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Plants exposed to stress pass the 
memory of exposure to stress to the 

progeny. Previously, we showed that the 
phenomenon of transgenerational mem-
ory of stress is of epigenetic nature and 
depends on the function of Dicer-like 
(DCL) 2 and DCL3 proteins. Here, we 
discuss a possible role of DNA meth-
ylation and function of small RNAs in 
establishing and maintaining transgener-
ational responses to stress. Our new data 
report that memory of stress is passed to 
the progeny predominantly through the 
female rather than male gamete. Possible 
evolutionary advantages of this mecha-
nism are also discussed.

Plants are sedentary organisms and thus 
can not respond to rapidly changing 
growth conditions by escaping to new 
environments as animals usually do. 
Moreover, since seed dispersal is rather 
limited in the vast majority of plants, 
the progeny is very likely to grow under 
the same environmental growth condi-
tions as its parents did. The memory of 
pre-existing growth conditions can be 
advantageous for plant survival. The envi-
ronmental experience of parents can be 
recorded in the form of induced epigen-
etic modifications that occur in somatic 
cell lineages. The very late, almost at the 
end of plant development, separation 
of germline cells from somatic tissues 
enables incorporation of acquired epigen-
etic changes in the gametes. Indeed, pre-
vious reports suggested that the progeny 
of exposed plants might have an advan-
tage while growing in the same environ-
ment as its parents.1-3 Despite a growing 
number of experimental evidences that 
support the existence of the phenomenon 
of memory of stress, the data on adaptive 
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changes in the progeny of stressed plants 
are scarce.

Parental exposure to stress may not 
only lead to adaptive effects in progeny 
but also introduce a certain degree of 
changes in genome stability.4-9 Our early 
report showed that the progeny of tobacco 
plants infected with tobacco mosaic virus 
had an increased meiotic recombination 
frequency.8 A more recent report demon-
strated that these progeny plants had a 
higher frequency of rearrangements at the 
loci carrying the homology to N-gene-like 
R-gene loci, allowing speculations about 
a possible role of these rearrangements in 
pathogen resistance evolution.9 Similarly, 
a study of Molinier et al. (2006) showed 
that the progeny of plants exposed to 
UVC or flagellin had an increased fre-
quency of somatic homologous recom-
bination events (HRF).4 The authors 
demonstrated that an increase in HRF 
triggered by a single exposure to UVC was 
maintained for five consecutive genera-
tions in the absence of stress. In contrast, 
our most recent reports demonstrated that 
maintaining an increase in HRF caused 
by ancestral exposure to heat, cold, flood, 
UVC or salt required exposure to stress in 
subsequent generations: if F1 plants were 
propagated for one more generation with-
out stress, the effect diminished and HRF 
returned back to the level observed in the 
progeny of untreated plants.6,7 This sce-
nario seems to be more probable from an 
evolutionary point of view. Within a given 
environmental niche, plants establish cer-
tain genetic and epigenetic traits needed 
to cope with the expected growth condi-
tions. Drastic environmental changes or 
new unusual stresses may trigger a cascade 
of gene expression changes in attempt 
to survive and adapt to new conditions. 
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plants were manually pollinated with pol-
len from non-stressed plants to obtain the 
progeny of maternally exposed plants, PS

m
. 

The analysis showed that somatic HRF 
was 2.21- and 1.89-fold higher in PS plants 
that were derived from plants exposed to 
UVC and salt stress as compared to PC 
plants. Interestingly, HRF in PS

m
 plants 

derived from plants exposed to both UVC 
and salt stress was substantially higher as 
compared to that in the respective PS

p
 

plants. HRF in PS
m
 plants obtained from 

plants exposed to UVC and salt was 1.52- 
and 1.54-fold higher than in PC plants. In 
contrast, PS

p
 plants obtained from plants 

exposed to UVC and salt showed HRF 
that was only 1.13–1.19-fold higher as 
compared to PC plants. Thus, transmis-
sion of stress memory through the female 
gametes is more efficient than through 
the male gametes. In such case, the male 
gametes will contribute genetic diversity 
to the progeny, whereas the female gam-
etes will contribute both genetic and epi-
genetic diversity. However, there are other 
factors that could also increase maternal 
contribution; they include larger maternal 
nuclear contributions to the endosperm 
and a maternal origin of sporophytic tis-
sues surrounding the female gametophyte 
and seed. The epigenetic state of the paren-
tal genome may also play a role in prog-
eny phenotype. A recent report has shown 
that differences in methylation in the 
female and male gametes have different 
effect on seeds of the progeny.13 Reciprocal 
crosses between met1, a mutant of DNA 
METHYLTRANSFERASE1 (MET1), 
a primary maintenance DNA methyl-
transferase and wild-type Arabidopsis 
plants caused parent-of-origin effects on 
F1 seed size.13 Large seeds were obtained 
if the maternal genome was hypomethyl-
ated, whereas small seeds were obtained if 
the paternal genome was hypomethylated. 
The same effects have been observed for 
ddm1, a mutant of DECREASE in DNA 
METHYLATION.

Deficiency of dcl2 and dcl3  
in Transgenerational Response  

to Stress Suggests the Role  
of siRNA in the Process

Small RNA-mediated regulation of 
gene expression plays a key role in a 

inherited smRNA can facilitate the incor-
poration of epigenetic changes that were 
recently acquired by mother into the 
embryo epigenome. Indeed, recent stud-
ies by Mosher et al. (2009) have provided 
strong evidence that a large number of 
PolIV-dependent smRNAs are maternally 
expressed and are already accumulated in 
plant gametophyte before fertilization.10 
Noteworthy, the presence of several classes 
of smRNA was also observed in male 
gametophyte and sperm cells,11,12 suggest-
ing that paternal transmission of stress 
memory is also possible. While memory 
of the maternal environmental experi-
ence (including nutrients availability, light 
intensity, shade positioning, etc.,) can be 
of minor importance to self-pollinating 
species, it will be of advantage to the prog-
eny of cross-pollinating species as seed dis-
persal is rather limited when compared to 
pollen.

To analyze the parental contribution 
towards stress-induced transgenerational 
changes, we exposed Arabidopsis plants to 
two different stresses, UVC and salt. Next, 
control and stressed plants were selfed to 
obtain the progeny of control (PC) and 
stressed (PS) plants. In parallel, emascu-
lated flowers of non-stressed control plants 
were pollinated manually with pollen 
obtained from stressed plants to generate 
the progeny of paternally exposed plants, 
PS

p.
 Also, emasculated flowers of stressed 

Some of these potentially advantageous 
changes are most probably recorded in the 
form of DNA methylation and chromatin 
modifications and are passed to progeny as 
memory of stress exposure.

It can be further hypothesized that if 
these new environmental conditions are 
no longer present during the lifespan of 
future generations, the newly established 
methylation patterns and chromatin orga-
nization will return to the original epigen-
etic landscape that was the most adequate 
fit for this environmental niche. If the 
same new stresses occur in consecutive 
generations, the newly established epigen-
etic changes will be maintained and pos-
sibly stabilized after many generations of 
exposure.

Maternal Gametes Contribute 
more Significantly to  

Transgenerational Changes

Transmission of transgenerational changes 
could be either maternal/paternal or bipa-
rental in origin. Since the female gamete 
contributes the majority of cytoplasm to 
a zygote, it is more likely that changes 
occurred in the maternal epigenome and 
consequently in transcriptome and metab-
olome will be passed to progeny. As the 
majority of DNA methylation is erased 
shortly after fertilization and thus needs to 
be re-established, the pool of maternally 

Figure 1. To be exposed to UVC, plants were grown on soil and at 14 days post germination 
were irradiated with 7,000 ergs UVC. Control plants were grown under normal conditions. To be 
exposed to salt stress, plants were germinated and grown on MS medium supplemented with 
25 mM NaCl. Control plants were grown on normal MS medium. At the age of three weeks plants 
were moved to soil. Control and stressed plants were selfed giving rise to PC and PS plants. 
Stressed plants were also used to cross-pollinate control plants in reciprocal manner giving rise to 
PSm and PSp plants. Five plants for each reciprocal cross were used. HRF was analyzed in the popu-
lation of 50–100 plants at three weeks post germination. Asterisks show the difference in HRF as 
compared to PC plants (one—p < 0.05; two—p < 0.01).
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between these smRNAs populations and 
changes in DNA methylation and chro-
matin structure at genomic loci relevant to 
stress response. Even though we were not 
able to show direct correlation between 
the level of DNA methylation at specific 
loci and the frequency of recombination 
at those loci, we believe that such corre-
lation should exist. Using deep sequenc-
ing technology, a more in-depth analysis 
should allow to study patterns of genome 
rearrangements and locus-specific DNA 
methylation. It would be important to 
establish a link between the presence 
of specific stress-induced siRNAs and 
changes in stability and DNA methylation 
at given genomic loci.
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stress response observed in our study. 
Since siRNAs are believed to be primar-
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ylation levels observed in the progeny of 
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It is possible that stress-generated siR-
NAs are transported to meristematic cells 
which later give rise to the germline. In 
fact, a recent report by Chitwood et al. 
(2009) supported the role of smRNAs 
as mobile signals during plant develop-
ment.23 Predominant transmission of 
memory of maternal stress reported here 
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large number of developmental, physi-
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