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Acyl hydrolases remodel biologi-
cal membranes and release signal-

ing molecules in response to a variety 
of biotic and abiotic stresses. After 
wounding or pathogen treatment 
lipases are necessary to release fatty 
acids as substrate for jasmonate biosyn-
thesis. In osmotic stressed tissue they 
maintain integrity and functionality 
of membranes and during senescence 
lipases destroy and recycle membranes. 
Recently the role of several acyl hydro-
lases including DEFECTIVE IN 
ANTHER DEHISCENCE1 (DAD1) 
and DAD1-like lipase, e.g., DONGLE 
(DGL) and the phospholipase A (PLA) 
PLA-Iγ1 in jasmonate biosynthesis 
after wounding were investigated and 
functional redundancy within this 
family has been stated. Here we report 
necessity of diverse DAD1-like lipases 
in response to salt and sorbitol treat-
ment. The lipase PLA-Iγ1 and PLA-Iβ2, 
which were both impaired in wound 
response, were also affected in response 
to osmotic stress in seed germination 
assays. Based on our observations and 
interpretations of transcription analy-
ses generated by AtGenExpress project 
we speculate about more general roles of 
the DAD1-like lipase in diverse biologi-
cal processes.

Introduction

Osmotic stress, caused by drought, freez-
ing or high salt affects integrity and func-
tionality of membranes. To survive and 
adapt to osmotic stress plants use a range 
of biochemical and developmental changes 
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including remodeling of lipid composition 
and activation of a variety of phospholipid-
based signaling pathways.1 Wounding and 
pathogen attack destroys membranes and 
free fatty acids were released. Unsaturated 
acids, namely linolenic acid derived from 
chloroplast membranes, act as precursor 
for bioactive oxylipins including Jasmonic 
acid (JA). JA is an important signaling 
compound that regulates developmental 
processes including root growth, pollen 
development, abscission and senescence. 
In addition, JA also mediates the response 
to wounding, pathogen attack and UV 
irradiation.2 All those processes include 
action of one or more galactolipases or 
phospholipases A (PLA) to generate lyso-
lipids and free fatty acids, which both have 
been reported to act as signaling molecules 
by themselves.3-5

Recently, we described different 
Arabidopsis mutant lines of PLA with 
respect to changes in oxylipin bio-
synthesis after wounding and treat-
ment with the avirulent Pseudomonas 
strain DC3000(avrRPM1). Using 
six single and one quadruple knock-
out mutants it was shown that the 
lipases PLA-Iα1 (DGL, At1g05800), 
PLA-Iβ1 (DAD1, At2g44810), PLA-Iβ2 
(At4g16820), PLA-Iγ1 (At1g06800), 
PLA-Iγ2 (At2g305509) and PLA-Iγ3 
(At1g51440) act in a functional redun-
dant manner for basal JA biosynthe-
sis as well as after wounding. And to 
make the picture more complex, still 
unidentified lipolytic proteins seem to 
be necessary in addition.6 After inocu-
lation of leaves with Pseudomonas 
strain DC3000(avrRPM1) only minor 
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differences in JA levels between pla-Iα1 
knock down mutant lines and wild type 
and no differences in bacterial growth 
between the mutant and wild type could 
be detected. Nevertheless, it was found 
that the development of infection symp-
toms and the production of reactive oxy-
gen species were significant retarded.

Results and Discussion

In addition to wounding and pathogen 
treatment, results of transcription analy-
ses generated using the microarray data 
from the AtGenExpress project7,8 (sum-
marized in Table 1, for more details please 
see www.weigelworld.org/resources/
microarray/AtGenExpress) suggested that 
transcription levels of DAD-1-like lipases 
change also after osmotic stress and dur-
ing senescence. The role of PLA-Iα2 in 
senescence was recently reported.9 To 
test necessity of the lipases PLA-Iα1 
(DGL), PLA-Iβ2, PLA-Iγ1, PLA-Iγ2 and 
PLA-Iγ3 in response to osmotic stress 
semiquantitative transcription analyses 
and germination studies of mutant lines 
were performed.

In contrast to the results of 
AtGenExpress, no rise in transcript level 
one or two hours after 150 mM sodium 
chloride (NaCl) treatment of two-week 

Figure 1. Germination rates of lipase mutant line seedlings germinated on nacl or Sorbitol 
supplemented media. Sterile seedlings were plated on ½-mS media supplemented with indicated 
amount of nacl or Sorbitol. Germination rates were determined on the third day after stratifica-
tion. data represent the mean of five biological replicates ± Sd.

Table 1. Summary of transcription analyses generated using the microarray data from the atGenexpress project

Abiotic stress
PLA-Iα1 

(At1g05800) 
261278_at

PLA-Iα2 
(At2g31690) 

263451_at

PLA-Iβ2 
(At4g16820) 

245447_at

PLA-Iγ1 
(At1g06800) 

260833_at

PLA-Iγ2 
(At2g30550) 

267496_at

PLA-Iγ3 
(At1g51440) 

260491_at

150 mm nacl
root ++ ++ ++ + + +

shoot ○ + + + + --

300 mm 
mannitol

root + + + + + +

shoot + - + ++ ++ -

Wounding 30 
min

root ○ + ○ ○ ○ ○

shoot ○ - ○ ○ ○ ○

Biotic stress

B. cinerea 48 hpi + + + + ++ -

Pst (dc3000) 24 hpi ++ ○ ○ ○ ++ -

Pst (avrRpm1) 24 hpi ++ + + + ++ -

P. infestans 24 hpi ○ - ++ ++ + -

Organ

senescent leaf + + ○ ○ ++ ○

flower stage 15 - ○ ○ ○ ++ ++

more than two-fold induction is indicated by ++, 0.5- to 2-fold induction by +, no significant changes with ○, 0.5- to 2-fold repression with - and more 
than two fold repression with --. For description of microarray experiments see: www.weigelworld.org/resources/microarray/atGenexpress.
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to wild type, when stressed by sorbitol. 
This shows not only a role for pla-ly1 in 
coping with osmotic stress but more with 
salt homeostasis. Additionally growth 
and development of all osmotic stressed 
seedlings from NaCl and Sorbitol supple-
mented media were monitored for two 
more weeks but without any significant 
phenotypic differences between mutant 
and wild-type lines.

Osmotic stress response includes a 
variety of signaling pathways.11 Next to 
nutritional disorder, water-deficient stress 
caused by Sorbitol and salt stimulates 
lipolytic and peroxidative activities and 
inhibits lipid biosynthesis.12,13 Increase 
of lipolytic activity and occurrence of 
lipid derived signals take part in signal 
transduction after wounding,14 pathogen 
treatment15,16 or during senescence,17 too. 
Since maintaining the structural integrity 
of membranes also includes mobilization 
of fatty acids additional experiments are 
necessary to ensure exclusive role in JA 
biosynthesis. Therefore, it would be note-
worthy to analyze the role of those five 
lipases using single and multiple knock 
out lines during senescence or infections 
with the pathogens listed in Table 1.

The results presented here together 
with those of Ellinger et al.6 show that 
different DAD1-like lipases are part of the 
various signaling pathway after wound-
ing, pathogen stress or osmotic stress. 
Namely, the lipase PLA-Iγ1, plays a role 
after wounding as wells as during salt 
stress, although its role is not understood 
and studied in detail.
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old seedlings could be detected when 
using semiquantitative reverse transcrip-
tion-PCR experiments. After treatment 
with 350 mM Sorbitol an induction in 
transcript levels could be confirmed for 
genes PLA-Iα1 (DGL), PLA-Iβ2, PLA-Iγ1 
and PLA-Iγ2 (data not shown). We used 
Sorbitol as osmolyt to avoid secondary 
effects due to toxicity of high Mannitol 
concentrations.10 For germination studies 
sterile seeds of the four knock out mutant 
lines pla-Iβ2, pla-Iγ1, pla-Iγ2 and pla-Iγ3 
and the knock down line pla-Iα1 8-1 
(for detailed description of mutant lines 
please see Ellinger et al.6) were transferred 
to 1/2-MS media supplemented either 
with different concentrations of NaCl or 
Sorbitol. Col-0 and also Nossens ecotype, 
background of the mutant line pla-Iγ1, 
serve as controls. Germination rates were 
determined three (Fig. 1) and five days 
(data not shown) after stratification.

On media supplemented with rising 
concentration of NaCl the germination 
rate of mutant line pla-Iγ1 was strongly 
reduced. Further tested lines germinated 
as their corresponding wild type. Three 
days after stratification germination 
rate for mutant line pla-Iγ1 decreases to 
less than 50% at 100 mM NaCl while 
both wild types Nos and Col-0 show 
still above 90% germination. On media 
supplemented with Sorbitol mutant lines 
pla-Iβ2 and pla-Iγ2 germinated even bet-
ter than wild type. At a concentration 
of 500 mM Sorbitol only 28% of Col-0 
but about 78% of mutant lines pla-Iβ2 
and pla-Iγ2 seeds germinated. At a con-
centration of 550 mM Sorbitol mutant 
line pla-Iβ2 had still a good germina-
tion rate of 70% when Col-0 was highly 
impaired (8% germination). In contrast 
to its different behavior under salt stress 
mutant line pla-Iγ1 displayed no changes 
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