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 Mini-Review Mini-Review

In an increasingly populated world, agricultural production is an 
essential element of social development. Agriculture is the pri-
mary source of all nutrients required for human life, and nutrient 
sufficiency is the basis for good health and welfare of the human 
population.1 Soils with zinc deficiency are widespread in the 
world, affecting large areas of cultivated soils in India, Turkey, 
China, Brazil and Australia,2,3 making zinc the most common 
crop micronutrient deficiency.4 In addition, risk of inadequate 
zinc diet and zinc malnutrition are estimated to affect one-third 
of the global human population, i.e., around two billion people.5 
Most affected are people living in developing countries, where 
diets are rich in cereal-based foods. Cereal grains are rich in 
phytate, which is a potent anti-nutrient, limiting micronutrient 
bioavailability.6 Zinc deficiency in crop production can be easily 
ameliorated through zinc fertilization, making agronomic biofor-
tification an important strategy,3 however in the poorer regions, 
the required infrastructure to provide a reliable supply of zinc 
fertilizers of sufficient quality, is often not available. In those 
situations, biofortified crops, in which the zinc status of crops is 
genetically improved by selective breeding or via biotechnology, 
offer a rural-based intervention that will more likely reach the 
population.7 Different traits can be targeted to developing such 
improved crops, such as plant zinc deficiency tolerance, zinc use 
efficiency and the accumulation of zinc in edible parts. However, 
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The molecular mechanisms by which plants sense their 
micronutrient status, and adapt to their environment in 
order to ensure a sufficient micronutrient supply, are poorly 
understood. Zinc is an essential micronutrient for all living 
organisms. When facing a shortage in zinc supply, plants 
adapt by enhancing the zinc uptake capacity. The molecular 
regulators controlling this adaptation were recently 
identified. In this mini-review, we highlight recent progress 
in understanding the adaptation to zinc deficiency in plants 
and discuss the future challenges to fully unravel its molecular 
basis.
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insufficient knowledge on the molecular mechanisms and the 
regulation of the zinc homeostasis network in plants is a serious 
bottleneck when pursuing zinc biofortification.

Zinc Homeostasis Network

The zinc homeostasis network comprises the coordinated activi-
ties of zinc uptake, transport, trafficking and sequestration, pro-
viding an adequate amount of zinc to all cell types, at all stages 
of development and under different environmental conditions.8 
Although zinc is an essential element, it can be toxic when present 
in excess. Therefore, plants are thought to control zinc homeo-
stasis using a tightly regulated network where the coordinated 
expression of zinc transporters plays a major role in zinc acquisi-
tion from soil, in mobilization between organs and tissues and in 
intracellular sequestration.8,9

In Arabidopsis, different members of important families of 
cation transporters have been characterized and found to be rel-
evant for zinc homeostasis.10,11 Members of the ZIP (Zrt/Irt-like 
Proteins) family, which facilitate the influx of zinc into the cyto-
sol, are good candidates to mediate the uptake of zinc from soil 
and the unloading of zinc from xylem.12-14 Members of the CDF 
(Cation Difusion Facilitator) or MTP (Metal Tolerance Protein) 
family are involved in vacuolar zinc import,15,16 while NRAMP 
proteins ensure vacuolar zinc unloading.17 Members of the diva-
lent metal cation transporting 1b P-type ATPases (HMA) are 
responsible for zinc xylem loading,18 the control of plastid zinc 
contents19 and vacuolar zinc sequestration.20 In addition to these 
transporters, proteins involved in the synthesis of metal chelators, 
such as nicotianamine synthases (NAS), or transport of (metal-)
chelates, such as Yellow-Stripe Like (YSL) proteins21 and the 
MATE type transporter FRD3,22 are important for zinc homeo-
stasis. The recent identification of two transcription factor genes 
that are essential for the transcriptional regulation of Arabidopsis 
adaptation to zinc deficiency represents the beginning of our 
understanding of the molecular control of the zinc homeostasis 
network.23

Adaptation to Zinc Deficiency in Arabidopsis

Using a yeast-one-hybrid screening with promoter fragments of 
the strong zinc-deficiency-induced Arabidopsis ZIP4 zinc trans-
porter gene as bait, two closely related members of the Arabidopsis 
basic-region leucine-zipper (bZIP) transcription factor gene family, 
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that the regulation of these metal transporters is not a consequence 
of the inadvertent uptake of other metals than iron, which is likely 
to happen due to the low specificity for other metals of the major 
Fe uptake transporter IRT1,25 but instead an anticipated response 
to avoid ion imbalance by promoting prompt ion distribution.24 
Four ZIP genes, ZIP2, ZIP3, ZIP4 and ZIP9, were found to be 
differentially expressed in response to iron deficiency, however, 
careful examination of the response made clear that these genes 
are regulated solely by zinc, and their response to iron deficiency is 
due to a secondary effect.24 This confirms that these genes act pri-
marily in zinc nutrition and homeostasis and that their upstream 
regulatory mechanisms are zinc-specific.

This adaptive system of Arabidopsis to cope with growth 
under zinc limiting conditions is likely present in all plant spe-
cies as the bZIP19 and bZIP23 transcription factors, their target 
genes and the characteristic cis elements, are conserved in higher 
plants, including the major monocot and dicot crops.23 Plants 
thus appear to have developed their own zinc deficiency response 
transcriptional regulation system, different from systems found 
in species of other kingdoms. In yeast, induced transcription of 
the cytoplasmic zinc uptake transporter genes ZTR1 and ZRT2 
depends on the Zn-finger transcription factor Zap1.26 Zap1 binds 
to zinc-responsive elements in the promoter of target genes, with 
a consensus sequence (ACC TTN AAG GT)27 that is very differ-
ent from the ZDRE motif (RTG TCG ACA Y) bound by bZIP19 
or bZIP23 in Arabidopsis.23 In vertebrates, including mammals, 
fish and birds, and in insects, the metal-responsive-element-bind-
ing transcription factor-1 (MTF-1) plays a central role in zinc 
homeostasis.28 This is another Zn-finger transcription factor, 
binding to metal responsive elements (MRE) with the consen-
sus core sequence TGC RCN C. Initially identified as a tran-
scription factor controlling the response to excess metals, recent 
work has shown that it is also involved in controlling transcrip-
tion of zinc uptake transporters upon zinc deficiency.29 Activity 
of both proteins appears to be controlled by binding of zinc to 
the Zn-fingers. This zinc sensing ability through Zn-fingers 
is not directly obvious for the plant zinc deficiency responsive 
bZIP transcription factors. Nevertheless, an essential question 
that arises from this newly unraveled zinc deficiency response 
mechanism in Arabidopsis relates to the regulatory mechanism 
upstream of the bZIP19/bZIP23 transcription factors: How are 
plants sensing zinc deficiency? bZIP19 and bZIP23 belong to 
bZIP family group F,30 which is characterized by containing two 
histidine-rich motifs. Although the only other member of this 
family is involved in salt stress response31 and not in zinc homeo-
stasis, a role can be envisaged for these motifs in the binding and 
sensing of intracellular zinc concentrations. Alternatively, instead 
of a direct interaction with zinc, an upstream signaling pathway 
might be responsible for the zinc deficiency signal transduc-
tion. In either way these aspects need to be elucidated. Further 
research on the regulation and adaptation mechanisms to zinc 
deficiency in plants will contribute to engineering of crops dis-
playing improved acquisition and use of zinc, which will help 
to overcome serious problems with crop yield and mineral defi-
ciencies among the human population living in areas with low 
bioavailable zinc in soils.

bZIP19 and bZIP23, have been isolated.23 The bZIP19/23 func-
tion is essential for a proper zinc deficiency response, allowing 
Arabidopsis to grow at low zinc supply. Both genes are function-
ally partially redundant, with single T-DNA insertion mutants 
showing a weak sensitivity to zinc deficiency, and only the bzip-
19bzip23 double mutant lines showing a zinc deficiency hypersen-
sitive phenotype.23 This rescue system appears to be zinc specific. 
Preliminary experiments with the double mutants were unable to 
display any hypersensitivity for copper, manganese or iron deficien-
cies (Assunção AGL, unpublished data). The bZIP19 and bZIP23 
proteins bind to a palindromic 10-bp ZDRE (Zinc Deficiency 
Response Element) sequence motif. Transcript profiling revealed 
only a small set of around 15 genes, most containing ZDRE motifs 
in their upstream regions, to be induced in wild-type plants in 
response to zinc deficiency, but not in the bzip19bzip23 double 
mutants. These genes, which must be pivotal for the zinc deficiency 
adaptation response, comprise eight (out of 15) members of the 
ZIP family of cation transporters (Fig. 1). The exact role of these 
ZIP members in Arabidopsis zinc nutrition is largely unknown, but 
four of them (ZIP1, ZIP3, ZIP4 and IRT3) have been function-
ally characterized to mediate zinc uptake in yeast complementation 
studies.12,14,23 In addition to the ZIPs, the nicotianamine synthe-
tases NAS2 and NAS4 are differentially expressed. This means that 
all direct targets of bZIP19/bZIP23, the genes containing one or 
more ZDRE elements in their promoter,23 appear to be essential 
for the scavenging of zinc from the growth substrate and adequate 
distribution through the plant.

Recently, the analysis of transcriptional changes upon iron 
deficiency in Arabidopsis24 suggested that plants respond to avoid 
imbalances in ion distribution by inducing a suite of transporters 
that compensates for the surplus of undesired metals. This means 

Figure 1. Scheme representing the response to zinc starvation in Arabi-
dopsis mediated by the transcription factors bZIP19 and bZIP23.
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