiratory infections has been

reported for a number of pathogens. For example, TLR4-deficient

mice were found to be incapable of controlling Gram-negative

respiratory infections secondary to Klebsiella pneumoniae [30],

Haemophilus influenzae [31], and Pasteurella pneumotropica [32,33].

Likewise, TLR2-deficient mice were recently reported to have

more severe mycoplasma respiratory infections [34]. However, in

all cases infected mice displayed enhanced bacterial growth in

their lungs, which we did not observe in our Chlamydia-infected

mice. This most likely reflects the ability of TLR2-deficient mice to

mount an adequate IFN-c response independent of TLR2

activation, and further suggests that the exaggerated inflammation

is related to downstream anti-inflammatory pathways.

Finally it is worth comparing our results in the murine

respiratory model for C. muridarum with the three published studies

on the related pathogen, C. pneumoniae, all of which used TLR2-

deficient mice. In the first report, the bacterial load in TLR2-

deficient mice infected with C. pneumoniae was unchanged, and the

inflammatory cytokine response in the lung was decreased [35].

Subsequently, two other groups reported similar findings with

regard to bacterial clearance in TLR2-deficient mice and they

reported no difference in lung inflammation [36,37]. It is difficult

to directly compare C. muridarum and C. pneumoniae models since

Figure 6. Intranasal infection with plasmid-cured strains of C. muridarum induces more extensive inflammatory changes in the lungs
compared to wild type C. muridarum infected mice. Mice were inoculated via the intranasal route with C. muridarum Nigg or one of the
plasmid-deficient mutant strains, CM972 or CM3.1, or mock infected with PBS, as described in the Methods. At seven days post infection, lungs were
removed and the tissue processed for routine H&E staining. Shown above are representative histopathological images from (A) uninfected mice, and
mice infected with (B) Nigg, (C) CM972, or (D) CM3.1. The dense, dark purple stain denotes the infiltrating PMNs, while the pale purple stain
represents edema. Original magnification 1006. This figure is representative of two independent experiments performed.
doi:10.1371/journal.pone.0020846.g006
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they use related, but distinct, species of chlamydia. Moreover, C.

muridarum is a natural respiratory pathogen of mice that likely

evolved to infect this particular niche, and mice become

symptomatic with a significantly lower inoculum (3 logs) compared

to C. pneumoniae. The question remains as to which model more

closely represents human respiratory disease, and it is likely that

both models address different aspects of human infections from

chlamydia.

TLRs and other innate immune receptors play a critical role in

the innate immune response to pathogens, and the cooperation

between multiple cell types and the panel of receptors they express

maintains the balance between antimicrobial defenses and tissue

homeostasis. Our observations lead us to conclude that the role of

TLR2 in host defense is contextual, and that while TLR2

deficiency results in decreased virulence of infection in the genital

tract, it has the opposite effect in the lung. Thus, the response to a

pathogen at one mucosal surface may not necessarily predict the

response at a different mucosal site, an important consideration for

development of mucosal vaccines. A better understanding of the

cellular interactions and molecular signaling pathways activated

during infection at various mucosal surfaces is needed if the

development of mucosal vaccines is to move forward.
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