Genome-wide analysis of the family of light-harvesting chlorophyll a/b-binding proteins in arabidopsis and rice

Pavan Umate

Department of Botany; Kakatiya University; Warangal, Andhara Pradesh, India

Key words: Lhca and Lhcb proteins, Lhc proteins evolution, light-inducible proteins, protein alignment, PsbS

Light-harvesting antenna system possesses an inherent property of photoprotection. The single-helix proteins found in cyanobacteria play role in photoprotection and/or pigment metabolism. The photoprotective functions are also manifested by the two- and four-helix proteins. The photoprotection mechanism evolved earlier to the mechanism of light-harvesting of the antenna complex. Here, the light-harvesting complex genes of photosystems I and II from Arabidopsis are enlisted, and almost similar set of genes are identified in rice. Also, the three-helix early light-inducible proteins (ELIPs), two-helix stress-enhanced proteins (SEPs) and one-helix high light-inducible proteins [one-helix proteins (OHPs)] are identified in rice. Interestingly, two independent genomic loci encoding PsbS protein are also identified with implications on additional mode of non-photochemical quenching (NPQ) mechanism in rice. A few additional LHC-related genes are also identified in rice (LOC_Os09g12540, LOC_Os02g03330). This is the first report of identification of light-harvesting complex genes and light-inducible genes in rice.

The light-harvesting proteins are present in different taxa. The proteins of light-harvesting systems from higher plants, cyanobacteria, purple bacteria and green sulphur bacteria share no sequence similarity however little structural similarity can be seen.1 Apparently, the light-harvesting systems in these different taxa might have evolved independently from each other.¹ To enable efficient transfer of excitation energy into the reaction centers, where charge separation takes place, different proteins are recruited in order to coordinate the photosynthetic pigment molecules. The light-harvesting and light dissipation are tightly coupled processes involving the higher plant light-harvesting antenna. Here, genome-wide analysis of the light-harvesting chlorophyll a/b-binding proteins and light-inducible proteins in Arabidopsis thaliana L. and Oryza sativa L. (rice) is conducted. This study wherein genes coding for antenna proteins are identified and named can be used as a nomenclature guide to the light-harvesting complex gene family members and their relatives in rice.

The Light-harvesting Complexes (LHCs) of Higher Plants

A protein family of 10–12 members, plus a few of related proteins constitutes the light-harvesting chlorophyll a/b-binding (LHC) proteins, the proteins of higher plant light-harvesting antenna. The proteins Lhca1-6 associate with photosystem I (PSI), and the proteins Lhcb1-6 primarily with photosystem II (PSII). The proteins Lhcb1 and Lhcb2 reorient between PSI and PSII to balance energy distribution and thereby the electron flow during a process called state transitions. Other names are proposed to designate the gene products of higher plant Lhcb4, 5 and 6 light-harvesting antenna proteins.² For instance, Lhcb4, 5 and 6 are also designated as chlorophyll protein (CP) 29, CP26 and CP24 respectively, which suggests the relative mobility of these proteins upon SDS-PAGE electrophoresis. In Arabidopsis, several multiple loci exist for genes of Lhcb1 and Lhcb2. There are at least five (Lhcb1.1–Lhcb1.5) (AT1G29920, AT1G29910, AT1G29930, AT2G34430, AT2G34420), and three (Lhcb2.1-Lhcb2.3) (AT2G05100, AT2G05070, AT3G27690) multiple loci encoding Lhcb1 and Lhcb2 respectively in A. thaliana³⁻⁵ (Table 1). The amino acid sequences of these individual Lhcb1 and Lhcb2 proteins are slightly different. These differences are not well conserved in plant species. There are three multiple genes for Lhcb4 (CP29) (Lhcb4.1 to Lhcb4. 3) (AT5G01530, AT3G08940, AT2G40100), and one each for Lhcb3 (AT5G54270), Lhcb5 (CP26) (AT4G10340), and Lhcb6 (CP24) (AT1G15820) (Table 1). There are at least six PSI light-harvesting complex genes in A. thaliana (Lhca1 to Lhca6) (AT3G54890, AT3G61470, AT1G61520, AT3G47470, AT1G45474 and AT1G19150) (Table 1). A few additional LHCrelated genes are also identified in A. thaliana (AT1G76570, AT4G17600 and AT5G28450).

Correspondence to: Pavan Umate; Email: pavan_umate@rediffmail.com

Submitted: 08/24/10; Accepted: 08/25/10

Previously published online: www.landesbioscience.com/journals/psb/article/13410 DOI: 10.4161/psb.5.12.13410

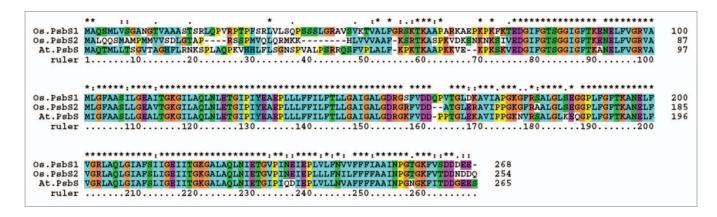
Table 1. Light-harvesting complex	aenes of photosystem	I and II, and light-inducible	genes in Arabidopsis

Table 1. Light-harvesting complex genes of photosystem I and II, and light-inducible genes in Arabidopsis								
Locus	Annotation	Synonym	A *	B *	C*			
AT1G15820	Lhcb6 protein	CP24, Light-harvesting complex PSII subunit 6	258	27522.3	7.6661			
AT1G19150	Lhca2*1 mRNA	LHCA6, PSI Light-harvesting complex gene 6	270	29939.0	6.2432			
AT1G29910	chlorophyll a/b-binding protein	CAB3, Light-harvesting chlorophyll a/b-binding protein 1.2 (LHCB1.2)	267	28226.8	5.0852			
AT1G29920	Lhcb1.1	CAB2, Light-harvesting chlorophyll a/b-binding protein 1.1 (LHCB1.1)	267	28226.8	5.0852			
AT1G29930	LHCII	CAB1, Light-harvesting chlorophyll a/b-protein 1.3 (LHCB1.3)	267	28240.9	5.3477			
AT1G45474	Lhca5	LHCA5, PSI Light-harvesting complex gene 5	256	27801.8	7.2572			
AT1G61520	Lhca3*1	LHCA3, PSI Light-harvesting complex gene 3	273	29181.2	9.0847			
AT1G76570	chlorophyll a/b-binding protein	F14G6.17, F14G6_17	327	36374.6	8.4044			
AT2G05070	Lhcb2.2	LHCB2.2, PSII Light-harvesting complex gene 2.2	265	28620.3	5.0852			
AT2G05100	Lhcb2.1	LHCB2.1, PSII Light-harvesting complex gene 2.1	265	28649.3	5.0921			
AT2G34420	chlorophyll a/b-binding protein	PSII Light-harvesting complex gene 1.5 (LHCB1.5), LHB1B2	265	28053.7	5.0913			
AT2G34430	chlorophyll a/b-binding protein	PSII Light-harvesting complex gene 1.4 (LHCB1.4), LHB1B1	266	28169.8	4.9178			
AT2G40100	Lhcb4.3	LHCB4.3	276	30211.3	4.9911			
AT3G08940	Lhcb4.2	LHCB4.2	287	31193.2	6.1385			
AT3G27690	Lhcb2.4	LHCB2.4, PSII Light harvesting complex gene 2.3 (LHCB2.3)	266	28802.5	5.6978			
AT3G47470	chlorophyll a/b-binding protein	CAB4, Light-harvesting chlorophyll-protein complex subunit A4 (LHCA4)	251	27733.4	6.6847			
AT3G54890	LHCA1	LHCA1	241	25995.7	6.674			
AT3G61470	LHCA2	LHCA2	257	27754.6	7.5728			
AT4G10340	LHCB5/CP26	Light-harvesting complex PSII 5 (LHCB5)	280	30156.4	6.2942			
AT4G17600	light-harvesting like	LIL3:1	262	29403.0	4.6688			
AT5G01530	LHCB4/CP29	LHCB4.1	290	31139.1	6.0326			
AT5G28450	chlorophyll a/b-binding protein	F21B23.110, F21B23_110	173	18947.7	11.2702			
AT5G54270	Lhcb3	LHCB3*1, Light-harvesting chlorophyll B-binding protein 3 (LHCB3)	265	28706.5	4.735			
AT1G44575	PsbS	Nonphotochemical quenching (NPQ) 4, Photosystem II subunit S	265	28007.5	9.9957			
AT3G22840	early light-inducible protein 1	ELIP1	195	20324.4	10.3836			
AT4G14690	early light-inducible protein 2	ELIP2	193	20344.5	10.3453			
AT4G34190	stress-enhanced protein 1	SEP1	146	14858.0	11.5119			
AT2G21970	stress-enhanced protein 2	SEP2	202	21988.8	4.7414			
AT5G02120	One-helix protein	OHP	110	12010.0	10.1387			
AT1G34000	One-helix protein 2	OHP2	172	18665.1	9.9339			

*A, amino acids; B, molecular weight; C, isoelectric point.

In rice, there are 17 genomic loci which encode for chlorophyll a/b-binding proteins (**Table 2**). Of these, genes of lightharvesting complex proteins associated with PSI and PSII are annotated during the study. The identified PSI light-harvesting complex genes are *Lhca*1 to *Lhca*6 (**Table 3**). The chlorophyll a/b-binding proteins of PSII light-harvesting complex are Lhcb1.1 to Lhcb1.3, Lhcb2, Lhcb3, Lhcb4, Lhcb5 and Lhcb6 (**Table 3**). Interestingly, two genomic loci (LOC_Os01g64960, LOC_Os04g59440) encoding PsbS protein are identified in rice as compared to one *psb*S locus in Arabidopsis (AT1G44575) (**Tables 1 and 3**). These two loci are hereafter named as *psb*S1 (LOC_Os01g64960) and *psb*S2 (LOC_Os04g59440) (**Table 3**). The rice PsbS1 and PsbS2 shows homology %73/80 and %80/87 (identities/positives) for 270 and 232 amino acids respectively, with the PsbS protein of Arabidopsis. The PsbS proteins are aligned which indicated that the sequences are relatively well conserved in rice and Arabidopsis (**Fig. 1**). The present finding wherein two PsbS-related loci are identified in rice contradict a previous report where the PSII-S gene, *psb*S, was suggested to be a single-copy gene in rice.⁶ A few additional LHC-related genes are also identified in rice (LOC_Os09g12540, LOC_ Os02g03330) (**Table 3**). Some of the Lhc genes that are found in Arabidopsis do not exist in rice (**Table 3**).

The **Table 4** enlists light-inducible genes in rice. These include six loci which encode for early light-inducible proteins (ELIP1 to ELIP6), two loci for stress-enhanced proteins (SEP1 and SEP2),


Table 2. A list of 17 loci which encodes for chlorophyll a/b-binding proteins in rice

Chromosome	Locus Id	Putative function
1	LOC_Os01g41710	Chlorophyll a/b-binding protein, putative expressed
1	LOC_Os01g52240	Chlorophyll a/b-binding protein, putative expressed
1	LOC_Os01g64960	Chlorophyll a/b-binding protein, putative expressed
2	LOC_Os02g10390	Chlorophyll a/b-binding protein, putative expressed
2	LOC_Os02g52650	Chlorophyll a/b-binding protein, putative expressed
3	LOC_Os03g39610	Chlorophyll a/b-binding protein, putative expressed
4	LOC_Os04g38410	Chlorophyll a/b-binding protein, putative expressed
4	LOC_Os04g59440	Chlorophyll a/b-binding protein, putative expressed
6	LOC_Os06g21590	Chlorophyll a/b-binding protein, putative expressed
7	LOC_Os07g37240	Chlorophyll a/b-binding protein, putative expressed
7	LOC_Os07g37550	Chlorophyll a/b-binding protein, putative expressed
7	LOC_Os07g38960	Chlorophyll a/b-binding protein, putative expressed
8	LOC_Os08g33820	Chlorophyll a/b-binding protein, putative expressed
9	LOC_Os09g12540	Chlorophyll a/b-binding protein, putative expressed
9	LOC_Os09g17740	Chlorophyll a/b-binding protein, putative expressed
9	LOC_Os09g26810	Chlorophyll a/b-binding protein, putative expressed
11	LOC_Os11g13890	Chlorophyll a/b-binding protein, putative expressed

Table 3. Light-harvesting complex genes of photosystem I and II in rice

Locus Id	Annotation	Synonym	A *	B *	C *
LOC_Os04g38410	Chlorophyll a/b-binding protein	Lhcb6/CP24	253	27060	7.6727
LOC_Os09g26810	Chlorophyll a/b-binding protein	LHCA6	265	28902	6.2372
LOC_Os01g41710	Chlorophyll a/b-binding protein	Lhcb1.2	262	27552.5	5.0852
LOC_Os01g52240	Chlorophyll a/b-binding protein	Lhcb1.1	266	27901.8	5.085
LOC_Os09g17740	Chlorophyll a/b-binding protein	Lhcb1.3	266	28014	4.904
LOC_Os02g52650	Chlorophyll a/b-binding protein	LHCA5	262	27895	6.6016
LOC_Os02g10390	Chlorophyll a/b-binding protein	LHCA3	270	29209.5	7.8011
LOC_Os09g12540	Chlorophyll a/b-binding protein	Chl a/b	322	34925.4	9.2047
LOC_Os03g39610	Chlorophyll a/b-binding protein	LHCB2.1	264	28495.3	5.7079
n/f		LHCB2.2			
n/f		Lhcb1.5			
n/f		Lhcb1.4			
n/f		Lhcb4.3			
n/f		Lhcb4.2			
n/f		Lhcb2.4			
LOC_Os08g33820	Chlorophyll a/b-binding protein	LHCA4	245	26955.7	7.0578
LOC_Os06g21590	Chlorophyll a/b-binding protein	LHCA1	242	26185.8	6.0177
LOC_Os07g38960	Chlorophyll a/b-binding protein	LHCA2	264	28209.1	6.2689
LOC_Os11g13890	Chlorophyll a/b-binding protein	LHCB5	284	30283.6	5.3897
LOC_Os02g03330	Chlorophyll a/b-binding protein	LiL*	251	27593.4	6.5533
LOC_Os07g37240	Chlorophyll a/b-binding protein	LHCB4.1	291	31349.5	5.1588
n/f		Chla/b			
LOC_Os07g37550	Chlorophyll a/b-binding protein	Lhcb3	267	28777.9	6.1247
LOC_Os01g64960	Chlorophyll a/b-binding protein	PsbS1	269	27903.3	6.9945
LOC_Os04g59440	Chlorophyll a/b-binding protein	PsbS2	255	26950.4	6.0137

*A, amino acids; B, molecular weight; C, isoelectric point. n/f = genes not found in rice but exists in Arabidopsis. *LiL, light-harvesting like.

Figure 1. Amino acid alignment of PsbS proteins in Arabidopsis and rice. Note the presence of two PsbS proteins in rice. Proteins are aligned using ClustalX.¹⁴ Gene names are identified on left and amino acid positions on right. Asterisks and dots drawn on top of sequence indicate identical residues and conservative amino acid changes, respectively. Gaps in the amino acid sequences are introduced to improve the alignment. At-*Arabidopsis thaliana* L.; Os-*Oryza sativa* L.

Table 4. A list of light-inducible genes in rice

· · · · · · · · · · · · · · · · · · ·					
Locus Id	Annotation	Synonym	A *	B *	С*
LOC_Os01g01340	light-induced protein 1-like	LIP1-like	129	13317	4.1426
LOC_Os01g14410	early light-inducible protein	ELIP1	203	20217	10.2911
LOC_Os01g40710	high light-inducible protein	HLIP/OHP2*	191	19884.8	10.303
LOC_Os02g16560	early light-inducible protein	ELIP2	241	25611.6	12.8165
LOC_Os03g30400	early light-inducible protein	ELIP3	129	12828.5	10.4496
LOC_Os04g54630	expressed protein	SEP2*	195	20347.1	4.5945
LOC_Os05g08110	early light-inducible protein	ELIP4	205	20856.3	11.7767
LOC_Os05g22730	expressed protein	OHP1*	113	12109.5	11.1885
LOC_Os07g08150	early light-inducible protein	ELIP5	201	19840.6	9.5072
LOC_Os07g08160	early light-inducible protein	ELIP6	193	19352	6.9273
LOC_Os10g25570	expressed protein	SEP1*	164	13625.6	10.9811

*SEP, stress-enhanced protein. *OHP, one-helix protein. *A, amino acids; B, molecular weight; C, isoelectric point.

two loci for one-helix proteins (OHP1 and OHP2), and a single loci for light-induced protein 1-like (LIP1-like) (Table 4). In the Rice Genome Annotation Project (RAP) database (http:// rice.plantbiology.msu.edu/), the loci LOC_Os04g54630, LOC_Os05g22730 and LOC_Os10g25570 are annotated as "expressed proteins" (Table 4). However, the BLAST search against Arabidopsis protein database identified these loci as SEP1 (LOC_Os10g25570), SEP2 (LOC_Os04g54630) and OHP1 (LOC_Os05g22730) (Table 4). The Arabidopsis SEP1 (AT4G34190) shares homology %48/66 (identities/positives) for 109 amino acids with rice LOC_Os10g25570, and SEP2 (AT2G21970) shares homology %48/68 (identities/positives) for 206 amino acids with rice LOC_Os04g54630. The protein alignment of SEPs in Arabidopsis and rice is shown in Figure 2A and B. While, the Arabidopsis OHP (AT5G02120) shares homology %58/73 (identities/positives) for 110 amino acids with rice LOC_Os05g22730. Also, the Arabidopsis OHP2 (AT1G34000) shares homology %66/76 (identities/positives) with rice LOC_Os01g40710, a high light-inducible protein. The protein alignment of OHPs in Arabidopsis and rice is shown in Figure 3A and B. Thus the present study has attested three of the formerly annotated "expressed proteins" to their respective "functional class".

One, Two, Three and Four-helix Proteins

In higher plants, there are proteins which are related to the LHC proteins. The ELIPs are first to be described which accumulate during early thylakoid development and light stress.⁷ The ELIPs has three, and the related PsbS protein has four membrane spanning helices. The additional helix of PsbS protein occurs at N-terminus and is homologous to helix-2. The related one-helix and two-helix proteins are also been described in Arabidopsis.^{8,9} With the exception of PsbS,¹⁰ the concrete functions of the other proteins are not well defined.

The Evolution of LHC Proteins

The main light-harvesting structure of cyanobacteria is the phycobilisome. It is a soluble antenna system that coordinates linear tetrapyrroles and shares no homology with the higher plant LHC proteins. However, the high light-inducible proteins (HLIPs)



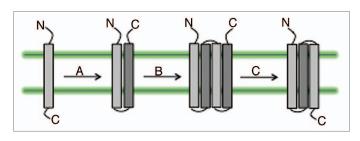

Figure 2. Protein alignment of stress-enhanced proteins (SEPs) in Arabidopsis and rice. (A) At.SEP1 and Os.SEP1 protein alignment. (B) At.SEP2 and Os.SEP2 protein alignment. The figure was generated as described in legend to Figure 1. At-Arabidopsis thaliana L.; Os-Oryza sativa L.

Figure 3. Protein alignment of one-helix proteins (OHPs) in Arabidopsis and rice. (A) At.OHP and Os.OHP1 protein alignment. (B) At.OHP2 and Os.OHP2 protein alignment. The figure was generated as described in legend to Figure 1. At-Arabidopsis thaliana L.; Os-Oryza sativa L.

which constitute a group of cyanobacterial proteins are possible ancestors of the LHC proteins.¹¹ The HLIPs are also named as small cab-like proteins (SCPs).¹² Green and Pichersky (1994),¹³ proposed the early events in the evolution of the LHC proteins from the cyanobacterial one-helix proteins (Fig. 4).

To conclude, this study has identified evolutionarily occurring one, two, three and four-helix Lhc-related proteins in rice. The present collection of Lhc family members forms a basis that can be rapidly accessible, reliable and up-to-date. This information will provide a solid base for the interpretation of new results, and a starting point for planning further experiments on Lhc proteins in the monocot model plant, rice. The identification of two independent PsbS-related loci offers an open challenge to unravel their functions in rice.

Figure 4. LHC proteins and their evolution. One-helix proteins (like HLIP) acquired a second helix resulting in two-helix proteins (like SEPs). The two-helix proteins underwent internal gene duplication event leading to a four-helix protein (like PsbS). From the loss of the fourth-helix, the three-helix proteins (like ELIPs and LHCs) are evolved. The arrow marks indicate (A), Gain of helix 2; (B), internal duplication; (C), loss of helix 4. At-*Arabidopsis thaliana* L.; Os-Oryza sativa L.

References

- Green BR. Was "molecular opportunism" a factor in the evolution of different photosynthetic light-harvesting pigment systems? Proc Natl Acad Sci USA 2001; 98:2119-21.
- Jansson S. The light-harvesting chlorophyll a/b-binding proteins. Biochim Biophys Acta 1994; 1184:1-19.
- Leutweiler LS, Meyerowitz EM, Tobin EM. Structure and expression of three light-harvesting chlorophyll a/b-binding protein genes in *Arabidopsis thaliana*. Nucleic Acids Res 1986; 14:4051-64.
- Legen J, Misera S, Herrmann RG, Meurer J. Map positions of 69 Arabidopsis thaliana genes of all known nuclear encoded constituent polypeptide and various regulatory factors of the photosynthetic membrane: a case study. DNA Res 2001; 8:53-60.
- Andersson J, Wentworth M, Walters RG, Howard C, Ruban A, Horton P, et al. Absence of the main lightharvesting complex of photosystem II affects photosynthesis and fitness but not grana stacking. Plant J 2003; 35:350-61.

- Iwasaki T, Saito Y, Harada E, Kasai M, Shoji K, Miyao M, et al. Cloning of cDNA encoding the rice 22 kDa protein of Photosystem II (PSII-S) and analysis of lightinduced expression of the gene. Gene 1997; 185:223-9.
- Adamska I, Ohad I, Kloppstech K. Synthesis of the early light-inducible protein is controlled by the blue light and related to light stress. Proc Natl Acad Sci USA 1992; 89:2610-3.
- Jansson S. A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci 1999; 4:236-40.
- Heddad M, Adamska I. The evolution of light stress proteins in photosynthetic organisms. Comp Funct Genom 2002; 3:504-10.
- Li XP, Bjorkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK. A pigment binding protein essential for regulation of photosynthetic light-harvesting. Nature 2000; 40:391-5.

- Dolganov NAM, Bhaya D, Grossman AR. Cyanobacterial protein with similarity to the chlorophyll a/b binding proteins of higher plants: Evolution and regulation. Proc Natl Acad Sci USA 1995; 92:636-40.
- Funk C, Vermaas WFJ. Expression of cyanobacterial genes coding for single-helix polypeptides resembling regions of light-harvesting proteins from higher plants. Biochem 1999; 38:9397-404.
- Green BR, Pichersky E. Hypothesis for the evolution of three-helix Chl a/b and Chl a/c light-harvesting antenna proteins from two-helix and four-helix ancestors. Photosynth Res 1994; 39:149-62.
- Umate P, Tuteja R, Tuteja N. Genome-wide analysis of helicase gene family from rice and Arabidopsis: a comparison with yeast and human. Plant Mol Biol 2010; 73:449-65.