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Introduction

Monoterpenoids are constituents of the VOC-(volatile organic 
compound) bouquets emitted by plants. Many of these com-
pounds have been identified as mediator molecules in plant-
herbivore, plant-microorganism and plant-plant communication. 
Following adsorption of VOCs at the leaf surface, uptake into the 
leaf can occur via the stomata or by cuticle diffusion.1 Analysis of 
the molecular backgrounds of the defense mechanisms that take 
part in plant-insect, plant-microbe, plant-herbivore interactions 
has become an important topic during the last two decades.1-5 
VOCs trigger the release of volatile terpenoids in tomato plants 
and induce defence genes in Arabidopsis.6 Lima beans, exposed 
to terpenoids, responded in a similar manner.7 Other roles in 
plant-plant interactions have received less attention, although 
a high atmospheric abundance of monoterpenoids is known to 
have essential influences on structuring distribution, density and 
diversity of species in different plant communities, such as the 
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High Chaparral in south California or the sand pine scrub com-
munities in Florida. In these communities, the compounds sup-
press the growth of individuals of other or of their own species.8-11

On the other hand, monoterpenes have been shown to pro-
tect leaf membranes from oxidation and to increase heat stress 
resistance by modification of the leaf thermal tolerance.12,13 It was 
assumed that the release of monoterpenes present in low atmo-
spheric concentration in Mediterranean canopies enhanced heat 
stress resistance of other plants of the community.

Thus, depending on their chemical structure and the dose, 
monoterpenes can have different effects. Whereas α-pinene pro-
tects the photosynthetic apparatus, α-terpinol is even toxic under 
non-heat stress conditions. Exogenous monoterpenes in high con-
centrations of 0.5 g/l are toxic to plant cell cultures.14 Zunino and 
Zygadlo15 reported on oxidative stress induction and lipid oxida-
tion induced by the monoterpenes 1,8-cineole, thymol, geraniol, 
menthol and camphor in maize roots. Essential oil of Artemisia 
scoparia with β-myrcene, limonene, β-ocimene and γ-terpinene 

Monoterpenes at high atmospheric concentrations are strong growth inhibitors in allelopathic interactions. effects 
depend on dose, molecular structure of the monoterpene and on the species of the receiver plant. Stomata are among 
the first targets affected by camphor and menthol. Previously, it could be demonstrated that the compounds induce 
swelling of the protoplasts, prevent stomatal closure and enhance transpiration. In this study, we show that the block 
of stomatal closure is accompanied by changes to the cytoskeleton, which has a direct role in stomatal movements. 
although MPK3 (MaP3 kinase) and ABF4 gene expressions are induced within six hours, stomatal closure is prevented. In 
contrast to ABF4, ABF2 (both transcription factors) is not induced. MPK3 and ABF4 both encode for proteins involved in the 
process of stomatal closure. The expression of PePcase, an enzyme important for stomatal opening, is downregulated. 
The leaves develop stress symptoms, mirrored by transient changes in the expression profile of additional genes: 
lipoxygenase 2 (LOX2), CER5, CER6 (both important for wax production) and RD29B (an aBa inducible stress protein). Non-
invasive methods showed a fast response of the plant to camphor fumigations both in a rapid decrease of the quantum 
yield and in the relative growth rate. Repeated exposures to the monoterpenes resulted finally in growth reduction and 
a stress related change in the phenotype. It is proposed that high concentrations or repeated exposure to monoterpenes 
led to irreversible damages, whereas low concentrations or short-term fumigations may have the potential to strengthen 
the plant fitness.
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(pathogenesis related protein-3: chitinase) and farnesyl pyrophos-
phate synthase (FPS) was reported by Arimura et al.7 The acyclic 
monoterpenes ocimene and myrcene induced substantial changes 
in the transcription of several hundred genes in Arabidopsis, 
many of them are annotated as transcription factors, stress and 
defence genes.18 Allo-ocimene is known to prime defence reac-
tions in Arabidopsis against Botrytis cinerea, for example by accu-
mulation of antifungal substances and enhanced lignification.19

In allelopathic interactions, detailed studies are published 
for camphor and 1,8-cineol. Both compounds, which are strong 
growth inhibitors, leading to growth abnormality, inhibition of 
respiration of isolated mitochondria, aspartate synthase activity 
and mitosis.20-23 The present state of knowledge clearly points 
to a strong dose- and structure-dependency that trigger positive 
or negative effects of monoterpenoids on defined plant species, 
cells, tissues and organs. Meanwhile, many studies demonstrate 
that plant volatiles can have a great future in sustainable devel-
opment of agriculture. They may be used for pest control, to 
monitor plant health and to suppress weeds or to modulate plant 
fitness.

In a previous study, it was demonstrated that the waxy leaf 
surface and the stomata are among the first targets affected 
by the cyclic monoterpenes camphor and menthol. The com-
pounds induced stomata opening and swelling of the protoplasts 
accompanied by the inability of stomata to close as long as the 
compounds were present. Long term exposures to high concen-
trations resulted in irreversible desiccation and plant death.24 
Here we show that the block in stomatal closure is accompanied 
via a change in the cytoskeleton, especially in the actin filaments, 
which have direct roles in stomata movements.25-32 Consequently, 
the leaves develop stress symptoms, mirrored by changes in the 
expression profile of several selected genes. Repeated exposures 
to the monoterpenes resulted finally in growth reduction and a 
changed, stress-related Arabidopsis phenotype.

Results

Modulation of gene expression. Since cyclic monoterpene appli-
cations led to opening of stomata, an enhanced transpiration 
and dehydration, we set out to characterize the expression of sev-
eral selected genes involved in stomata movement, abiotic stress 
response (drought, osmotic stress) and wax synthesis by real time 
PCR.

MAP kinase 3 (MPK3), known to be activated in response 
to H

2
O

2
 and ABA, has an important role in guard cell signal-

ing and promotion of stomatal closure.33 The kinase activity was 
found to be induced by H

2
O

2
 and ABA, which both play a key 

role in adaption to drought and other stresses.34,35 In our study, 
the expression of the kinase gene was upregulated 3–6-fold after 
4 to 6 h of fumigation (Fig. 1). On the other hand, transcription 
of phosphoenolpyruvate carboxylase (PEPCase), which fixes CO

2
 

into oxaloacetic acid for malate production, was downregulated. 
Malate, however, is important for stomatal opening. During the 
whole period of treatment, PEPCase transcript levels were always 
below the controls. Expression of the ABA-induced genes ABF2 
(AREB1) and ABF4 (AREB2), encoding basic leucine zipper 

as major compounds generates ROS and oxidative damage in 
receiver plants.16 Peppermint essential oil caused a decrease in 
membrane potential hyperpolarization at 5 to 50 ppm, but 100 
to 500 ppm increased depolarization. The induced membrane 
depolarizations are known to change ion fluxes across the plasma 
membrane. The increase in membrane polarization was also found 
to be correlated to a decline in water solubility of several monoter-
penes tested. In cucumber roots, menthol induced an increase of 
cytosolic free calcium ions, an event that may trigger many signal 
transduction pathways.17 Monoterpenes increase the production 
of phenolic compounds in cell cultures of Pelargonium fragrans.14 
A calcium influx and protein phosphorylation/dephosphoryla-
tion dependent induction of the expression of PAL (phenylala-
nine ammonia-lyase: a key enzyme in phenylpropane assembly), 
PR-2 (pathogenesis related protein-2: β-1,3-glucanase), PR-3 

Figure 1. effects of the monoterpenes on gene expressions analyzed 
by qRT-PcR. The abundance of mRNa (x fold) is shown relative to the 
control values referred as to 1 (line). Mean values ± SD of three indepen-
dent experiments. Letters above the histogram bars refer to statistically 
significant differences (p < 0.05) within groups as determined by Dun-
can test. Values marked by the same or no letter are not significantly 
different within bar values.
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the camphor fumigation, growth rate remained low. A second 
period of camphor treatment amplified the differences in plant 
sizes and lowered quantum yield again. Camphor treatment 
modified plant morphology in terms of higher surface coverage 
(Fig. 3D) and stockiness (Fig. 3F) compared to untreated 
plants. This hints at a more compact growth, i.e., the leaves of 
the rosette were closer together than in the untreated plants. 
Especially during the second period of camphor treatment, 
plants became eccentric (Fig. 3E) while the untreated plants 
were more round-shaped. The eccentricity was due to an unequal 
distribution of leaves around the centr of the rosette, associ-
ated with the formation of lesions during prolonged camphor  
treatment (Fig. 4).

 Discussion

 Abscisic acid is known as a key inducer of stomatal closure in 
response to the plant water status. It also mediates responses 
to various stresses by modifying expression of an assortment of 
genes.34,45 Fumigation with camphor and menthol causes water 
stress due to the inability of stomata to close, with the consequence 
of high transpiration.24 Guard cell linked MPK3, required for sto-
matal closing, is activated by ABA and H

2
O

2
.33,47,48 The promotor 

of RD29B, a marker gene of ABA-induced gene expression, con-
tains an ABRE (abscisic acid responsive element). A number of 
basic leucine zipper transcription factors can bind to ABRE, such 

 transcription factors, were included in this study.36,37 ABF4 is sug-
gested to influence directly the regulation of gene expression in 
guard cells and is known to be involved in drought tolerance and 
reducing water loss.38 Abundance of ABF4 transcripts oscillated, 
with increases (about 3 fold) after 3, 6 and 24 h. ABF2 (AREB1) 
was not induced during the first 8 h, but after 24 h, transcript lev-
els were about 2.5 fold. An 8 fold induction of the ABA-inducible 
and, dehydration responsive RD29B gene was observed after 6 h, 
but the induction was transient. The expression profiles of these 
few genes indicate a moderate water deficiency in the leaves due 
to monoterpene fumigation. This is consistent with the induc-
tion of CER5 after 3–6 h and CER6 after 4 h. Both genes encode 
proteins essential for the production of the wax layer of plant 
aerial surfaces.39,40

Lipoxygenase 2 catalyzes the hydroperoxidation of fatty acids 
with cis, cis-1,4-pentadiene structures such as linolenic and 
linoleic acid.6,41,42 The products are precursors of C

6
-volatiles, 

whereas hydroperoxylinolenic acid presents an intermediate of 
jasmonic acid (JA) biosynthesis, a plant growth regulator. LOX2 
expression is regulated in response to stress conditions such as 
wounding or water deficiency. In our study, this gene was upreg-
ulated 2–7-fold after 3–4 h of fumigation. Long term exposure 
resulted in a downregulation.

Effects on the cytoskeleton. Monoterpenes caused reorgan-
isation and partial disruption of F-actin filaments leading to 
aberrantly over-polymerized actin cytoskeleton (Fig. 2A and B). 
Typical actin filaments in control stomata showed radial orien-
tation and the cell periphery showed strong signal. However, 
in monoterpene-treated plants actin arrays were replaced by 
less-organized F-actin networks and over-polymerized patches. 
In addition, F-actin was not assembled abundantly at the cell 
periphery in monoterpene-treated plants. Also microtubules were 
sensitive to the monoterpenes showing over-polymerized radial 
arrays whereas they were depleted at the open stomatal pore 
(Fig. 2C and D). Overall, these cytoskeletal reorganizations were 
fully consistent with the morphological changes observed, such 
as the swelling of guard cells and opening of stomata. The cyto-
skeleton is known to integrate sensory signals with ionic activities 
and metabolic processes.29,30 The aberrantly organized and per-
haps less dynamic cytoskeleton is proposed to be a major reason 
for the failure of endogenous signals to induce stomatal closure 
after monoterpene fumigation. Disruption of F-actin filaments 
had no effect on actin 2 expression.43

Modulations of the phenotype. Stress induced modulations 
occur at multiple spatial and temporal levels and require sensitive 
phenotyping techniques.44 Therefore, phenotypic modulations 
were assayed with GROWSCREEN FLUORO, which captures 
plant size as projected leaf area (A

PT
) and integrates chlorophyll 

fluorescence over the A
PT

.45

Camphor treatment led to a rapid decrease of relative growth 
rate of the plants (Fig. 3B), which was followed by noticeable dif-
ferences in A

PT
 (Fig. 3A, Table 1) of the treated plants compared 

to the untreated plants. Smaller plant size was accompanied by 
a lower number of leaves (insert in Fig. 3A) Concomitant with 
the decrease of growth, quantum yield of the leaves was lowered 
(Fig. 3C). Whereas quantum yield recovered after the end of 

Figure 2. effect of camphor and menthol on the cytoskeleton in sto-
mata guard cells. effect of camphor (10 mg/l) and menthol (5 mg/l) on 
the cytoskeleton in stomata of Arabidopsis thaliana cotyledons. actin 
cytoskeleton visualized with the 35S::GFP:FABD2 construct as in vivo 
marker for filamentous actin in control conditions (a) and after treat-
ment with monoterpenoids for 48 h (B). arrows point to the patches 
of bundled F-actin. Microtubular cytoskeleton visualized with the 
35S::GFP:MBD construct as in vivo marker for microtubules in control 
conditions (c) and after treatment with monoterpenoids for 48 h (D). 
Note pronounced bundling of microtubules (arrowheads) and appear-
ance of short disrupted microtubular bundles (arrows). Bar: 10 µm.
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Water stress in monoterpene fumigated Arabidopsis leaves is 
also indicated by the upregulation of CER6 and CER5 transcrip-
tion. Whereas CER6 is the most important condensing enzyme 
involved in VLCFA (very long chain fatty acid) production—an 
early step in wax biosynthesis, CER5 is responsible for the trans-
port of wax monomers out of epidermal cells to the surface. CER6 
transcript accumulation is known to be enhanced in response to 
osmotic stress. The presence of ABREs in the CER6 promotor led 
to the suggestion that the gene is ABA inducible. Hooker et al.39 
demonstrated a 2.5- to 3-fold enhancement of CER6 transcripts 
after treatment with 0.1 mM ABA. Similarly, CER5 was found 
to be inducible by 50 µM ABA and osmotic stress (Panikashvili 
et al. 2007).53 Both genes were upregulated only 3–5 h after the 
start of fumigation. A 3.5- to 5-fold increase in LOX2 transcript 
abundance within 24 h was recently demonstrated by Godard et 
al.18 after treatment of Arabidopsis with the acyclic monoterpene 
ocimene. LOX2 is a key enzyme in jasmonate biosynthesis and 
C

6
-volatiles production, proposed precursor molecules for the 

syntheses are the glycolipids of chloroplasts.6,54 Induced expres-
sion and an increase in LOX2 activity occurred in lima beans 
exposed to volatiles of emitter leaves infested with Tetranychus 

as ABF4 (AREB2) and ABF2 (AREB1).36 In response to camphor 
and menthol, the expression of MPK3, ABF4 and RD29 B was 
induced within six hours, in contrast to ABF2. It has been shown 
that ABF2 is important in the regulation of seedling growth and 
responses to glucose. ABF4, among others, is required for ABA, 
stress responses and stomatal closure.49,50 PEPCase is a major 
enzyme in malate synthesis. Malate is known to be an impor-
tant counterion for potassium, which drives stomatal opening.51 
A downregulation of the PEPCase transcript level in response to 
monoterpene induced high transpiration rates seems reasonable. 
An osmotic and salt repressed PEPCase expression was reported 
by Ueda et al.52

Table 1. Phenotypes influenced by camphor treatment

growth ↓

amount of leaves ↓

surface coverage ↑

stockiness ↑

eccentricity ↑

photosynthetic performance ↓

Figure 3. Modification of A. thaliana phenotypes analyzed with GROWScReeN FLUORO. Black lines/bars: control treated plants, grey lines/bars cam-
phor treated plants. (a) projected leaf area (aPT), insert in (a), amount of leaves at the final data acquisition; (B) relative growth rate (RGR); (c) quantum 
yield; (D) surface coverage; (e) eccentricity; (F) stockiness. Dark background indicates periods of fumigation.
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cytoskeleton is both regulator and target of biotic interactions 
(reviewed in ref. 62).

Camphor has the potential to modulate the phenotype of 
plants. In this study, we showed that repeated fumigation with 
camphor led to stress-related phenotypic changes of Arabidopsis 
plants. Lowering of growth and photosynthetic performance 
demonstrated an adverse effect of the fumigation on plant per-
formance (Table 1). The camphor-induced growth phenotypes 
were similar to those observed under drought stress.45 Finally, 
camphor-mediated lesion formation destroyed leaf material and 
thereby led to eccentric rosette shapes. The increase in com-
pactness and surface coverage of the fumigated plants (Table 1) 
counteracts water loss and can be seen as a response to the high 
transpiration. Thus, high concentrations, prolonged or repeated 
exposure to monoterpenes led to irreversible damage of the whole 
plant, whereas low concentration or short term fumigations with 
bioactive monoterpenes can lead to reversible responses and may 
strengthen the plant.

Materials and Methods

 Real time PCR. For real time PCR studies 3 week old Arabidopsis 
thaliana ecotype Col-0 plants were placed in plastic boxes and 
fumigated as described in Schulz et al.24 for 1, 2, 3, 4, 6, 8 and 
24 h with 10 mg camphor/L and 5 mg menthol/L.

Leaves were harvested and used for RNA isolation with the 
RNeasy Plant Mini Kit (Qiagen) according to the instructions 
of the manufacturers. Reverse transcription was performed 
with the Fermentas or with the Quantitec Rev. Transcription 
kit (Qiagen). cDNA synthesis was performed with DNAse 
treated RNA (0.2 µg). For real time PCR the POWER SYBR 
Green PCR Master Kit, microplates LSH 96 well and 3G opti-
cal adhesive covers (all from Applied Biosystem) were used. The 
following primers were designed (synthesis by MWG): LOX2 
(lipoxygenase 2: At3g5140): forward 5'-TAC TTG CCT TCC 
CAA ACA CC-3'; reverse 5'-AGT GCC CTT GGC TGT AGA 
GA-3'; ABF2 (AREB1) (At1g45249): forward TGG AGG TGG 
AGG GTT GAC TA-3', reverse 5'-CAT CCT TGT TCA TTG 
ACC CA-3'; ABF4 (AREB2) (At3g19290): forward GTA GTG 
TCA TGC CCT TGG CT-3', reverse 5'-ATC GAC CCG AAA 
TCT TTT CC, CER5 (At5g1500): forward 5'-GTC CGA CTC 

urticae. Thus, induction of LOX2 gene is possible with a large 
variety of monoterpenoids. The resulting increase in jasmonate 
production is known to modulate the expression profiles of 
many genes, including defense genes, and to prime defense reac-
tions.7,19 A microarray-based screening of jasmonate-responsive 
Arabidopsis genes by Jung et al.55 revealed an upregulation of 
74 genes including LOX2 (6.8-fold after 24 h) whereas 63 genes 
were repressed.

In this study, the upregulation of all genes investigated was 
transient. Possibly, a single fumigation period of 24 h was not suf-
ficient to manifest stress physiology and plants recovered or the 
consequences of the disturbed actin cytoskeleton, together with 
drought stress reactions, inhibited continued gene inductions. It 
is rather likely that camphor and menthol led to modulations of 
many other gene activities, in addition to the few investigated in 
this study. Antagonistic interactions between ABA and jasmonate 
signaling pathways have been described by Anderson et al.56 On 
the other hand, methyljasmonate is assumed to  stimulate ABA 
production.57 Hassanein et al.58 describe  ameliorating effects of 
jasmonic acid in plants under drought stress. Jitratham et al.59 
reported on stomatal closure in citrus leaves by jasmonate applica-
tions. We propose therefore that the monoterpenes camphor and 
menthol directly affect the actin cytoskeleton as well as microtu-
bules, abolishes ABA and JA mediated stomatal closing and pre-
vent actions which enable leaves to cope with drought stress. As 
a consequence, drought stress symptoms set in some hours after 
starting the treatment with the monoterpenes. According to first 
studies, Arabidopsis treated with Arthemisia camphorata volatiles 
shows, for instance, a similar increase of MPK3 expression (data 
not shown).

Stabilization of actin filaments by phalloidin treatment is 
known to inhibit stomatal closing in a concentration-dependent 
manner, whereas depolymerization and fragmentation of actin 
filaments by cytochalasin D increases stomata opening.25 These 
older data have been confirmed later.26,27,32 Our data reveal that 
the actin cytoskeleton is very sensitive to monoterpenes not only 
in guard cells but also in root cells (data not shown). Presumably, 
the monoterpenes cause depolarizations of the plasma membrane 
too, affecting activities of ion channels.26,29,30 Changed ion fluxes 
across the plasma membrane and dysfunctional ion channels 
would enhance the effects on the cytoskeleton, interfering with 
the processes of stomatal closure and movements. As a conse-
quence, water flux into the leaves does not compensate water loss 
by transpiration and leaves start to suffer from drought stress, 
even where plants were well watered. Effects on the actin cyto-
skeleton in mammals seem to be a common mode of action of 
several monoterpenes, which inhibit bone resorption. This was 
observed with osteoclasts from rats.60 Besides the actin cytoskel-
eton, microtubules are affected by monoterpenes and they are 
also implicated in stomatal movements.31 Dependency of the 
biological activity of monoterpenes on their chemical structure 
is ascertained by the work of Chaimovitish et al.61 who show 
an immediate reaction of plant cells to citral which disrupts 
microtubules, whereas actin filaments remain intact. These fea-
tures are highly consistent with the voluminous reports that the 

Figure 4. Phenotypes of untreated (left) and camphor-treated plant 
(right) at the end of the measuring period.
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arrangements was low and the presented images are the most rep-
resentative ones.

Plant cultivation and camphor treatment for non-invasive 
studies. Plants of Arabidopsis thaliana ecotype Col-0 were grown 
under controlled conditions at 22°C/18°C, 170 µmol m-2 s-1 
PAR, and an 8 h/16 h day/night regime. After cotyledon unfold-
ing, single plants were transferred into pots filled with a mix-
ture of potting soil and sand 67 vol.-% potting soil (De Ceuster 
Meststoffen SA/NV, Grobbendonk, Belgium; 33 vol.-% sand 
[quartz, grain size 0.7 to 1.4 mm, Rheinische Baustoffwerke, 
Weilerswist, Germany]). 40 pots (7 cm x 7 cm x 8 cm) were 
arranged on a tray and were watered thoroughly immediately 
after pricking out the plants.

For non-invasive studies, plants were fumigated with cam-
phor by placing the pots together with a camphor-containing 
dish into a 76.8 L plastic box covered with transparent foil. Ten 
plants were placed in one box. For treatment, the dish contained 
768 mg of camphor (i.e., 10 mg for each liter air volume, 39 mg 
will evaporate within 24 h at room temperature) and for control 
plants the dish was empty. Fumigation took place for 96 h fol-
lowed by 72 h without treatment and then a second 96 h-fumi-
gation period.

Data acquisition for non-invasive studies. Repeated measure-
ments of plant size, morphology and chlorophyll fluorescence 
were carried out with GROWSCREEN-FLUORO. The tray 
with 40 plant pots was placed under the measuring unit, which 
moved from one pot to the next and acquired images according 
to a predefined protocol.45 Image processing yielded in informa-
tion on plant size, number of leaves, surface coverage, eccentric-
ity, stockiness and quantum yield for each plant. Plant sizes were 
acquired as projected leaf area (A

PT
), which is a good proxy for 

plant biomass.65 Relative growth rates (RGR in %d-1) were cal-
culated from subsequently measured A

PT
 values (A

1
, A

2
) accord-

ing to RGR = 100 x 1/t x ln(A
2
/A

1
) with “t” indicating the time 

between the acquisitions of A
1
 and A

2
.
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GAA GAT TGC TC-3', reverse 5'-TCG TTG ACT TCT TCT 
TTG GTC A-3'; CER6 (At5g43760): 5'-ATC GAC GAG CTC 
CAA AAG AA-3', reverse 5'-TTA CAT TTC CAC ACG GCA 
GA-3'; RD29B, (At5g52300): forward 5'-GCA CCA CCG 
TTG GGA CTA TG, reverse 5'-CCA CTG CCT CCA ACT 
CAC TT-3'; 18SrRNA forward 5'-CGT CCC TGC CCT TTG 
TAC AC-3', reverse 5'-AAC ACT TCA CCG GAC CAT TCA; 
MPK3 (At3g45640): forward 5'-GAC AGA GTT GCT TGG 
CAC AC-3', reverse 5'-CCT CAT CCA GAG GCT GTT GT-3'; 
PEPC (At2g42600): forward 5'-TTG AGG GTA ACG GTT 
CAA GG-3'; reverse 5'-CAC GGG TAA GTG AAC CTC GT-3'; 
actin 2 (At3g18780): forward 5'-TGC CAA TCT ACG AGG 
GTT TC-3', reverse 5'-TTC TCG ATG GAA GAG CTG GT-3'. 
The cDNA was diluted 10-fold with water and used for real time 
PCR in a final volume of 10 µl. The PCR conditions consisted of 
denaturation at 95°C, for 10 min, followed by 40 cycles of dena-
turation at 95°C for 15 s and annealing/extension at 60°C for 1 
min.63 At the end of each run, a dissociation curve was gener-
ated to ascertain single product amplification (Applied Biosystem 
software, Applied Biosystems fast real time PCR 7500).

All transcript levels were measured with at least four 
 independent biological replicates, each biological replicate was 
analyzed in three technical replicates. 18s RNA was used to nor-
malize expression data between samples. Negative control reac-
tions without template were routinely performed.

 In vivo cytoskeleton visualization. For in vivo actin visu-
alization an Arabidopsis thaliana line stably transformed with 
35S::GFP:FABD construct was used as reliable marker for fil-
amentous actin.64 For in vivo visualization of microtubules an 
Arabidopsis thaliana line stably transformed with 35S::GFP:MBD 
construct was used as reliable marker for microtubular cyto-
skeleton.65 Seedlings were treated with 10 mg camphor/L and 
5 mg menthol/L for 48 h as a maximum (within 24 h, 10 mg 
menthol evaporate at room temperature). Stomata cells of the 
treated cotyledons and those of control plants were analyzed for 
effects of the cytoskeleton by using Olympus FV1000 confocal 
laser scanning microscopy system equipped with Argon Laser 
using 488 nm wavelength, and operated with the FV10-ASW1.7 
software (Olympus, Hamburg, Germany). We investigated at 
least 30 stomata complexes in cotyledons of 3 seedlings. This 
experiment was repeated 3 times. The variability in cytoskeletal 
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