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Abstract
Epigenetic modifications help orchestrate sweeping developmental, aging, and disease-causing
changes in phenotype by altering transcriptional activity in multiple genes spanning multiple
biologic pathways. Although previous epigenetic research has focused primarily on dividing cells,
particularly in cancer, recent studies have shown rapid, dynamic, and persistent epigenetic
modifications in neurons that have significant neuroendocrine, neurophysiologic, and
neurodegenerative consequences. Here, we provide a review of the major mechanisms for
epigenetic modification and how they are reportedly altered in aging and Alzheimer’s disease
(AD). Because of their reach across the genome, epigenetic mechanisms may provide a unique
integrative framework for the pathologic diversity and complexity of AD.
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1.0 Introduction
Alzheimer’s Disease (AD) is a progressive, irreversible neurodegenerative disorder
culminating in dementia. Its etiology and pathogenesis are complex, and encompass many
genetic and environmental risk factors, changes in the expression of thousands of genes, and
upregulation of multiple pathogenic pathways such as amyloid β peptide (Aβ) deposition,
tau hyperphosphorylation, inflammation, oxidative stress, energy metabolism, and aberrant
re-entry into the cell cycle/apoptosis. Moreover, with the exception of Aβ-inducing
mutations, none of these molecular and genetic factors appears to have absolute penetrance
in causing the disorder: many individuals may possess the most salient risk factors for AD,
as well as express profuse Aβ and tau pathology, yet never develop the disorder (Lue et al.,
1996). Indeed, even monozygotic twins can have dichotomous AD outcomes (Raiha et al.,
1997; Mastroeni et al., 2009)

The emerging field of epigenetics has its roots in studies of the structure of chromatin and
modifications to the structure of DNA, which extend back half a century or more
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(Felsenfeld, 2007). Although a unitary definition of epigenetics has yet to be reached, the
many definitions that have been suggested all invoke heritability, lack of dependence on
DNA sequence, and effects on transcription to produce diverse phenotypes. In particular,
epigenetic modifications are capable of altering transcriptional activity in a coherent manner
across thousands of genes and dozens of biological pathways, yet can do so differentially in
monozygotic twins, the same individual at different developmental stages, or adjacent cells
in the same organ, all of which share the same genetic code. Epigenetics also provides a
means by which environmental factors such as diet, hazardous exposures, and life events can
influence gene expression. As such, epigenetic mechanisms may provide a point of
intersection for the diverse risk factors and pathophysiologic processes of AD.

The purpose of this review is to briefly describe the major epigenetic mechanisms, histone
acetylation, DNA methylation, ribosomal DNA (rDNA), and microRNA (miRNA), and how
they are reportedly altered in aging and AD.

2.0 Epigenetic regulation of gene expression
Epigenetic mechanisms modify heritable and non-heritable traits without necessarily altering
the underlying DNA sequence. Thus, through epigenetic modification the diverse cellular
phenotypes and functions needed by the body can be achieved using a single genetic code
for all cells. These effects are typically accomplished by inhibition of transcriptional access
to various genes, leading to their repression or silencing. Conversely, release from normal
epigenetic repression can enhance gene expression (Wilson and Jones, 1983;
Bandyopadhyay and Medrano, 2003; Liu et al., 2003; Fraga and Esteller, 2007; Poulsen et
al., 2007). These modifications can occur at specific gene loci in specific cells to yield
specific cellular phenotypes, or can encompass many genes in many cells, an orchestrating
mechanism that is widely assumed to help drive such broad biological processes as
development and aging (Wilson and Jones, 1983; Bandyopadhyay and Medrano, 2003; Liu
et al., 2003; Fraga and Esteller, 2007; Poulsen et al., 2007).

Because phenotype and function are affected and effected by what genes are expressed and
what genes are repressed, epigenetically regulated and dysregulated transcription states can
give rise not only to different cell types and developmental stages, but also to favorable and
unfavorable outcomes for specific cells within the same organ system. Thus, changes in
epigenetic regulation can cause some cells to develop structural, physiologic, and metabolic
abnormalities, while other cells of the same type remain normal. This is thought to occur, for
example, in several hematologic malignancies after aberrant epigenetic silencing of genes
that control proliferation (Mund et al., 2006).

In addition to direct regulation of gene expression, epigenetic modifications can mimic,
exacerbate, or even cause genetic mutations. For example, epigenetic repression of tumor
suppressor genes can mimic loss-of-function mutations of tumor suppressor genes, and both
are highly associated with cancer development (Mund et al., 2006). Epigenetic silencing of
the alpha subunit of the stimulatory G protein, a signaling peptide essential for the actions of
parathyroid hormone, can cause pseudohypoparathyroidism, just as mutations to the alpha
subunit do (Bastepe, 2008). Epigenetic modifications can exacerbate the effects of gene
mutations, as occurs with Apc gene mutations in colorectal cancers (Colnot et al., 2004), E-
cadherin mutations in gastric cancers (Strathdee, 2002), and mitochondrial DNA mutations
in Leber’s disease (Johns and Neufeld, 1993). Beyond these interactions, epigenetic
repression of DNA repair genes may also induce gene mutations (Jacinto and Esteller,
2007).
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Finally, epigenetic mechanisms provide a means by which environmental events can be
translated to the cellular and molecular level. For example, ultraviolet ray exposure may
induce epigenetic modifications in skin cells that culminate in cutaneous malignancies
(Millington, 2008). Likewise, epigenetic changes induced by different environments, or
simply by stochastic events, are thought to underlie the subtle phenotypic differences that
emerge with time in monozygotic twins (Fraga et al., 2005; Flanagan et al., 2006).

2.1 Histone modifications
Epigenetic mechanisms typically involve changes in the micro- and macro-structure of
chromatin, a complex of DNA, chromosome proteins, and histone proteins in which the
histone proteins are tethered together in structures around which double-stranded DNA is
wound. Conformational changes in histone proteins or modifications of the way in which
DNA wraps around the histones may then differentially alter access of the transcriptional
machinery to some genes while leaving access to other genes intact (Allfrey, 1966).

Although there are multiple mechanisms by which histones are modified, including
methylation, phosphorylation, ubiquitination, sumoylation, citrullination, ADP-ribosylation,
and other post-translational modifications of the amino acids that make up histone proteins,
histone acetylation is one of the most ubiquitous and well studied. Here, histone
acetyltransferases (HATs) catalyze the transfer of an acetyl group from acetyl-coenzyme A
to lysine residues on the N-termini of histone proteins (Fig. 1). As a result of acetylation, the
positive charge of the histone proteins is neutralized, decreasing interactions of the histone
protein tails with negatively-charged phosphate groups of associated DNA. This
conformational relaxation of the chromatin permits access to and transcription of genes
within the complex. Conversely, the histone deacetylases (HDACs) transfer acetyl groups
from acetylated histone proteins back to coenzyme A, producing a more condensed
chromatin state and decreased or silenced gene transcription.

2.2 DNA Methylation
DNA methylation provides a further means for histone modification, and is highly
interactive with histone acetylation and the other histone-modifying mechanisms. For this
reason, DNA methylation can, to some extent, be taken as a surrogate for histone
modification profiles.

Beginning with seminal research in the late 1970s (Bird, 1978), it is now well established
that adjacent cytosine-guanine (CpGs) dinucleotides within DNA can be methylated by the
actions of the DNA methyltransferases, DNMT1, DNMT2, DNMT3a/b, and DNMT4. In
mammals, DNMT1 appears to be primarily involved in maintenance methylation of
hemimethylated DNA after DNA replication, whereas DNMT3a and DNMT3b are
particularly important for de novo DNA methylation. DNMT2 is typically considered to be
an RNA methyltransferase, although it also has 5-cytosine DNA methyltransferase activity
(Tang et al., 2003) and forms denaturant-resistant complexes with DNA (Dong et al., 2001).
The methyl group that is transferred to cytosine by the DNMTs ultimately derives from
methyltetrahydrofolate through its interactions with S-adenosylmethionine (SAM) in the
homocysteine-methionine cycle (Fig. 1).

Through these processes, approximately 70% of CpG dinucleotides within the human
genome are methylated. Although DNA methylation can take place at any CpG site, whether
in coding or non-coding regions, previous studies have often focused on CpG-rich stretches
(CpG islands) within the promoter region. Some 50,267 CpG islands exist in the human
genome, with 28,890 in simple repeat and low complexity sequences that are masked
(Bandyopadhyay and Medrano, 2003; Liu et al., 2003). Because CpG islands contain a high
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proportion of CpGs (and opportunities for CpG methylation), they are, perforce, among the
most highly methylated regions of the genome. However, it has recently been shown that the
percentage (rather than the absolute number) of methylated CpGs is relatively low in
conventional CpG islands, and is actually higher in promoters with intermediate CpG
densities (Eckhardt et al., 2006; Weber et al., 2007). Moreover, tissue-specific methylation
patterns appear to be most pronounced not at CpG islands but at “CpG shores”, regions
within approximately 2 kb of CpG-enriched sequences. It has been suggested, in fact, that
methylation patterns of CpG shores are “sufficiently conserved to completely discriminate
tissue types regardless of species of origin” (Irizarry et al., 2009). Differential methylation
of CpG shores in brain compared to liver has also been found to be highly correlated with
differences in gene expression for these two organs (Irizarry et al., 2009).

Methylation of CpG sequences may alter gene expression by inducing histone modifications
that inhibit access of the transcriptional machinery (Bird and Wolffe, 1999; Zhang et al.,
2002) (Fig. 1). One would expect, then, that highly methylated genes would be repressed,
and that hypomethylation of a gene would lead to enhanced expression or overexpression
compared to the normally repressed, methylated state. Some notable exceptions to these
expected states have been found, however. For example, the p16INK4a promoter is
progressively hypermethylated with age (So et al., 2006), but expression of the p16INK4a
gene appears to increase with age (Kim and Sharpless, 2006). More generally, Gius and
colleagues (2004) found that chemical hypomethylation of nearly half the genes they
surveyed resulted in silencing rather than upregulation. Indeed, altering the methylation
status of some CpG sites within a gene can be inconsequential compared to alterations at
other sites (c.f., Murgatroyd et al., 2009; Yakovlev et al., 2009). Such findings indicate that
it will be important to follow up genome-wide DNA methylation profiling, which can only
survey a limited number of CpGs per gene, with more detailed DNA methylation maps that
include shores and flanking regions. In addition, even highly-detailed DNA methylation
profiles will require validation of functional effects at the gene expression and protein
levels.

A second, linked mechanism by which DNA methylation may modify gene expression is
through methyl-CpG-binding proteins (MeCPs) such as MeCP2. When bound to methylated
DNA, MeCP2 has been shown to recruit HDACs, which, as noted earlier, may then induce a
more condensed chromatin state and decreased or silenced gene transcription (Jones et al.,
1998; Wade et al., 1998). Although previous studies assumed that MeCP2 required a
methylated chromatin substrate for direct binding (Lewis et al., 1992), more recent research
has demonstrated that MeCP2 can directly condense chromatin even in the absence of DNA
methylation, histone deacetylase activity, or the cooperation of other transcriptional co-
repressors such as mSin3A (Wade, 2001). Mutations of the MeCP2 gene cause Rett’s
Syndrome, with dysregulation of neural development, mental retardation, and motor
dysfunction (Amir et al., 1999).

MeCP1, a macromolecule made up of some 10 different peptides, may also act as a mediator
between DNA methylation and histone acetylation, recognizing and binding to CpG
dinucleotides, recruiting HDACs, and inducing transcriptional repression (Feng and Zhang,
2001). Unlike MeCP2, however, MeCP1 does not bind directly to methylated DNA, but to a
single methyl-CpG-binding domain protein, MBD2. In addition to inducing histone
modifications, MBD2-bound MeCP1 helps maintain the DNA methylation status of CpGs
by recruiting DNMT1. DNMT1 is then able to recognize and repair CpGs that have lost
methyl groups on one DNA strand but not the other.

Recent studies have also revealed a further modification to methylated CpGs that may make
them even more inaccessible to transcription. Here, the 5-methylcytosines are hydroxylated
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(oxidized) to form 5-hydroxymethylcytosine (Valinluck and Sowers, 2007; Kriaucionis and
Heintz, 2009; Tahiliani et al., 2009). Hydroxymethylated DNA has been observed in
neurons (Kriaucionis and Heintz, 2009), and may occur as a result of oxidative damage and/
or the actions of specific oxidative enzymes, particularly TET1 (Tahiliani et al., 2009).
Normally, 5-hydroxymethylcytosines are stripped from genomic DNA by glycosylases of
the base excision repair (BER) system (Steen et al., 2008), permitting replacement with
unmodified cytosines for subsequent de novo DNA methylation by the DNMTs. When left
intact, however, 5-hydroxymethylcytosines reportedly reduce the interaction of DNA with
DNA-binding proteins to an even greater extent than do 5-methylcytosines (Valinluck et al.,
2004; Valinluck and Sowers, 2007). Because hydroxymethylated CpGs may go undetected
by 5-methylcytosine antibodies, hydroxymethylation could lead to under-reporting of DNA
methylation, a possibility that the present authors are now investigating. Conversely,
bisulphite sequencing may not discriminate normally-methylated from hydroxymethylated
CpGs.

2.3 RNA-related mechanisms
Epigenetic regulation also extends to mechanisms involving RNA such as micro-RNAs
(miRNAs) and hereditable and cell cycle-maintained silencing of a portion of the ribosomal
RNA genes. rRNA transcripts from repeated rRNA genes (rDNA) provide a structure and
primary catalytic site for the eukaryotic ribosome, wherein gene expression culminates in
protein synthesis. Different cell types exhibit different proportions of active rRNA genes,
suggesting that the fraction of rRNA gene copies may be altered in development and
differentiation. Epigenetic mechanisms are now known to play important roles in this
process by silencing rRNAs, thereby providing a dynamic balance between active and
inactive rRNAs. DNA methylation appears to be one of these epigenetic mechanisms, and
may be of particular importance given the unusually high frequency of CpG dinucleotides
within the rRNA genes and their unusually high states of DNA methylation. For example,
two studies have shown a correlation between DNA methylation status and activity of rRNA
genes (Bird et al., 1981; Santoro & Grummt, 2001), and treatment with 5-aza-2-
deoxycytidine (azacytidine), a hypomethylating agent, enhances expression by rDNA genes
(Santoro & Grummt, 2001). For an excellent and comprehensive summary of rDNA
methylation, as well as histone modifications and chromatin remodeling, which also play
key roles in epigenetic regulation of rDNA, the reader is referred to the recent review of
McStay and Grummt (2008).

The study of miRNAs represents an additional, critical area for epigenetics research. Often
deriving from their own genes with their own promoter and regulatory elements,
approximately 700–800 miRNAs have been identified in the human genome. These small
(~22 nucleotide) RNAs regulate gene expression in a post-transcriptional manner by binding
to their target mRNAs, inhibiting translation or, less often, inducing cleavage of the mRNAs
(reviewed in Yang, 2007).

3.0 Dynamic epigenetic regulation in adult neurons
3.1 Histone modifications

Histone modifications have been implicated in broad neurobiological processes such as
development of the CNS (reviewed in MacDonald and Roskams, 2009), post-traumatic
stress disorders (Sokolova et al., 2006), childhood abuse/suicide (Meaney et al., 2007;
McGowan et al., 2009), memory formation (Gupta et al., 2010), and addiction (Impey,
2007); specific physiologic processes such as neuronal differentiation (Kular et al., 2009),
regulation of choline acetyltransferase activity (Aizawa and Yamamuro, 2010), astrocyte
GDNF and BDNF transcription (Wu et al., 2008), microglial apoptosis (Chen et al., 2007),
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and axon pathfinding (Zinovyeva et al., 2006); and various neurologic disorders, including
Parkinson’s disease (Chen et al., 2007; Wu et al., 2008), motor neuron disease (reviewed in
Echaniz-Laguna et al., 2008), multiple sclerosis (reviewed in Gray and Dangond, 2006), X-
linked mental retardation (Tahiliani et al., 2007), and stroke/cerebral palsy (Meisel et al.,
2006). All of these histone-related processes occur in the context of the CNS, and many
have been reported to function as dynamic regulatory mechanisms in postmitotic neurons.

3.2 miRNA
Like histone modifications, miRNA has been implicated in both broad and specific CNS
processes and disorders. For example, miRNA-206 appears to promote neuromuscular
synapse regeneration (Williams et al., 2009), and miR-329, miRNA-134 and miRNA-381,
which are induced by neuronal activity, have been suggested to be essential for activity-
dependent dendritic outgrowth of hippocampal neurons (Khudayberdiev, Fiore, and Schratt,
2009). In turn, these and other miRNA-mediated mechanisms have been investigated in
various CNS disorders, including HIV-dementia (Witwer et al., 2010), amyotrophic lateral
sclerosis (Williams et al., 2009), Tourette’s syndrome (Abelson et al., 2005), AD (see
section 5.2, below), and other neurologic conditions (reviewed in Maes et al., 2009).

Once again, these epigenetic processes have been demonstrated to occur in the context of
postmitotic neurons. Indeed, it has been reported that the switch from a replicative state to
the postmitotic state of neurons may itself be controlled by miRNA mechanisms (Yoo et al.,
2009).

3.3 DNA methylation
Previously, DNA methylation reactions were considered primarily in the context of
maintenance of the DNA methylation pattern across cell divisions. Why neurons and other
postmitotic cells should express DNA methylation markers such as DNMT1 was therefore
unclear. Likewise, how long-term DNA methylation alterations might be accomplished and
sustained in postmitotic cells was unknown. Recently, however, new studies have shown
that hypo- and hypermethylation are dynamic events that can occur within cells
(Kangaspeska et al., 2008; Metivier et al., 2008), including postmitotic neurons (Levenson et
al., 2006; Murgatroyd et al., 2009), on the scale of tens of minutes. These findings open the
door for long-suspected, dynamic epigenetic mechanisms that may help mediate neuronal
and synaptic plasticity (e.g., (Arendt, 2005). For example, gene-specific hypomethylation of
hippocampal neurons after DNMT inhibition blocks long-term potentiation (Levenson et al.,
2006) and fear conditioning (Miller and Sweatt, 2007). Weaver and co-workers (2005) have
suggested that early life events—specifically, maternal care—alter adult stress responses
through sustained DNA methylation changes in rat hippocampal neurons.

The role of DNA methylation in dynamic regulation of neuronal activity and function began
to emerge with studies by Bredy and colleagues (2003), and has been vividly confirmed by
recent work linking early-life stress to enduring molecular, physiologic, memory, and
behavioral changes in mice via epigenetic modifications to hypothalamic neurons
(Murgatroyd et al., 2009). In particular, early exposure of mice to stress during the first 10
days of life has been found, as much as a year later, to be associated with impaired step-
down avoidance learning, sustained hyperactivity of the hypothalamic-pituitary-adrenal axis,
and corticosterone and pituitary adrenocorticotropin pro-hormone hypersecretion. These
effects, in turn, were elegantly traced to persistent arginine vasopressin (AVP)
overexpression by parvocellular neurons of the hypothalamic paraventricular nucleus, and to
hypomethylation of specific CpG sites within the AVP gene. Notably, age-dependent
increases in AVP gene hypomethylation at multiple CpG sites were observed in control mice
in these studies, but hypomethylation of CpGs within a CpG island (CGI3) in the AVP

Mastroeni et al. Page 6

Neurobiol Aging. Author manuscript; available in PMC 2012 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



enhancer region approximately 0.5 kb downstream from the AVP gene itself appeared to be
the primary determinant of AVP overexpression in early-life stress mice. Further
experiments went on to show that CGI3 hypomethylation was specific to the paraventricular
nucleus compared to the supraoptic nucleus, and to provide a key mechanism for the
epigenetic modifications that were observed: CGI3 CpG sequences serve as preferential and
selective DNA-binding sites for MeCP2. Phosphorylation of MeCP2 by calmodulin-
dependent protein kinase II as a result of neuronal membrane depolarization decreases
MeCP2 occupancy of CGI3 CpGs, thereby enhancing transcription (Murgatroyd et al.,
2009). This landmark study therefore shows that dynamic and long-lasting DNA
methylation changes can and do occur in postmitotic neurons.

Similarly, Yakovlev et al. (2010) have traced age-dependent downregulation of caspase-3
production in rat brain to significantly lower levels of histone 3 acetylated Lys14 and
histone 4 acetylated Lys5, 8, 12, and 16, as well as to differential methylation of specific
CpG sites within the caspase-3 promoter. These sites are in a region that is essential for
caspase-3 promoter activity, and correspond to predicted binding sites for several
transcription factors such as Ets-1 and Ets-2 that are known to help control caspase-3
synthesis and to play critical roles in neuronal differentiation, development, and death.
Notably, Ets-1 and Ets-2 themselves did not show age-related decline in the study,
highlighting the potential importance of interactions between DNA methylation
modifications and transcription factor activity. That is, transcriptional control of a gene by
its transcription factors may be significantly altered by differential methylation of the
binding sites for those transcription factors.

New research has also shown that, in addition to their roles in DNA methylation, MBD2 and
DNMT3a/b may participate in dynamic demethylation processes. It has been reported, for
example, that transient co-expression of MBD2 and methylated promoters results in
demethylation and activation of gene expression, whereas knockdown of MBD2 inhibits
replication-independent, active demethylation by valproate (reviewed in Szyf, 2009).
Cyclical methylation/demethylation processes that mediate bouts of active and inactive
transcription over periods of tens of minutes have also been demonstrated, and appear to
help regulate the expression of multiple genes (Metivier et al., 2008; Kangaspeska et al.,
2008). Here, DNMT3a/b, in concert with p68, bind and deaminate selective CpG sites,
creating mismatches that are recognized by TDG and repaired by the BER. Because the
repaired CpGs are no longer methylated, the local chromatin environment becomes poised
for transcription. Following transcription, MBDs, MeCP2, and DNMTs are recruited and
remethylate the CpG sites. Transcription is therefore turned off or retarded. The cycle may
then begin again with DNMT3-mediated CpG deamination (Metivier et al., 2008). Although
these dynamic MBD and DNMT demethylating mechanisms have, as yet, been examined
only in non-CNS cells, there is no obvious reason why they should not occur in neurons.
Similarly, a recent study has suggested that histone acetylation and deacetylation, like DNA
methylation and demethylation, are dynamic, rapid-turnover processes that can poise genes
for transcription in peripheral cells (Clayton et al., 2006). As such, all these mechanisms
may warrant significant attention in future neuroepigenetics research.

4.0 Epigenetic regulation of aging
Aging is universally considered to be one of the most salient risk factors for AD, with
increasing risk for the disorder cumulating until at least the ninth decade of life (Gao et al.,
1998; Kukull et al., 2002). Why aging should be a risk factor for AD (and other age-related
disorders), however, is not well understood, particularly at a mechanistic level. Potentially
deleterious changes in mitochondria/oxidative stress (Crouch et al., 2007), gonadotropins
(Fuller et al., 2007), calcium (Thibault et al., 2007), glucocorticoids (Landfield et al., 2007),
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inflammation (Duenas-Gonzalez et al., 2008), trace metals (Brewer, 2007), insulin (Craft,
2005), cerebrovascular supply (Bailey et al., 2004), the cell cycle (Macaluso et al., 2005),
Aβ (Selkoe, 2003), tau (Maeda et al., 2006), and hundreds to thousands of genes
(Parachikova et al., 2007; Berchtold et al., 2008) occur both in aging and AD, but a coherent
explanation for why they occur and if their co-occurrence in aging and AD is coincidence or
meaningful remains elusive.

DNA methylation and histone modifications have been widely implicated in the phenotypic
alterations that occur during cellular senescence and the aging of various organisms
(reviewed in Wilson and Jones, 1983; Bandyopadhyay and Medrano, 2003; Liu et al., 2003;
Fraga and Esteller, 2007; Poulsen et al., 2007), and may provide a link between aging and
AD. Histone acetylation mechanisms, particularly those involving the Sir2 family of histone
deacetylases, have been linked to aging and senescence in yeast and invertebrates (reviewed
in Bandyopadhyay and Medrano, 2003), but have yet to be investigated in mammals. By
contrast, many studies have reported a genome-wide tendency to DNA hypomethylation
with age in multiple vertebrate organs, including brain, liver, small intestine mucosa, heart,
and spleen; multiple cell types, including fibroblasts and T lymphocytes; and multiple
vertebrate species, including aging salmon, mice, rats, cows, and humans (Vanyushin et al.,
1970; Vanyushin et al., 1973; Romanov and Vaniushin, 1980; Wilson et al., 1987; Golbus et
al., 1990; Richardson, 2002). Yu and colleagues (2006) assayed human peripheral blood
mononuclear cell DNA for the percentage of methylated to total cytosines and observed a
3% per decade decrease from the first to the tenth decade of life. In vitro, hypomethylation
of human and mouse fibroblasts cultured to senescence has also been observed (Wilson and
Jones, 1983). Likewise, progressive age-related decline in total genomic methylcytosine has
been reported in various organisms (Mays-Hoopes, 1989). Because DNMT1, which is
responsible for maintaining DNA methylation of CpG sites, is also progressively lost with
age (Lopatina et al., 2002), it has been speculated that progressive, age-related, genome-
wide hypomethylation may be due to parallel DNMT1 deficits (Liu et al., 2003), and that the
process overall may serve as a counting mechanism that triggers cellular senescence
(Neumeister et al., 2002). Age-dependent increases in S-adenosyl-homocysteine (SAH)
relative to SAM (Gharib et al., 1982; Varela-Moreiras et al., 1994) might also play a role,
since SAH inhibits methylation reactions, including DNA methylation. In turn, overall
decline in genomic methylation with age has been linked to specific age-related pathogenic
processes such as aberrant cell cycle events (e.g., p-53-dependent apoptosis) (Jackson-
Grusby et al., 2001) and the increased inflammatory tone that occurs with advancing age
(Wilson, 2008).

Hypomethylation of non-coding regions and other sites also occurs with age and has been
suggested to be relevant to the aging process. For example, repetitive sequences (Romanov
and Vanyushin, 1981; Mays-Hoopes et al., 1986; Rath and Kanungo, 1989),
retrotransposons (Barbot et al., 2002), and endogenous retroviruses (Ono et al., 1989) that
are normally repressed by DNA methylation can become hypomethylated with age,
potentially promoting chromosome translocations, retrotransposon activation, and retrovirus
emergence, respectively (reviewed in Richardson, 2002).

Age-dependent hypomethylation of a number of specific genes related to AD has been
reported. For example, methylation of cytosines in the APP promoter, particularly GC-rich
elements from approximately −270 to −182, is significantly lower in autopsy cases 70 years
old compared to cases <70 years old (Tohgi et al., 1999a). DNA methylation within the tau
promoter reportedly declines overall with age, but with interesting variations at different
transcription factor binding sites: binding sites for GCF, which represses GC-rich promoters,
become hypomethylated with age, whereas binding sites for Sp1, a transcriptional activator,
become hypermethylated. These changes might therefore represent a double hit on tau gene
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transcriptional activity, causing decreased activity overall with age (Tohgi et al., 1999c).
Promoter methylation of the receptor for advanced glycation end products (RAGE) gene
exhibits similar complexity. Overall methylation of the promoter declines with age, but the
change is manifest at cytosine residues other than CpG dinucleotides: CpC, CpA, and CTG
sequences within AP2 and SP1 binding sites show significant hypomethylation with age
(Tohgi et al., 1999b). Expression of the immune/inflammatory antigen CD11a increases
with age (Pallis et al., 1993), an effect that appears to be linked to an age-related
hypomethylation of flanking repeats some 1 kb 5′ to the CD11a promoter start site (Zhang et
al., 2002).

Despite the trend to genome-wide and gene-specific DNA methylation with age, it should be
emphasized that the trend is no more than that, as many genes exhibit age-related decreases
in expression rather than the upregulation that is predicted by hypomethylation or histone
acetylation. CpG islands on several specific genes undergo age-dependent hypermethylation
(e.g., estrogen receptors, insulin-like growth factor 2) (Issa et al., 1994, 1996). Tumor
suppressor genes appear particularly apt to show increasing methylation with age, providing
a potential link to age-related cancers (Romanov and Vaniushin, 1980; Mays-Hoopes, 1989;
Issa et al., 1994; Issa and Baylin, 1996; Neumeister et al., 2002; Richardson, 2002; Liu et
al., 2003; Kim and Sharpless, 2006; So et al., 2006; Fraga and Esteller, 2007; Jacinto and
Esteller, 2007). Many of these hypermethylation events could be due to age-related
increases in DNMT3a/b expression (Lopatina et al., 2002; Liu et al., 2003), as these
methyltransferases are responsible for de novo methylation of DNA. Alternatively, they
have also been linked to demethylation processes (Metivier et al., 2008; Kangaspeska et al.,
2008).

Further adding to the complexity of aging changes in DNA methylation, tissue-specific
patterns should also be noted. For example, the tumor suppressor gene c-fos exhibits
increasing CpG methylation with age in liver, but not brain or spleen (Ono et al., 1989). In
brain, methylation profiles may differ substantially from one region to another (Ladd-Acosta
et al., 2007) and even from one subregion to another (e.g., hippocampal dentate gyrus and
CA fields) (Brown et al., 2008), underscoring the value of brain regional comparisons in
epigenetic studies of aging and AD.

In addition to aging, epigenetics plays a major role in development (reviewed in Reik and
Dean, 2001). These mechanisms could be relevant to AD since overt clinical symptoms of
the disorder virtually never appear until after the developmental stages of infancy,
childhood, and early adolescence have been completed, and this is true not simply in late-
onset patients but in patients carrying APP, PS1, or PS2 mutations. Thus, epigenetic changes
earlier in life might be a necessary but not sufficient step toward AD in susceptible
individuals, a key concept in the “LEARn” (latent early-life associated regulation) model of
age-related neurologic disorders (Lahiri et al., 2007; Wu et al., 2008b). Support for this
hypothesis comes from APP transgenic mouse research wherein earlier epigenetic
manipulations appear to accelerate or delay the expression of Aβ pathology (Fuso et al.,
2008). Likewise, early exposure of monkeys to Pb reportedly decreases DNMT activity,
increases APP, BACE, and SP1 expression, and alters levels and distribution of Aβ in the
animals in late life (Wu et al., 2008a).

5.0 Epigenetic alterations in AD
5.1 Histone modifications

Several reports have demonstrated alterations in histone proteins in AD. Phosphorylation of
histone 3, a key step in the activation of the mitotic machinery, is increased to a
hyperphosphorylated state in AD hippocampal neurons (Ogawa et al., 2003). A non-nuclear
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form of histone 1 appears to be upregulated in astrocytes and neurons in brain regions that
are rich in AD pathology (Bolton et al., 1999). Linker Histone H1, a vital component of
chromatin, has been reported to preferentially bind Aβ-42, as well as Aβ–like structures of
numerous proteins (Duce et al., 2006). In addition, the H1 molecule has been shown to be a
major target for poly (ADP-ribosyl)ation in areas of AD brain with ischemic brain injury
(Love et al., 1999).

Manipulation of histone tail acetylation with HDAC inhibitors has been investigated in
several animal models of AD. For example, it has been reported that after fear conditioning
training in APP/PS1 mice, levels of hippocampal acetylated histone 4 (H4) were about 50%
lower than in wild-type littermates. Treatment with the HDAC inhibitor Trichostatin A
increased the levels of acetylated H4 and contextual freezing performance to wild-type
values (Francis et al., 2009). Treatment with HDAC inhibitors has also been shown to
induce sprouting of dendrites, increase the number of synapses, and reinstate learning
behavior and access to long-term memories in CK-p25 transgenics (Fischer et al., 2007). In
addition, valproic acid, which has HDAC1 inhibitor activity, has been shown to decrease Aβ
production and reduce plaque burden in the brains of PDAPP(APP(V717F)) transgenic mice
(Su et al., 2004). Similarly, in the Tg2576 mouse model of AD, a daily dose of
phenylbutyrate, another HDAC inhibitor, reversed spatial memory loss and normalized
levels of phosphorylated tau in the hippocampus, but failed to alter Aβ levels (Ricobaraza et
al., 2009). Conversely, in a cortical neuron culture model, overexpression of APP resulted in
a decrease in histone 3 and histone 4 acetylation, as well as a decrease in CREB-binding
protein levels (Lonze and Ginty, 2002; Rouaux et al., 2003).

In summary, although it appears that histone modifications occur in AD, AD animal models,
and AD culture models, the pattern of changes is complex and could entail both histone
acetylation increases and decreases at specific loci that function disjointedly or in concert.

5.2 miRNAs
Global analyses of AD versus normal elderly control brains have revealed changes in the
levels of several specific miRNAs that were concordant across two separate studies (Hebert
et al., 2008; Nunez-Iglesias et al., 2010). Notably, however, both positive and negative
relationships between levels of the miRNAs and levels of their targets were observed,
suggesting the operation of upstream factors (Tsang, Zhu, and van Oudenaarden, 2007). A
third study has provided the additional caveat that significant AD changes in many miRNAs
may be common to both pathologically-vulnerable and pathologically-spared brain regions.
Other miRNAs, however, were specific both to AD and to areas of extensive AD pathology,
and their targets had resonance with mainstream AD pathologic pathways (Cogswell et al.,
2008).

In vitro experiments with HeLa, COS1, and HEK293 cells have shown that luciferase
expression controlled by the APP 3′UTR can be regulated by miR-20a, miR-17-5p, and
miR-106b miRNAs. Transient transfection of these miRNAs downregulated APP—
expression in the case of miR-20a by inhibiting translation rather than by degradation of
APP mRNA. Conversely, blocking expression of miR-20a increased endogenous APP levels
by some 50%. Subsequent developmental studies of mouse brain revealed dramatic
reductions in all three miRNAs that were significantly correlated with increased APP protein
expression. The fact that APP mRNA levels remained stable under these conditions again
suggested that the miRNAs have their effects on APP by inhibiting translation rather than
promoting cleavage of APP mRNA. Finally, human pathology studies have shown that
miR-106b is significantly decreased in AD cortex. Although all these findings indicate that
APP may be targeted by miRNA mechanisms, levels of miR-20a, miR-17-5p, and miR-106b
in AD cortex do not appear to correlate with levels of APP protein (Hebert et al., 2009).
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Two studies have used computational analysis methods to reveal miRNA target sites in
BACE mRNA that may be functionally relevant to AD pathogenesis. Wang and colleagues
(2008) found multiple target sites for miR-107 in the 3′-untranslated region of BACE, and
went on to show significant decreases in miR-107 that were apparent even in early AD
cases, particularly in the large pyramidal cell cortical layers that may be especially
vulnerable to AD pathology (Rogers and Morrison, 1985). Moreover, when assayed in the
same cases BACE mRNA expression appeared to be negatively associated with miRNA-107
levels (Wang et al., 2008). An additional miRNA, miR-29a/b-1, also appears to target
BACE mRNA and, like miR-107, is decreased in AD and inversely correlated with BACE
in this case, BACE protein levels (Hebert et al., 2008).

5.3 DNA methylation
5.3.1 Genome-wide and multi-gene studies—Although an early analysis reported no
significant difference in percent CCGG methylation of DNA in AD cortex, a number of
caveats were given (Schwob et al., 1990), particularly the fact that CCGG methylation only
covers approximately 20–30% of CpG sites in the genome. Methylation status of 12 specific
genes that have been implicated in AD pathology has also been reported to exhibit
significant “epigenetic drift”, although the manner in which the data were analyzed makes it
difficult to determine whether methylation was increased or decreased in AD. The study did
note, however, that an age-specific epigenetic drift was observed in some of the CpG sites
within the DNMT1 promoter (Wang et al., 2008).

From a genome-wide perspective, our laboratory has reported decreased immunoreactivity
for some seven different markers of DNA methylation in AD compared to matched, non-
demented elderly control (ND) cortical neurons and glia (Figs. 2, 3), whereas no such
changes were observed in cerebellum, a brain region that is relatively spared in AD
(Mastroeni et al., 2008). Highly similar results were subsequently obtained in a set of
monozygotic twins discordant for AD (Mastroeni et al., 2009) (Fig. 4A), as well as in APP-
overexpressing transgenic mice (Fig. 4B).

As previously noted, folate/methionine/homocysteine metabolism is critically linked to
DNA methylation mechanisms. Folate deficiency in humans and in animal models, for
example, typically results in global hypomethylation that is at least partially reversible with
folate supplementation (reviewed in Choi and Mason, 2002; Choi and Friso, 2005; Fuso et
al., 2005, 2008). Deficits in folate and alterations in the methionine/homocysteine cycle
have been reported in aging and AD (reviewed in Smith, 2008), and may therefore provide a
basis for the tendency to genome-wide hypomethylation summarized earlier in this review.
Although one prospective study failed to find an association between dietary folate, vitamin
B12, or vitamin B6 with incident AD (Morris et al., 2006), CSF folate has nonetheless been
reported to be significantly decreased in AD (Serot et al., 2001), as has CSF and brain SAM
and one of its synthesizing enzymes, methionine S-adenosyltransferase (Bottiglieri et al.,
1990; Morrison et al., 1996). Increases in brain SAH (Kennedy et al., 2004) and plasma
homocysteine (Clarke et al., 1998; Smith et al., 2008), which inhibit DNA methylation, have
also been observed. Elevated plasma homocysteine has been reported to be a significant risk
factor for AD in dementia-free cohorts of both the Framingham Study of Aging (Seshadri et
al., 2002) and the Conselice Study of Brain Aging (Ravaglia et al., 2005). In fact, dietary
effects of folate and homocysteine manipulation have been implicated in cognitive
impairment generally, and in a wide range of neurologic conditions, including AD,
Parkinson’s disease, depression, cortico-basal degeneration, multiple sclerosis, and fronto-
temporal dementia (Obeid et al., 2007).
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5.3.2 Aβ-related genes—Epigenetic influences on Aβ-producing mutations have long
been suspected based on the heterogeneity of clinical presentation by patients who share
mutations in the same APP, BACE, or PS1 genes—sometimes in identical promoter sites
(Larner and Doran, 2006). Consistent with this notion, the APP (Davidson et al., 1992; West
et al., 1995; Mani & Thakur, 2006), BACE, and PS1 (Fuso et al., 2005) genes all contain
manipulable, methylated CpG sites. A case study has reported complete demethylation of
the APP gene in an AD postmortem cortical sample, but not in similar samples from a
normal control or Pick’s disease patient (West et al., 1995). In vitro, expression of the
BACE and PS1 genes is enhanced after folate deprivation-induced hypomethylation, and
restored to normal when folate deprivation is accompanied by SAM supplementation.
Expression of TACE, ADAM10, and APP was unaffected by these manipulations (Fuso et
al., 2005). In vivo, exposure of APP-overexpressing transgenic mice to a folate/B12/B6-
deficient diet is associated with enhanced SAH relative to SAM, PS1 and BACE
upregulation, enhanced Aβ deposition, and an accelerated appearance of intraneuronal Aβ
and cognitive deficits (although the latter was quite modest) (Fuso et al., 2008).

Finally, it has been demonstrated that Aβ itself may induce genome-wide hypomethylation
in murine cerebral endothelial cell cultures while, at the same time, causing specific
hypermethylation and repression of the gene for neprilysin, an Aβ degrading enzyme (Chen
et al., 2009). Our laboratory has replicated the global hypomethylating effects of Aβ in
human SK-N-BE2 neuroblastoma cells, and extended the results to show hypomethylation
(as well as several instances of hypermethylation) of specific CpG islands in the BACE (Fig.
5) and caspase-3 genes (Grover et al., unpublished). Together with hypermethylation of
neprilysin, these effects suggest the potential for a vicious cycle in which Aβ-induced
methylation changes feed back to enhance Aβ production, further methylation changes, and
further Aβ production. Moreover, if the overall trend to hypomethylation after Aβ exposure
were to functionally impact other key AD genes, additional synergisms might occur. For
example, TNF-α (Wilson, 2008) and caspase-3 are upregulated when hypomethylated
(Muerkoster et al., 2008), and increased levels of TNF-α (Janelsins et al., 2008; McAlpine et
al., 2009; Sommer et al., 2009) and caspases (Xie et al., 2008; Xiong et al., 2008) enhance
Aβ expression, potentially generating new vicious cycles.

5.3.3 Tau—Methylation mechanisms with respect to tau and neurofibrillary tangle
formation have also been explored. As previously noted, in normal adults the AP2 binding
site of the tau promoter is not methylated, but the SP1 and GCF binding sites are. SP1, a
transcriptional activator site, is increasingly methylated and GCF, a promoter repressor site,
is increasingly demethylated with age, suggesting an overall downregulation of tau gene
expression (Tohgi et al., 1999c). Although a corresponding age-related decrease in normal
tau protein, particularly in frontal cortex and hippocampus, has been reported, there was no
correlation with the modest neurofibrillary tangle pathology in the same subjects
(Mukaetova-Ladinska et al., 1996).

Tau phosphorylation mechanisms are, however, subject to cytoplasmic methylation
reactions, and have been the subject of several recent reports. Our studies, for example,
revealed co-localized immunoreactivity for the methyl binding complex component p66α (as
well as HDAC1) with PHF1-positive neurofibrillary tangles (Mastroeni et al., 2008). PP2A
is an enzyme that can dephosphorylate phosphorylated tau, an action that may be potently
activated by methylation of the PP2A catalytic subunit at its L309 site. In N2a cultures
carrying the APP Swedish mutation (APPswe) and in APPswe/PS1 transgenic mice, levels
of demethylated PP2A at L309 were significantly increased, corresponding with increases in
tau phosphorylation at the Tau-1 and PHF-1 sites. Treatment with Aβ25–35 led to
demethylation and enhanced tau phosphorylation (Zhou et al., 2008). Like treatment with
Aβ25–35, exposure of rodent primary neuron cultures to methotrexate, a folate antagonist,
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also has been reported to result in demethylation of PP2A, with attendant enhancement of
tau phosphorylation (as well as upregulation of APP and BACE) (Yoon et al., 2007).
Consistent with all these findings, injections of homocysteine into rats for two weeks
yielded decreased PP2A L309 methylation and PP2A activity, effects that were reversed by
simultaneous administration of folate and vitamin B12. Hippocampal samples from the rats
and from AD patients exhibited immunohistochemical co-localization of demethylated, but
not methylated PP2A with hyperphosphorylated tau (Zhang et al., 2008).

5.3.4 Aberrant cell cycle/apoptosis—A wide range of evidence suggests that
attempted or aberrant re-entry into the cell cycle and/or apoptosis of neurons may be a
common neurodegenerative mechanism in AD (reviewed in Neve and McPhie, 2006). Many
of the critical components of the cell cycle and apoptosis pathways are upregulated in
degenerating AD neurons, and are subject to regulation by DNA methylation, including the
P16, P21, P27, P53, RB1 (Moreira et al., 2009), cyclin B2 (Tschop and Engeland, 2007),
ARF (Robertson and Jones, 1998), caspase 1 (Jee et al., 2005), caspase 3, caspase 7, caspase
8, and caspase 9 (Muerkoster et al., 2008) genes. Hypomethylation of these genes would be
expected to promote aberrant cell cycle events, and global hypomethylation has been
reported to occur in cells as they move from the G(0) stage characteristic of postmitotic
neurons to the G(1) stage characteristic of cell cycle re-entry (Brown et al., 2007). Indirect
support for the role of hypomethylation in aberrant cell cycle events is provided by studies
demonstrating apoptosis of cultured neurons when exposed to high homocysteine levels (Ho
et al., 2002). Although many other biologic effects are possible, such treatment is known to
hypomethylate DNA (Reynolds, 2006), and concurrent treatment with SAM antagonized the
apoptotic effect (Ho et al., 2002). Interactions of the histone acetyltransferase Tip60 with the
γ-secretase-generated APP C-terminal fragment APP-CT58, which translocates to the
nucleus, also lead to apoptosis of human H4 neuroglioma cells (Kinoshita et al., 2002).

5.3.5 Inflammation—Key genes at almost every level of the inflammatory response
appear to be subject to DNA methylation influences. A highly abbreviated list of examples
includes complement C3, factor B, IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-13, TNF-α,
TNFRI, INF-γ, SOCS, S100A2, the chemokine receptors CXCR4 and CCR7, clusterin
(apoJ), and iNOS (Mejia et al., 1995; Mori et al., 2005; Buslei et al., 2006; Suuronen et al.,
2007; Mi and Zeng, 2008; Nile et al., 2008; Parker et al., 2008; Pieper et al., 2008; van
Panhuys et al., 2008; van Rietschoten et al., 2008). The TNF-α promoter, for example,
contains 12 CpG-rich sites. Two of those sites (−304 and −205) are hypomethylated on
exposure of macrophages to the classic inflammatory stimulus lipopolysaccharide, and their
extent of hypomethylation is correlated with increasing expression of TNF-α (Wilson,
2008). Likewise, a single CpG site in the IL-6 promoter (−1,181) is significantly
hypomethylated in rheumatoid arthritis and this hypomethylation is correlated with IL-6
mRNA levels (Nile et al., 2008). Although virtually none of the many factors in
inflammation has been investigated with respect to its DNA methylation status in AD, this
could be a fertile area for investigation given the heightened expression of these molecules
in the disorder. A recent Parkinson’s disease study, for example, has demonstrated that the
TNF-α promoter is hypomethylated in the substantia nigra relative to several other brain
regions. Since DNA methylation of CpG sites in the TNF-α promoter inhibits SP1 and AP-2
transcription factor binding and decreases TNF-α expression, it has been speculated that
nigral TNF-α hypomethylation might explain the heightened vulnerability of nigral
dopamine neurons to TNF-α-mediated inflammatory reactions (Pieper et al., 2008).

5.3.6. Apolipoproteins—Again, no specific studies have been done on the methylation
status of apolipoprotein E (ApoE) in AD. Notably, however, Wang and colleagues (2008)
have reported that although the ApoE promoter is poorly methylated, the ApoE ε4 allele
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contains methylated CpG sequences that are not extant in the ε2 or ε3 alleles. Because not
all ε4 carriers develop AD, it would be of great interest to know if methylation status at ε4
CpG sites is altered in ε4 carriers who develop (or do not develop) AD. Similarly, it might
be useful to determine whether the significant but relatively low penetrance of ApoJ
(clusterin) SNPs to AD risk (Harold et al., 2009; Lambert et al., 2009) might be explained
by methylation changes, since the ApoJ promoter is rich in CpG sites and expression is
increased on hypomethylation (Suuronen et al., 2007).

6.0 Conclusions
Global epigenetic changes, acting on a wide range of genes and biological pathways, appear
to help orchestrate the cellular alterations that drive development, aging, and, in some cases,
disease. Likewise, global epigenetic changes have been observed in pathologically-
vulnerable regions of the AD brain, and key genes in virtually every mainstream pathologic
pathway in AD are known to be labile to such changes. The ability of epigenetic
mechanisms to initiate an extremely wide range of pathogenic responses—an orchestrating
capacity perhaps equaled only by transcription factors (which themselves often work
together with epigenetic mechanisms to direct expression in specific sets of genes) (e.g.,
Agrawal et al., 2007; Ivascu et al., 2007, Yakovlev et al., 2010)—provides a relatively
unique integrative framework for the diverse genetic factors and multifactorial pathology of
AD, including Aβ, tau, inflammation, mitochondrial metabolism, oxidative stress, and
aberrant cell cycle/apoptosis events. Moreover, the epigenetic modifications that have been
reported in AD, particularly with respect to DNA methylation, typically resonate with
similar trends in aging, and may therefore help explain not only the pathologic complexity
of AD, but also the particular salience of aging as an AD risk factor.

Finally, whereas the field of epigenetics has previously emphasized mechanisms for
preserving epigenetic profiles across generations of dividing cells, there is now ample
precedent for active, dynamic epigenetic alterations in postmitotic cells, including neurons,
that play important roles in neuroendocrine, learning and memory, and apoptotic processes.
These latter, landmark studies provide the tools for subsequent explorations of how the
epigenetic modifications that have already been reported in AD occur, as well as a
mechanistic underpinning for the AD genome-wide methylation profiling that is now in
progress.

7.0 Future Directions
At the level of basic research, DNA methylation profiling of aging and AD subjects is
eagerly awaited in order to develop a better portrait of the normal methylation status of all
genes across the AD genome, how that status may change in AD, and whether or not such
changes implicate AD-related proteins and pathogenetic processes. These studies would be
especially significant if they were conducted in tandem with genome-wide gene expression
arrays because the experiments would then provide validation of the functional effects of
DNA methylation changes on gene expression. In addition, knowing the methylation states
of genes containing putative AD SNPs could be useful. Many such SNPs, for example,
remain controversial because their odds ratios for disease risk consistently hover at the
statistical edges of significance or they fail to replicate in some studies but not others.
Epigenetic regulation of the SNP genes could account for this variability. For example, a
gain or decrease of function SNP could be compensated for by epigenetic downregulation or
upregulation, respectively, of the gene’s expression, so that some carriers might in effect
possess the SNP with relative impunity. Finally, as valuable as large-scale epigenetic
profiling of the AD genome will be, it will still not tell us why or how the profiles were
altered, nor will it give us a detailed profile of each gene. Genome-wide methylation
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profiling is presently only able to sample a few of the CpG-rich sites within each gene,
although the technology is rapidly expanding. Because both hyper- and hypomethylation can
occur at different CpG sites in the same gene, with one but not the other causing functional
changes in gene expression (e.g., Murgatroyd et al., 2009), follow-up studies giving detailed
methylation maps of AD-relevant genes and concomitant changes in their expression will be
essential. These same considerations may also apply to other neurologic conditions such as
schizophrenia and bipolar disorders, where epigenetic mechanisms are being pursued
(reviewed in Pidsley and Mill, 2010).

Of course, to hypothesize that epigenetic changes play a role in brain aging, AD, and other
neurologic disorders still begs the question of what causes the epigenetic changes? The
environment that cells and organisms are exposed to can have a profound influence on
epigenetic mechanisms (Waterland and Michels., 2007; Smith and Kim, 2008), but simple
stochastic processes may do so as well (Jaenisch and Bird, 2003). Whether as
environmentally-driven or randomly-occurring events, however, the probability of
epigenetic modifications must logically increase with time, and increased time is precisely
what the advanced ages reached by many human beings may afford. Some of these
modifications may be inconsequential, depending on the CpG site, the gene, or the organ.
For example, inadvertent upregulation of an Aβ-synthesizing gene might have little to no
impact on a muscle cell, whereas it could be highly significant in a pyramidal neuron.
Similarly, the brain lacks several major defenses against inflammatory attack (Gasque et al.,
2002; Zanjani et al., 2005), so that the inadvertent upregulation of a pro-inflammatory gene
might be uniquely problematic there. Thus, the origin and organ-specific consequences of
epigenetic modifications are important considerations for AD epigenetic studies, and will
continue to be critical targets for AD basic research into epigenetic mechanisms.

At the clinical level, the initiation of AD trials with folate/B vitamins/SAM may constitute
one means of testing an epigenetic orchestration hypothesis of AD, although it is becoming
increasingly evident that reversing the course of human AD with any treatment may be an
over-ambitious goal. For example, in a recent trial B vitamin treatment significantly slowed
cognitive decline in mild AD, but was without effect in more advanced cases (Aisen et al.,
2008). A trial in mild cognitive impairment patients might therefore be of great interest. A
second impediment to succesful treatment of epigenetic defects may be achieving
sufficiently high levels of epigenetic therapeutics not only within cells, but within neuronal
nuclei. Moreover, the many different biochemical pathways impacted by epigenetic
mechanisms may make targeting specific disease processes difficult. Beyond folate and
other such approaches, cancer chemotherapeutics that are directed at epigenetic mechanisms
are available, but would need to be considered carefully. DNA demethylating agents such as
5-azacytidine and decitabine, for example, might actually prove harmful in AD given the
profound global hypomethylation of AD neurons (Mastroeni et al., 2008, 2009). HDAC
inhibitors such as valproate, by contrast, might counter many of the epigenetic changes that
have been reported in AD, and have, in fact, been used successfully to improve cognitive
outcome measures in AD transgenic mouse models (Su et al., 2004; Fischer et al., 2007;
Francis et al., 2009; Ricobaraza et al., 2009; Guan et al., 2009). Treatment trials in human
AD patients, however, have not been particularly encouraging, perhaps due to somnolence,
agitation, and other side effects of the drug (Profenno et al., 2005; Herrman et al., 2007) or
to lack of specificity of the drug to epigenetic mechanisms alone.

With respect to the development of new treatments for AD, a direct role for epigenetics
would be the design and application of epigenetic therapeutics that have appropriate effects
on specific epigenetic mechanisms in specific genes or sets of genes. As we have
emphasized throughout, however, one of the defining hallmarks of epigenetic mechanisms is
their ability to exert effects over many genes, and, accordingly, virtually all present
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epigenetic therapeutics also exert their effects over many genes. Unless a broad modifier
such as an HDAC inhibitor can be found that just happens to impact the right genes, while
sparing significant effects in others, the specificity requirements of an AD epigenetic
therapeutic will be challenging. Nonetheless, elucidating specific genes that undergo
significant epigenetic alterations in AD—as is now in progress in our laboratory and
elsewhere—could, at the very least, help direct our attention to the most salient pathogenic
elements of the disorder and to more conventional (e.g., agonist/antagonist) approaches to
the protein products of the epigenetically-modified genes.
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Glossary

HAT Histone acetyltransferases

HDAC Histone deacetylase

CpG Cytosine-phosphate-guanine

DNMT DNA methyltransferase

MECP Methyl CpG binding protein

SAM S-adenosylmethionine

SAH S-adenosyl-homocysteine

rDNA Ribosomal DNA

miRNA Micro-RNA

BACE Beta secretase

PS1 Presenillin 1

PS2 Presenillin 2

APP Amyloid precursor protein
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Fig. 1. Simplified schematic of histone acetylation and DNA methylation
(Upper Left) In transcriptionally active genes the chromatin, made up of histones (blue
cylinders) around which DNA is wrapped, is in a relaxed state, permitting transcriptional
access to unwound DNA. This relaxed, euchromatin state is, in part, mediated by acetylation
of histone tails (red rods) in which acetyl groups (green blocks) are transferred from acetyl-
coenzyme A (acetyl-CoA) to the histone tails by histone acetyltransferases (HATs). (Bottom
Left) Within the DNA, the cytosines of adjacent C-G/G-C dinucleotides (CpGs) may be
methylated. The methyl group ultimately derives from methyltetrahydrofolate in conjunction
with the methionine/homocysteine cycle, and is transferred from S-adenosylmethionine
(SAM) to the cytosine and incorporated into the genome by DNA methyltransferases
(DNMTs). CpG-methyl-binding-domain proteins (MBDs) and methylation complex proteins
(MeCPs) (which may contain MBDs) become associated with methylated CpGs, further
inhibiting transcriptional access and repression of the gene. (Upper Right). DNA
methylation and histone modifications are integrally linked, because MBDs and MeCPs
attract histone deacetylases (HDACs) that transfer acetyl groups on the histone tail back to
CoA. Histone deacetylation, in turn, promotes the condensed, heterochromatin state
characteristic of silenced or repressed genes.
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Fig. 2. DNA methylation markers in AD and ND cortex
A) Typical immunoreactivity for 5-methylcytosine, a global marker of DNA methylation, in
AD and ND entorhinal cortex (from Mastroeni et al., 2008, with permission). Cases were
well matched for age, gender, and postmortem intervals, which were all less than 3 hours 15
minutes. Shaded bars represent means for different cases. Although glia and virtually all
types of neurons exhibit 5-methylcytosine immunoreactivity, layer II “island” neurons,
among the most vulnerable to AD pathology, exhibit particularly intense staining in ND
cases, as shown in the upper left micrograph at low power. Such staining is weak to absent
in AD cases (upper right micrograph). High power micrographs show the expected nuclear
localization of immunoreactivity. Far right panel shows counts of immunoreactive neurons
per total neurons per field. Normalizing to total neurons is important, as it helps to
demonstrate loss of methylation within cell nuclei rather than loss of the methylated cell
population itself. The significant decrement in AD (P < 0.001) is typical of dozens of AD
and ND cases examined, with little to no overlap in any case. B) Representative
immunoreactivity and cell counts for various MeCP1 components in AD and ND neocortex.
Significant AD decrements (P < 0.05) were observed with all the markers—again with little

Mastroeni et al. Page 29

Neurobiol Aging. Author manuscript; available in PMC 2012 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



to no overlap. C) Western blots (normalized to β-actin) for these and other methylation
markers exhibit immunoreactivity at appropriate molecular weights, with AD/ND
differences similar to those observed by immunohistochemistry, suggesting that the latter
are not due to cross-reactivity with other antigens.
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Fig. 3. Immunoreactivity for DNMT1, the most prevalent methyltransferase in adult mammals
A) Typical DNMT1 immunoreactivity and cell counts (P < 0.001) in AD and ND neocortex.
Shaded bars represent means for different cases. B) Western blots (normalized to β-actin
standards) show immunoreactive bands at appropriate molecular weights for DNMT1 and a
significant (P < 0.01) decrement in AD cases.
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Fig. 4. Decreased overall DNA methylation in monozygotic twins discordant for AD
A) Global hypomethylation (5-methylcytosine immunoreactivity) in an AD monozygotic
twin compared to his normal sibling at low (upper micrographs) and high (bottom
micrographs) power (Mastroeni et al., 2009) (courtesy of PLoS1). B) Similar findings have
recently been observed by our group in APP transgenic mice compared to their wildtype
littermates.

Mastroeni et al. Page 32

Neurobiol Aging. Author manuscript; available in PMC 2012 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5. MethylMiner methylation profile of selected flanking and initial BACE promoter sites
after exposure of differentiated SK-N-BE(2) neuron-like cultures to 10 μM Aμ42
MethylMiner Methylated DNA Enrichment Kits (Invitrogen, Carlsbad, CA) were employed
to enrich and fractionate double-stranded DNA based on CpG methylation density. The
highly methylated region showed significant hypomethylation while poorly methylated
regions exhibited hypermethylation (Grover et al., unpublished). Correlations with Aβ
production can help establish the functional relevance of methylation modifications at these
and other CpG sites within the BACE gene.
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