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Abstract
We present and evaluate a rigid-body, deterministic, molecular docking method, called
ELMDOCK, that relies solely on the three-dimensional structure of the individual components and
the overall rotational diffusion tensor of the complex, obtained from nuclear spin-relaxation
measurements. We also introduce a docking method, called ELMPATIDOCK, derived from
ELMDOCK and based on the new concept of combining the shape-related restraints from
rotational diffusion with those from residual dipolar couplings, along with ambiguous contact/
interface-related restraints obtained from chemical shift perturbations. ELMDOCK and
ELMPATIDOCK use two novel approximations of the molecular rotational diffusion tensor that
allow computationally efficient docking. We show that these approximations are accurate enough
to properly dock the two components of a complex without the need to recompute the diffusion
tensor at each iteration step. We analyze the accuracy, robustness, and efficiency of these methods
using synthetic relaxation data for a large variety of protein-protein complexes. We also test our
method on three protein systems for which the structure of the complex and experimental
relaxation data are available, and analyze the effect of flexible unstructured tails on the outcome of
docking. Additionally, we describe a method for integrating the new approximation methods into
the existing docking approaches that use the rotational diffusion tensor as a restraint. The results
show that the proposed docking method is robust against experimental errors in the relaxation data
or structural rearrangements upon complex formation and is computationally more efficient than
current methods. The developed approximations are accurate enough to be used in structure
refinement protocols.
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Introduction
Understanding the molecular mechanisms underlying biological function requires
knowledge of the three-dimensional structure of biomacromolecules and their complexes at
atomic level resolution. Nuclear Magnetic Resonance (NMR) spectroscopy is currently the
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main method for structure characterization of proteins and nucleic acids in solution. While
NMR has been fairly effective at determining structures of single-domain proteins, accurate
structure determination of macro-molecular complexes and multi-domain systems remains a
major challenge. One of the main difficulties here is the paucity of intermolecular Nuclear
Overhauser Effect (NOE) contacts, which are scarce and difficult to detect and could be
affected by interdomain motions. In lieu of NOE contact information, chemical shift
perturbation (CSP) mapping can provide approximate inter-domain restraints. However,
such restraints are highly ambiguous because CSPs do not identify specific pairwise contacts
and should be used with caution, as perturbations in the local electronic environment of a
nucleus could be caused by local conformational changes and not necessarily by direct
interaction of a given atom/residue with the binding partner.

A powerful way of introducing additional structural restraints has been the use of residual
dipolar couplings (RDCs), resulting from partial molecular alignment in a magnetic field,1,2

because they contain valuable structural information in terms of global, long-range
orientational restraints (reviewed in3). RDCs have been used to orient molecules and bonds
relative to each other either directly, using rigid-body rotation,4–8 or by incorporating RDCs
as orientational restraints into protein docking9–11 (see e.g., the reviews12,13). Recently we
have developed a docking method that uses RDC’s sensitivity to molecular shape to not only
orient, but also position individual components (domains) in the complex relative to each
other.14,15 However, in its current form, this method relies on steric alignment, and therefore
requires a specific medium (e.g. bicelles, PEG/hexanol) to be added to solution and is
inevitably limited by what kind of medium can be used.

Another physical characteristic sensitive to molecular shape (hence a source of long distance
structural restraints) is the rotational diffusion tensor,16–18 which can be derived from NMR
relaxation data.18–22 Using almost identical concepts and ideas, the diffusion tensor can be
used in a way similar to RDCs to create both orientational and translational restraints for
molecular docking.23 Using the diffusion tensor instead of RDCs is advantageous in that this
does not require any alignment medium, and therefore can be applied to a larger variety of
complexes in their native millieu. In fact, the diffusion tensor has been used as a long-range
orientational restraint for structure characterization of multidomain systems.8,18,21,24 More
recently the idea of using the diffusion tensor as a translational restraint in rigid docking of
multi-domain proteins was introduced in Ryabov and Fushman23 and further explored in
Ryabov et al.25,26 However, no docking method has yet combined the shape-related
restraints derived from RDCs with the shape-related restraints from the rotational diffusion
tensor.

In this paper we introduce ELMDOCK, a fast rigid-body docking method that uses the
rotational diffusion tensor’s sensitivity to the overall shape of a molecule as a long-range
experimental restraint. ELMDOCK is named for the ELlipsoidal Model that it uses to
approximate the shape of a molecule. Similarly to,23,25 ELMDOCK uses the difference
between the experimental and the predicted diffusion tensors to find the proper positioning
of the second domain of the complex relative to the first one, however it uses a deterministic
docking algorithm that finds the solution orders of magnitude faster than the previously
described methods. In order to achieve high computational efficiency we avoid
recomputation of the molecular surface, the computationally expensive part of our diffusion
tensor prediction method, by developing two levels of approximations of the diffusion
tensor. The first, more computationally expensive approximation, allows quick adjustment
of the molecular surface under domain collision. The second approximation is a derived
quadratic formula with explicit derivatives, that can quickly be evaluated under arbitrary
translations of the domains without the need to fully recompute the molecular surface, and
allows a fast approximation of the Jacobian, critical to Newton-like minimization
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algorithms. These approximation methods can therefore be integrated into more complex
docking algorithms to improve their performance. For example, they can significantly speed
up steps 1–3 of the docking protocol described in Ryabov et al.,26 and can also speed up the
recomputation of the diffusion tensor during simulated annealing of more complicated
energy functions such as proposed in.25,26 We also combine ELMDOCK with our RDC-
based docking method, PATIDOCK+,15 to create the first method (ELMPATIDOCK) for
docking that combines shape-related restraints from both residual dipolar couplings and
spin-relaxation measurements (as well as CSP-generated restraints).

We show that, given an accurate ab initio predictor of the diffusion tensor from protein
structure, it is possible to quickly and deterministically assemble a protein-protein complex
by using fast approximations of the diffusion tensor. The proposed docking method,
ELMDOCK, is robust against experimental errors in the NMR relaxation data and is
computationally more efficient than current methods. We analyze the accuracy and
efficiency of this method using synthetic data for a large variety of protein-protein
complexes as well as actual experimental data for three protein systems for which the
structure of the complex and diffusion data is available. We analyze the effect of flexible
unstructured tails on the outcome of docking for a complex of ubiquitin and a ubiquitin-
associated domain. Finally, we demonstrate that ELMPATIDOCK can improve upon the
solutions of ELMDOCK by adding additional constraints.

Docking Method
We now present the detailed algorithm for ELMDOCK, our docking method for determining
relative domain position in a molecule made up of two domains for which the individual
three-dimensional structures and the associated relaxation data are known.

ELMDOCK requires three components. The first component is a method for determining the
experimental diffusion tensor from the NMR relaxation data. We use a modified version of a
computer program ROTDIF22 for extracting the experimental diffusion tensor from NMR
relaxation data which allows computation of the diffusion tensor using robust as well as
normal regression.

The second required component for ELMDOCK is a method for predicting the diffusion
tensor given a three-dimensional structure of a molecule. The two known methods are
HYDRONMR27,28 and ELM.29 Similar to previous approaches,23,25,26 we use ELM in
ELMDOCK.

The final required component for ELMDOCK is a method that efficiently finds the optimal
positioning of the second domain relative to the first one based on the difference between
the experimental diffusion tensor (computed using ROTDIF) and the predicted diffusion
tensor (computed using ELM). This new component is described in this manuscript.

Let M be a molecule made up of two domains, A and B, with experimentally measured ratio
of transverse and longitudinal 15N relaxation rates ρexp,18 and the associated experimental
diffusion tensors DA and DB (computed for the fully anisotropic rotational diffusion model
using ROTDIF). We assume that A and B tumble together in solution and hence are
characterized by a common diffusion tensor, i.e. DA and DB represent the same diffusion
tensor. Our goal is to first properly orient the two domains by finding the optimal rotation
matrix R*, that will orient B relative to A, and then to find the optimal translation vector x*

that minimizes the difference between the predicted diffusion tensor and the “global”
experimental rotational diffusion tensor, Dexp, extracted from ρexp of both domains using the
newly aligned domain orientations.
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Orienting Domains using Relaxation Data
First we orient domains A and B based on the rotational diffusion tensors of the complex
reported by the individual domains. Here we assume that each of the tensors DA and DB has
unique principal components (i.e. is fully anisotropic) and, because A and B tumble together
in solution, these principal components are similar between the two tensors. To solve for R*

we align A and B relative to each other using experimental relaxation data, as described
in.8,18,24 We first compute the experimental rotational diffusion tensors, D ̃A and D ̃B, of A
and B, respectively, using ROTDIF. The rotational diffusion tensors have

eigendecompositions  and , where RA, RB are rotation matrices
(orthogonal matrices with determinant of 1) and LA, LB are the diagonal matrices of
principal components of the corresponding rotational diffusion tensors. Therefore, R* can be
derived by solving the equation R*RA = RB:

(1)

Note that due to orientational degeneracy of the diffusion tensor there is a four-fold
ambiguity in the relative alignment of domains, hence four possible solutions for R*.8 One
can find these possible solutions by computing an eigendecomposition of D ̃2, determining
the four assignments of signs to the columns of RB that make det(RB) = 1, and using Eq.(1)
for each one. Also note that in the case when two or more eigenvalues of the alignment
tensor are close to each other (e.g. very low rhombicity) it might not be possible to
accurately orient the two domains. In this case additional experimental information, e.g. in
the form of interdomain contacts, could help in identifying the correct orientation.

Overview of ELMDOCK
Let B + x represent a shift in the position of each atom of B by a vector x ∈ ℝ3. We define
M(x) to be the combined structure of A and B + x.

The goal of ELMDOCK, after the domains have been properly oriented, is to find a shift x*

in the position of the B molecule such that the combined molecule M(x*) has the same
diffusion tensor as the experimental diffusion tensor Dexp. Specifically, we find x* such that

(2)

(3)

where F(M) is a function that predicts the diffusion tensor of a molecule M. For example
F(M) could be HYDRONMR28 or ELM.29

Solving Eq.(2) directly will be slow for two reasons: First, the diffusion tensor needs to be
recalculated for each iteration of the minimization. Since computing the diffusion tensor
involves computation of the Richards’ smooth molecular surface, this computation is
expensive. Second, a nonlinear least-squares method will be slow because of the need to
approximate the Jacobian for F(M) using finite differences. The finite difference

approximation leads to further problems since we expect the function  to not be perfectly
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smooth due to the sudden changes in the surface points as the two domains collide. In
addition, finite differences will require us to compute M(x) three additional times for each
minimization iteration.

To explain how we solve Eq.(2) in a more efficient way we dissect the ELM method into its
major components. The steps for computing the predicted diffusion tensor using ELM for
any molecule M(x), described in Ryabov et al.,29 are

(4)

where S is the set of sample points from Richards’ smooth surface (also known as the
solvent accessible surface) for molecule M(x) (computed using the program SURF30,31), C
is the covariance matrix of S, and ℰ is the associated principal component analysis ellipsoid
(PCAE). See Supplementary Information and reference29 for how to compute PCAE from S
and how to compute the diffusion tensor of an ellipsoid using Perrin’s equations.32,33

The goal of our docking algorithm is to reverse these steps in an efficient manner so that
given Dexp, we find the best fitting molecule M(x*), and hence x*. We accomplish this in
two separate steps:

(5)

If our problem is well conditioned, small errors in the prediction of the diffusion tensor or
Dexp will result in a small difference between the true solution and x*.

In step 1 we find C* by solving the equation

(6)

where

(7)

and L(C) is the function that returns the diffusion tensor of a covariance matrix C.

In step 2 we efficiently find x* by solving the equation

(8)

where
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(9)

and G(x) is a function that returns the covariance matrix of the surface of a molecule M(x).

In order to describe the minimization method for , we first present two methods for

approximating G(x). We then use these approximation methods to efficiently minimize .

We summarize our complete docking method in Algorithm 1. The relevant references are
presented in the comment section of each line, and are explained in detail in the rest of the
manuscript and Supplementary Information.

Step 1: From Diffusion Tensor to Covariance Matrix
In this section and in the Supplementary Information we describe step 1 of our docking
method, where we solve Eq.(6) by finding a covariance matrix C* of an ellipsoid that has the
diffusion tensor value Dexp. Then, given the covariance matrix it is much easier to find x*

since the covariance matrix is directly related to the position of the surface points of the
domain, while the relationship between x* and the diffusion tensor is much harder to
quantify.

Note that in ELM the orientation of the diffusion tensor Dexp and of the associated
covariance matrix C* is the same. That means that the eigendecompositions of Dexp and C*
are

(10)

and

(11)

By performing an eigendecomposition of Dexp, we get the values for V, Dx, Dy, and Dz.
Given Dx, Dy, and Dz, we solve Perrin’s equations (Supplementary Information) for the
lengths of the ellipsoid’s principal semi-axes ℓ1, ℓ2, and ℓ3. We can compute the Jacobian of
Perrin’s equations, and solve for [ℓ1, ℓ2, ℓ3] by using nonlinear least squares method given a
proper initial guess for the values.

Once we obtain the ellipsoid’s principal semi-axes [ℓ1, ℓ2, ℓ3] and orientation V, the
covariance matrix C* of the ellipsoid is:

(12)
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Having computed the covariance matrix C* by Eq.(12), we have now solved Eq.(6), and can
therefore move to step 2 of our docking method.

Estimating the Covariance Matrix of a Molecule
In step 2 of our docking method, we propose to use a Newton-like method for minimization.
Each iteration of a Newton-like minimization requires an evaluation of the target function
and a computation of a descent step. Therefore, before we describe step 2, we first describe
two algorithms that provide fast approximations to the function G(x), and by extension the
Newton step. These approximations form the basis of step 2.

Quadratic Approximation—The first algorithm allows us to quickly compute the
descent step for our minimization algorithm by finding a quadratic approximation of the
covariance matrix near the current value x. We express the approximation as

(13)

where

(14)

i, j = 1, 2, 3, p ∈ ℝ3, κ is a constant, and K is a constant 3 × 3 matrix.

Let a1, … , ana be the surface points for M(x) that come from domain A and let b1, … , bnb

be those that come from domain B, where na and nb are the number of points in domain A
and domain B, respectively. Observe that the majority of the individual domain surface
points remain part of the overall M(x) surface, since only the points where two domains
contact each other disappear from the solvent-accessible surface of M(x). Therefore, the
majority of the change in the covariance matrix comes from the fact that the bi points are
shifted by x and not from the change in the set of surface points. The larger ||p|| is, the more
we expect the set of the surface points to change, but at the same time the translation of
points that remain on the surface also contributes a greater weight. Thus, we expect that we
can estimate the covariance matrix well at x + p by simply adjusting the points b by p and
recomputing the covariance matrix. Going through the algebra (see Supplementary
Information) we get the solution:

(15)

(16)

for i, j = 1, 2, 3.

However the quadratic approximation is limited in its accuracy since it assumes that the
surface points of M(x) are constant. In the next section we focus on deriving the second
approximation method that is more accurate but at the cost of an additional computation.
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Geometric Approximation of a Molecule’s Covariance Matrix—In this section we
derive a method, called G fast, for approximating G that is more accurate than the quadratic
approximation in the previous section, but computationally slower, because it redetermines
the set of surface points. However it is still significantly faster than fully recomputing
Richards’ molecular surface.

Recall that ELM requires the computation of the surface of the molecule. The method has
been shown to be relatively fast when calculating the surfaces of different molecules.
However, in the case of rigid docking, the shape of the domains does not change, so it is
computationally wasteful to fully recompute the surface of the domains every time we want
to evaluate G(x).

Since we assumed that the three-dimensional structure of the individual domains does not
change as they come closer together, we compute the surfaces of the two molecules initially
once and then adjust their surfaces as the molecules move closer and start colliding. We
label the set of surface points of molecule A as SA, and the surface points of B as SB. The
surface points of B + x are therefore written as SB + x, representing the fact that the surface
points of B are shifted by x. The goal is to determine which surface points in SA and SB
remain as part of the overall surface of the combined molecule, and which are no longer on
the surface.

To figure out which surface points disappear in a collision we need to use a collision
detection algorithm. Figure 1 illustrates that as two domains come closer together the
surface points of one domain start colliding with the second domain, thus no longer
participating in the definition of the combined solvent-accessible surface.

We say that a surface point si ∈ Sa collides with B + x if there exists bj ∈ B + x such that the
Euclidean distance between si and the center of bj is less than rj + h, where rj is the van der
Waals radius of bj and h is the hydration layer thickness (set to 2.8Å in our case). We
determine bj by a nearest neighbor search algorithm. Using the same procedure we also find
the colliding points in Sb.

Let a1, … , ana be the set of points in SA that do not collide with B + x, and let b1, … , bnb

be the set of points in SB + x that do not collide with A. The covariance matrix for the set a
and b is computed as

(17)

for i, j = 1, 2, 3.

In the Results section we will show that the error introduced by this approximation is within
the error introduced by our diffusion tensor prediction method ELM.

Step 2: From Equivalent Ellipsoid to Domain Position
Having developed approximate methods for rapid computation of the covariance matrix C*,
we now describe step 2, where we find x* such that the covariance matrix of the surface
points of M(x*) is equal to C*.
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We use a Newton-like method to minimize , Eq.(9). Here we describe how we choose
starting points, while the detailed description of the rest of the minimization method is given
in Supplementary Information.

Every minimization method needs a starting point. Due to the symmetry inherent in the

covariance matrix there are multiple local minimizers of . Figure 2 shows two local
minimizers for the Ub/UBA complex; both have similar covariance matrices.

We need to choose a starting point close to each of the local minimizers in order to make
sure that we find the correct overall minimizer. To compute such a set of points, we replace
the minimization problem given in Eq.(9) by an approximation where we only look at the
diagonal elements:

(18)

Minimizing this new target function yields good starting points, since if we have a good
model then

(19)

Still,  is too complicated to easily be solved analytically. We therefore approximate it
using Eqs.(13) and (14).

(20)

where

(21)

Setting the derivative of the quadratic to zero gives a maximum of eight solutions

(22)

We use these eight solutions as starting points for our minimization method (fully described
in Supplementary Information).

Approximating Diffusion Tensor Under Translation
Matching the rotational diffusion tensor is just one of the many restraints that can be used to
determine domain positioning. Usually the energy term from the diffusion tensor constraint
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should be combined with energy terms coming from other restraints. To avoid recomputing
the diffusion tensor under every translation it is possible to solve Eq.(6) and use the solution
to create a quadratic approximation of the energy value that can be used in the combined
energy function.

We can quickly approximate , without recomputing the surface points, by quadratically
approximating the predicted covariance matrix around the minimizers. The approximation

will therefore give a good estimate of  near the expected solution, which we assume is not
far from x*, and monotonically increases in value as you move farther from the solution
(which does not need to be computed accurately).

Given , the minimizers of χ2 derived using Algorithm 1, we compute the

approximation of  as

(23)

where i = 1, … , n.

Similarly we can approximate the diffusion tensor energy function χ2(xc) as

(24)

Results
To evaluate ELMDOCK, we applied it to several protein systems. Potential sources of
inaccuracy in our docking approach are errors in the experimental relaxation data, structural
noise, and the inaccuracy of ELM in predicting the diffusion tensor. To separate and
quantify these errors we tested our method on two distinct datasets described below. For
each complex, we separately tested docking with and without prior alignment/orientation of
the individual domains based on their relaxation data (see 1). We refer to the ELMDOCK
algorithm without the alignment procedure as ELMDOCK-t: this algorithm involves only
translational degrees of freedom and holds the domain orientation the same as in the correct
structure.

The first dataset, which we refer to as COMPLEX, is a set of 80 protein-protein complexes
described in Mintseris et al.34 This dataset provides a wide variety of interprotein contacts
and molecular shapes, but it contains no experimental relaxation data. For each complex we
use ELM to generate a synthetic diffusion tensor Dsyn based on the already known 3D
structure, and then predict for each NH vector in the molecule the synthetic ratio of
relaxation rates ρsyn, which we subsequently use instead of ρexp as input for ROTDIF. This
allows us to test our method under ideal conditions, when we are able to accurately predict
the diffusion tensor for the whole complex.

The second dataset is a set of three proteins for which we have experimental diffusion tensor
data: HIV-1 protease homodimer;35 Maltose-binding protein;36 and Ubiquitin/UBA
complex.37 We use this dataset to examine the accuracy of the algorithm under real
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experimental conditions and the inaccuracies inherent in ELM’s prediction of the diffusion
tensor.

Due to the four-fold ambiguity in the relative orientation of domain B with respect to A (see
e.g.8) and the existence of multiple local minimizers (with regard to translation) for each
orientation, we expect to have at least eight potential solutions.15 The solutions are ranked
by the backbone RMSD between the experimental structure of the complex and the
predicted one, where the atom positions in B are adjusted by R* and x* (recall that A is fixed
in space). Only the results for the lowest-RMSD solution are shown in this paper. Since R*

can be directly computed from the experimental relaxation data independent of the ELM
model, we first focus our analysis on the minimizers that come from the correct orientation
of the two domains. We then present the results for the complete docking method that also
includes automatic alignment of the two domains, in addition to their positioning relative to
each other.

We implemented ELMDOCK in MATLAB 7.8.0 and performed all calculations and timing
on a single core of a 3.16 GHz Pentium Core 2 Duo E8500 processor with 3.25 GB of RAM,
running Windows XP Service Pack 3. We stop each minimization in Step 2 when the change
in x is less than 0.1Å. For robust regression we use the value of ω = 0.04E(ρexp) as the cutoff
for the Talwar weighting function, where E(X) is the expected value of X.38

Docking Using Synthetic Data
We use the COMPLEX dataset to demonstrate the correctness of the docking based on the
approximation of the covariance matrix instead of full recomputation of the diffusion tensor.
For each complex we generate a synthetic diffusion tensor Dsyn using ELM and then
synthetic values for ρsyn. We then dock the complex using ELMDOCK-t, as detailed above,
where we use ρsyn instead of ρexp. In practice, the measured ρexp values usually have
experimental errors of 1 – 5%. To simulate the effect of these random errors on the quality
of the solution, we also added normally distributed noise to ρsyn with a standard deviation of
2.5% or 5%. We will rate our results based on the “Δc”, the smallest distance between the
original and all the predicted positions of the center of the second domain. To check that we
dock within the accuracy of the ELM model we compute the relative error of the overall
rotational correlation time . Figure 3 shows the results of docking with
and without the random-noise errors in ρsyn.

These results demonstrate that we are able to effectively dock two domains using
ELMDOCK-t given an accurate predictor of the diffusion tensor. For most proteins using
the fast approximation Gfast yields a solution accurate to within 1.5Å. Moreover, the relative
errors in the overall rotational correlation time (τc) (Figure 3B) are much smaller than the
expected inaccuracy (10% on average, see29) of the diffusion tensor prediction using ELM.
Therefore, we conclude that docking to a higher accuracy is unnecessary since our current
approach is expected to only increase the error in τc by a negligible amount (less than 0.1%).
Overall, these results show that our approach of using a quadratic approximation to derive a

Newton-like descent step is adequate for minimizing .

It is noteworthy that in most cases, even with significant noise in ρexp values, our method is
still able to converge to a correct solution within 1–2Å. The somewhat greater errors
observed for a few complexes are due to the specific shapes and relative sizes of the
domains, which makes the overall shape/diffusion tensor of the complex less sensitive to
translation of one domain relative to the other. In these cases the inversion of Perrin’s
equations needs to be computed to a higher accuracy than was set in the algorithm. The
relative error in τc for all of the outliers is still much smaller than the expected inaccuracy of
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ELM, as shown in Figure 3B. See Supplementary Information for an illustration of the
largest outlier, complex 42, 1I4D.

Docking Using Unbound Structures
In some docking applications structures of the individual components in the bound state
might not be known in advance, but are to be determined in the process of docking, for
example, using the “unbound” structures of the domains as the starting point. We therefore
examine how accurately our method positions two domains relative to each other given only
the relaxation data for the bound complex and the unbound structures of the two domains,
i.e. how robust our method is with regard to structural rearrangements in the individual
components resulting from binding interactions. We anticipate several additional sources of
inaccuracy in the resulting complexes when using unbound structures of the individual
components. These include (i) inaccuracy in the derived experimental diffusion tensor(s),
due to a different orientation of the NH bond vectors, and (ii) a different 3D shape of each
domain (and therefore of the complex), which would affect the predicted diffusion tensor.

Here we take advantage of the availability of both bound and unbound structures for the 80
proteins of the COMPLEX dataset.34 The ρsyn values generated for each bound complex as
described above (zero noise) were used as input for ROTDIF, but applied to unbound
structures of each domain. Using the NH bond vectors of the unbound structures and the
synthetic ρexp, we computed the diffusion tensors of each of the unbound domains, and used
the same docking procedure as above (ELMDOCK-t or ELMDOCK) to assemble the
corresponding complex of the unbound individual components.

We compare the resulting structures (docked “unbound” complexes) with the corresponding
complexes of the bound structures in Figure 4. The results are presented in terms of RMSDs
for all backbone atoms. These numbers should be compared to the “Base” RMSD level (red
bars in Figure 4) that reflects the structural differences between the unbound and bound
structures of the individual domains, calculated by superimposing the unbound structure of
each domain onto its bound structure in the complex and computing the overall (backbone)
RMSD. The results show that structural/dynamic rearrangements in the individual
components upon complex formation do not dramatically affect the relative domain
positioning in the resulting diffusion-tensor-guided structures. The average error in the
position of the second domain (Δc) for ELMDOCK-t was 2.1Å and 3.9Å for ELMDOCK.

From Figure 4 we can see that using NH vectors from the unbound confirmations to derive
the target experimental diffusion tensor for docking yields only a small increase in the
RMSD error. For ELMDOCK-t the RMSD increased only by 0.70Å (2.59Å for
ELMDOCK) from the “Base” RMSD, while using robust regression can further improve the
solution to just a 0.32Å (1.64Å for ELMDOCK) increase in the RMSD. The greater increase
in RMSD in ELMDOCK for some complexes is mostly due to the very large size of the
domains, where even small error in orientation can generate a large RMSD.

These results indicate that the diffusion-tensor-guided docking is robust with respect to
structural rearrangements induced by complex formation. Damping the contribution from
outliers (as part of robust regression in ROTDIF) during the computation of the
experimental diffusion tensor can additionally compensate for some of the errors induced by
the conformational differences between the unknown bound and the known unbound
structures, thus yielding a more accurate estimation of the target experimental diffusion
tensor without a priori knowledge of the exact bound structure. Moreover, these findings
also suggest that the unbound structures of the individual components could be used as a
good initial approximation for the complex assembly, to be followed by more rigorous
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docking steps that allow structural flexibility and adaptation necessary for final adjustment
of the individual components in the complex.

Application to Real Dual-Domain Systems
We tested our method on three two-component molecular systems for which the
experimental overall rotational diffusion tensor is available: HIV-1 protease homodimer
(Structure 1bvg); Maltose-binding protein (Structure 1ezp); and Ubiquitin/UBA complex
(Structure 2jy6). Structure 1bvg is the first model from the PDB entry 1BVG,35 the
experimental overall rotational diffusion tensor values are from Tjandra et al.39 Structure
1ezp is the first model from PDB entry 1EZP,36 the experimental rotational diffusion tensor
values are from Ryabov and Fushman.23

In the case of Ubiquitin/UBA complex,37 both proteins contain extended unstructured and
flexible tails. As in our previous study,15 in order to examine the effect of these tails on the
outcome of docking, we created three different versions of this complex. Structure 2jy6 is
the first model from the PDB entry 2JY6. Structure 2jy6-I is the Structure 2jy6, but with the
tails of Ubiquitin and UBA replaced with 100 different sets of tail orientations in exactly the
same way as in.15 Structure 2jy6-II is Structure 2jy6 with both tails clipped off. Finally,
Structure 2jy6-III is the “unbound” version of the Ubiquitin/UBA complex, where we use
the unbound tailless structures of ubiquitin (PDB entry 1D3Z) and UBA (PDB entry 2JY5)
in place of their bound structures in Structure 2jy6. The overall backbone RMSD between
Structure 2jy6-I and Structure 2jy6-III is 0.97Å.

For HIV-1 protease (1bvg) and Maltose-binding protein (1ezp) we only have the data for the
diffusion tensor of the complex, so we only test these structures using ELMDOCK-t, i.e. we
fix the interdomain orientation and only translate one of the domains based on the
experimental diffusion tensor. For the Ubiquitin/UBA complex we have complete relaxation
data and therefore use the complete method ELMDOCK, where the two proteins are first
aligned and then optimally translated relative to each other.

Here we compare the computational efficiency of our method to the previous method,23

which we will refer to as “simplex”. We did not test our method against Ryabov et al.,25 but
for convex problems simulated annealing is known to be inefficient. For this comparison,
the initial guesses for the “simplex” minimization were generated using the method derived
in section “Step 2: From Equivalent Ellipsoid to Domain Position”. The results for the three
proteins are presented in Table I. The “simplex” and the ELMDOCK methods yield almost
identical errors in domain positioning, therefore, the errors for “simplex” are omitted in the
table. For all the structures tested we also confirmed that we are able to accurately dock
them using synthetic relaxation data (data not shown).

We see from Table I that for rigid structures like 1bvg and 1ezp our docking resulted in a 5Å
error in displacement. For a non-rigid complex like Ubiquitin/UBA, depending on the
conformation of the tails, we get an average error of 5.8Å in displacement with a standard
deviation of 2.6Å. Removing the tails increased the RMSD2 from 7.7Å to 10.6Å. This
suggests that removing a flexible tail might not be an effective strategy for the diffusion
tensor. As the tails contribute to the overall tumbling of the complex, it is very plausible that
their effect does not average out completely in the relaxation data measured in solution, and
that some form of “averaged” structure needs to be used instead. Using Structure 2jy6-III
(the “unbound” version of the Ubiquitin/UBA complex) does not increase the error in our
solution relative to Structure 2jy6-II, implying that the difference in conformations (bound
versus free) of these proteins is not an important source of error, a fact that has also been
observed for COMPLEX data set (Figure 4).
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The comparison of ELMDOCK and ELMDOCK-t shows that alignment of the two domains
based on their diffusion tensor does not significantly affect the RMSD2 of the optimal
solution, suggesting that it is not a significant contributor of error. Overall, ELMDOCK is
about 800 times faster than the method proposed previously.23 A close inspection of the
runtimes revealed that about 200-fold speedup is the result of using a Newton-like algorithm
instead of a simplex algorithm and the further 4-fold speedup is the result of using G fast

instead of G as our covariance matrix prediction method.

Combining Rotational Diffusion Tensor with Alignment Tensor and Ambiguous Interface
Related Restraints

In order to improve upon solutions in the previous section we introduce a novel docking
energy function that combines the diffusion tensor-based restraints with the alignment
tensor, CSP-based, and steric energy restraints from PATIDOCK+.15 The new energy

function, , combines the energy function , from PATIDOCK+, with that of 23:

(25)

where ζ is a scaling factor that relates  to the values in . In our experiments we set ζ =
1.27 × 10−5, based on the same approach as in.15 We use the branch and bound method40 to
deterministically solve  for the global minimum and call this method
ELMPATIDOCK. We ran ELMPATIDOCK on Structure 2jy6-I (first model) and 2jy6-II;
the results are presented in Table II.

The ELMPATIDOCK solutions clearly show an improvement over the ELMDOCK
solutions in Table I, or RDC-based PATIDOCK solutions (see15). For example, observe that
ELMDOCK has better performance on Structure 2jy6, and on average even on Structure
2jy6-I (the ensemble of 100 structures) than on (tailless) Structure 2jy6-II. Conversely,
PATIDOCK has better performance on Structure 2jy6-II than on Structure 2jy6.
ELMPATIDOCK performs better than ELMDOCK or PATIDOCK on both structures.
Table II also shows that the CSP-based restrains are necessary to break the degeneracy in the
RDC and relaxation-based docking (see below for further discussion). The solution could
further be improved by combining these restraints with a more comprehensive energy
function, like the AMBER force field,41 or adding them to existing docking software. Note
that the use of quadratic approximation of the covariance matrix in Eq.(23) was critical to
the implementation of ELMPATIDOCK, since recomputing the covariance matrix of the
surface at each energy function evaluation would be computationally impractical.

These results likely reflect the difference between the timescales of motions sensed by spin
relaxation and RDCs. For example, modulations of the shape of a protein caused by large-
amplitude motions of its tails (and/or flexible loops) are so fast compared to the
characteristic timescale of the RDC averaging (nanoseconds to milliseconds) that the
resulting alignment tensor, reflecting the averaged shape of the molecule, might not sense
the presence of the tails. On the other hand, the tails’ motions are only somewhat faster than
or comparable to the timescale (nanoseconds) relevant to the overall tumbling, and therefore
the averaged diffusion tensor might be more sensitive to the presence of extended
unstructured tails and their “average” conformation.

It is worth mentioning here that the degeneracies related to diffusion tensor-guided docking
are generally of two types: (i) orientational degeneracy due to the intrinsic symmetry of the
diffusion tensor, which has no directionality, i.e. cannot distinguish between the positive and
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negative eigenvector directions (e.g., Vi and −Vi) and (ii) due to the symmetry of the overall
shape of the individual components or of their complex. The latter could result in an axially
symmetric or even isotropic diffusion tensor or in the “translational degeneracy” (illustrated
in Figure 2) due to close values of the tensor for two different relative positions of the
individual components within a complex. Docking guided by RDCs has similar challenges
(as shown in our previous study15), because the alignment tensor has the same symmetry
properties as the diffusion tensor. Moreover, in the case of steric alignment caused by
neutral planar objects, both tensors are defined by the shape of the molecule and therefore
have similar orientations.42 Therefore, including RDC data might not help fully resolve the
above mentioned degeneracies. However, these degeneracies can be resolved by adding
information on intermolecular distances or contacts, even as ambiguous as the CSPs,
because the latter do identify sites on the binding partners that form the interface and
therefore are expected to resolve both orientational and positional degeneracies. Indeed, as
shown in Table II, including CSP-based contact restraints into ELMPATIDOCK
calculations removes the degeneracy of the resulting structures. Adding only CSP restraints
to the diffusion-guided docking also resolves the degeneracy (data not shown), whereas
having relaxation and RDC data and leaving out the CSPs does not.

Conclusions
We developed an efficient minimization method for rigid-body docking of two-component
molecular complexes guided by the overall rotational diffusion tensor extracted from spin
relaxation data. The improved efficiency of the method is a direct consequence of the two
approximation methods that we developed for fast estimation of the diffusion tensor of a
multi-component system. We combined the approximation methods into a novel two-step
minimization protocol that provides the first complete deterministic method for docking
molecular complexes based on the experimental NMR relaxation data and three-dimensional
structure of the individual components. Our method finds the solution about 800 times faster
than the previous (simplex-based) docking23 (which provides no method for determining the
initial guess) and is expected to be significantly more computationally efficient than the
simulated annealing method25 (which is not guaranteed to converge to the correct solution).
The utility of the two approximation methods developed here goes beyond the specific
application to ELMDOCK since they can be integrated into alternative docking methods or
simulation software.

We demonstrated the robustness of our method to experimental noise and to errors in
domain structures by docking a large variety of protein complexes using synthetic relaxation
data with or without experimental errors. Using real experimental data on rigid structures
like HIV-1 protease homodimer or maltose binding protein we are able to dock within a Δc
of 5Å from the actual solution. For docking molecules containing partially unstructured
flexible tails, deriving a properly “averaged” structure is important for getting a more
accurate solution. However, the robustness of our approach with respect to structural
rearrangements accompanying complex formation (especially when used in combination
with robust regression ROTDIF) suggests that the diffusion-tensor-guided docking could be
used effectively in the starting stages of molecular complex assembly, e.g., by starting with
the unbound structures of the individual components, then using ELMDOCK/
ELMPATIDOCK to develop an initial guess at the solution, and subsequently refining it as
the computation progresses.

ELMDOCK, with the approximation methods for the diffusion tensor presented in this
paper, can potentially be used in several ways. First, it provides a quick rigid-body docking
method whose solutions can be utilized to significantly limit the search space (or at least the
initial search space) of a more complicated flexible-docking algorithm e.g. using
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ELMDOCK to develop an initial guess at the solution and subsequently refining in later
stages of assembly. Second, our approximate energy functions (see section “Approximating
Diffusion Tensor Under Translation”) can be included as an additional term in a more
general energy function that accounts for all other structure-related restraints such as
distance and torsional angle restraints, hydrogen bonding, electrostatic and van der Waals
potentials, etc. Moreover, the computational efficiency of the ELMDOCK method proposed
here makes it feasible to perform diffusion-tensor-guided docking at each iteration step of a
more complicated flexible-docking algorithm, for example by analyzing docking of multiple
conformers at each minimization iteration. ELMDOCK or parts of the method can be
incorporated in or improve computationally expensive parts of existing structure
determination/refinement protocols (e.g. HADDOCK,43 XPLOR-NIH44). This integration
into a more complicated method would allow us to account for side chain and backbone
flexibility at the interface, as well as integrate other available experimental data.
Specifically, recent XPLOR-NIH implementations25,26 can directly benefit from the
techniques developed here.

It should be mentioned here that our current implementation of the shape-based docking
approach assumes that the components of the complex tumble or orient together as one
entity, thus implying a relatively tight complex. Accurate characterization of protein-protein
complexes should account for contributions to the experimental data from the free
components in dynamic equilibrium with the complex (see, for example,45). This is
particularly important for weak macromolecular interactions resulting in transient
complexes. Applications to such systems would require modification of the target functions
used in this study, to include the contributions to experimental data from the free form of the
interacting partners.

The fact that our docking method is extremely fast for two-component complexes opens up
the possibility of extending the ELMDOCK approach to three or more components. Even
though each additional component gives rise to an exponential increase in complexity and
time, it is still possible to quickly approximate the diffusion tensor energy function for a
multitude of components.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Illustration of the two components of the Ub/UBA complex coming closer together, with the
surface points computed with hydration layer thickness of 2.8Å. (A) The two molecules are
apart so that all the surface points contribute to the overall surface (colored green). (B) The
molecules come closer together, and some of the previous surface points (colored red) no
longer contribute to the combined solvent-accessible surface.
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Figure 2.

Two local minimizers of  for the Ub/UBA complex; both have similar covariance
matrices of the surface points. The surface of the complex, with hydration layer thickness of
2.8Å, is drawn along with the equivalent PCAE for the specific solution, colored in aqua.
Domain A is colored green and domain B is red. (A) The solution with the correct
positioning of the second domain. (B) A solution with a similar covariance matrix, but
incorrect domain placement.
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Figure 3.
Docking results for the 80 protein complexes (from the COMPLEX dataset) based on
synthetic data with no errors, 2.5%, and 5% random errors in ρsyn. (Due to technical issues
with the surface-builder program SURF30,31 we removed four complexes from the original
set of 84.) Docking of each complex was performed six times, with individual errors in 
randomly selected from the normal distribution. (A) The error, Δc, in positioning of the
second domain relative to the first one. Several larger outliers for complex 42, 1I4D, not
shown. (B) Relative error in the overall rotational correlation time, τc, between the predicted
diffusion tensor at the known solution and at the docked solution.
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Figure 4.
The results of (A) ELMDOCK-t and (B) ELMDOCK assembly of complexes of “unbound”
structures of the proteins from the COMPLEX dataset, using ρ syn values, computed from
the corresponding “bound” complexes, as the input experimental data to guide the docking.
Shown are the backbone “Base” RMSDs (red bars) and RMSDs between the resulting
(unbound) complex and the original (bound) complex. Missing bars correspond to those few
complexes where we were unable to properly match the atoms between the bound and the
unbound coordinate sets. The results are presented for robust and regular regression versions
of ROTDIF (green and blue bars, respectively).
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Table II

The results of docking using ELMPATIDOCK. See Table I for explanation of column headers.

Structure Methoda RMSD Δc #Sol.

2jy6 ELMPATIDOCK 0.99 1.97 1

2jy6-II ELMPATIDOCK 0.87 1.82 1

2jy6 ELMPATIDOCKb 2.55 5.65 8

2jy6-II ELMPATIDOCKb 1.23 3.70 8

a
Diffusion tensors and alignment tensors gave slightly different orientational constraints. Alignment tensors were used to orient the two domains.

b
Contribution of the CSP-based and steric energy restraints were removed from the minimized energy function.
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Algorithm 1

Overview of Docking Algorithm ELMDOCK

Input: Three-dimensional structure of domain A and B, ρexp – experimental relaxation-rates ratios, G(x) – a function that computes the
covariance matrix of M(x).

Output: x* – the translation of B that yields the best docking solution as measured by our energy function.

 1: Orient the A and B domains using ρexp {See above}

 2: Compute Dexp using ρexp from both of the domains using ROTDIF

 3: Step 1: Compute the covariance matrix C* from Dexp

 4: Step 2: Find x* by solving 

 5: return x*
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