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Abstract
Conformational selection is a primary mechanism in biomolecular recognition. The
conformational ensemble may determine the ability of a drug to compete with a native ligand for a
receptor target. Traditional docking procedures which use one or few protein structures are limited
and may not be able to represent a complex competition among closely related protein receptors in
agonist and antagonist ensembles. Here, we test a protocol aimed at selecting a drug candidate
based on its ability to synergistically bind to distinct conformational states. We demonstrate, for
the case of estrogen receptor α (ERα) and estrogen receptor β (ERβ), that the functional outcome
of ligand binding can be inferred from its ability to simultaneously bind both ERα and ERβ in
agonist and antagonist conformations as calculated docking scores. Combining a conformational
selection method with an experimental reporter gene system in yeast, we propose that several
phytoestrogens can be novel estrogen receptor β selective agonists. Our work proposes a
computational protocol to select estrogen receptor subtype selective agonists. Compared with
other models, present method gives the best prediction in ligands’ function.
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Proteins dynamics is a key factor in protein–ligand interactions. For the nuclear receptor,
protein conformational changes coupled with ligand recognition and binding underlie signal
transduction mechanisms (1). Currently, it is still a challenge to include dynamics in

© 2011 John Wiley & Sons A/S
*Corresponding author: Jian Huang, jianhuang@whu.edu.cn.
Supporting Information
Additional Supporting Information may be found in the online version of this article:
Table S1. Original docking scores of training set compounds and 17β-estradiol. The co-complexed ligands in each structure were also
listed.
Table S2. Original docking scores of twenty phytoestrogens to twelve structures.
Table S3. Docking energies calculated by MD-SA model.
Appendix S1. The 51 phytoestrogen used in initial screen.
Please note: Wiley-Blackwell is not responsible for the content or functionality of any supporting materials supplied by the authors.
Any queries (other than missing material) should be directed to the corresponding author for the article.

NIH Public Access
Author Manuscript
Chem Biol Drug Des. Author manuscript; available in PMC 2012 July 1.

Published in final edited form as:
Chem Biol Drug Des. 2011 July ; 78(1): 137–149. doi:10.1111/j.1747-0285.2011.01119.x.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



structure-based virtual screening. Molecular docking methods are routinely used to select
drug candidates by predicting ligand binding affinities using some scoring functions (2, 3).
Traditionally, one or several protein structures have been used to represent target structures.
Docking scores fluctuate when different conformers are used to represent the same target
receptor, which is known as the ‘cognate docking problem’ (4). This not only decreases
prediction accuracy, but can also question the obtained biological insights. More accurate
docking prediction may be achieved by using average scores from several structures (5) or
allowing the receptor binding pocket to be ‘adaptive’ to ligand conformations through
conformational selection (4).

Recently ensemble docking has become increasingly popular (6–10) with a quick search
recording close to 200 such publications. These follow the pioneering work of Shoichet (11)
over a decade ago, and the broad recognition that proteins exist in ensembles of
conformational states. Among these, an encouraging number (close to 50) already
considered conformational selection.

Still, the underlying biological significance of the sensitivity of the docking score to the
target structure ensemble has been mostly overlooked. Receptors and ligands are dynamics
molecules, and their interactions involve mutual conformational selection (12). Such
scenarios can be well illustrated by ligand binding to the estrogen receptor (ER).

Estrogen receptor is an estrogen-inducible transcription factor that controls genes related to
reproductive organs, the cardiovascular system, bone, and brain (13). Consequently, ER is
an important therapeutic target. There are two subtypes of ER in the cytoplasm, ERα and
ERβ, which share high sequence and structural similarity (14). Estrogen and related
compounds are similarly responsive to ERα and ERβ. However, expression patterns (15, 16)
and transcription activities (17) distinguish between the two subtypes. Structurally, ERα and
ERβ have two distinct agonist and antagonist conformations, mainly differing around the
helix 12 region (18) and the co-activator recruitment site (19). The conformation of the
ligand-binding domain (LBD) may also change upon binding (20). A drug targeting ER to
modulate following transcription has to compete with the native ligand estrogen. Side effects
may arise if the drug has low selectivity toward the target (ERα or ERβ) in the right
conformation (agonist or antagonist). Thus 17α-estradiol can have adverse side-effects [such
as endometrial carcinoma and breast cancer (21, 22)]. Some ERβ-selective agonists (such as
genistein) have lower adverse effects compared with 17β-estradiol but still appear to confer
comparable benefits. Selective ERβ agonists, named selective estrogen receptor modulators
(SERMs), can substitute for 17β-estradiol. Many phytoestrogens (23) were characterized as
SERMs, such as genistein and daidzein (24); some can be used for inhibiting ER-dependent
cancer-cell proliferation (25) and in bone and nerve system treatment (24). However, some
phytoestrogens have side effects, interfering with development (26) and the immune system
(27). Computational approaches to screen SERMs in silico have been reported, with
different success rates (28–31). These works applied molecular dynamics, QSAR or the
CoMFA algorithm to screen/design ligands specifically binding to either ERα or ERβ.
However, they did not account for ER conformational variability of the functional states.

In this study, we pursued a novel computational screening approach for ERβ selective
agonists. To find these, the ligand should not only bind favorably to ERβ in the agonist
conformation, but also to the ERα antagonist conformer. We used such multi-targeting
conformational selection scheme to screen 51 plant extracts. Based on the in silico
prediction, candidate ligands were experimentally tested through a bipartite recombinant
yeast reporter system and found to be ERβ selective agonists. Several phytoestrogen were
successfully identified as ERβ agonist by computational and experimental studies. These
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studies not only suggest an explanation to ER selectivity of known compounds, but also an
alternate strategy for drug design and screening.

Materials and Methods
Reagents

Salidroside, galanthamine, resveratrol, isoalantolactone, (+)-catechin, luteolin and curcumol
were purchased from the National Institute for the Control of Pharmaceutical and Biological
Products (Beijing, China). Genistein and 17β-estradiol were purchased from Sigma-Aldrich
(St. Louis, MO, USA). All estrogenic ligands stock solutions were prepared in dimethyl
sulfoxide (DMSO; Sigma-Aldrich) at 10−3 M before dilution by ddH2O. O-Nitrophenyl-β-D-
galactopyranoside (ONPG) was from Amresco (Beijing branch). All other chemical supplies
were of analytical grade. YEP-ERα, YEP-ERβ, YRPC2-2cERE plasmids, and BJ5409 yeast
strain were kind donations from Dr. Dan Noonan (University of Kentucky).

Structure preparation
Schrodinger software package was used for receptor structure preparation and docking.
Crystal structures of ERα and ERβ in agonist and antagonist conformations were
downloaded from the Protein Data Bank (PDB IDs: 1a52, 1gwq, 1l2i, 2j7x, 1u3q, 1×7b,
1err, 2ouz, 3ert, 2fsz, 1l2j, and 1nde). Receptor data are given in Table S1. Missing atoms
and residues were added and minimized in an OPLS-2005 force field using the program
Maestro. Monomers of the LBD of the receptors were further minimized by deleting
redundant water molecules and metal ions, except one retained water molecule which was
structurally conserved in two receptors (18, 30). Receptor grids near the ligand-binding
pocket were generated by the Glide® software (32). Co-crystallized ligands were used for
receptor grids generation as the center. The smallest cubic containing the β-sheet region of
the LBD is taken as the grid. No specific constraint is applied.

Ligands’ structures were constructed and minimized in MM94 force field with CHEMBIO3D
ULTRA 11.0 software. Poses were generated at variable pH, ion states and ring conformations
with Epik®. The following Epik parameters were used: mode: predict states; H2O solvent;
pH 7.0 ± 2.0. Possible generate tautomers were also generated with the Epik, and the
maximum number of conformers generated for each compound was limited to 16.

Docking procedure
Prepared ligands were screened using the standard SP Glide docking protocol to ERα or
ERβ in agonist and antagonist conformations. The best pose of each ligand which survived
in the screening was further calculated using the XP standard docking calculation. The
following SP/XP docking parameters were selected: SP/XP precision, force field SP2005,
water environment; variable bond movement was allowed without restraint; and no specific
core, similarity group or constraint is applied.

Bipartite recombinant yeast reporter system
The bipartite recombinant yeast reporter system was constructed as described in our
previous work (33). To test selected ligand’s abilities to activate ERα and/or β, BJ5409 yeast
strain was transformed with a reporter plasmid containing a downstream reporter gene lacZ
and plasmids which express ERα and β. To test ligands’ abilities to occlude estrogen’s
activation of ERα, yeast strain expressing ERα and reporter gene was used. Upon reaching
an absorbance for 600nm wavelength of 0.6, measured using a Universal Microplate Reader
(ELX 800uv, BIO-TEK Instruments, Inc.), the bipartite recombinant yeast was incubated in
96-well plate at 30 °C for 24 h in the presence of copper ion and ligands. All chemicals were
tested at a concentration of 10−5 M. For inhibition tests, 17β-estradiol was applied at final
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concentration of 10−8 M together with test ligands at various final concentrations. Following
incubation, 100 µL of lyticase solution was added to each well, incubated for 2 h at 30 °C
and absorbance of 405 nm wavelength was measured. β-galactosidase activity was
calculated to represent relative activity.

Statistical analysis
Bipartite recombinant yeast reporter system data was analyzed by ORIGIN 8 software (Origin
Lab, Northampton, MA, USA) and expressed as mean±SD. The relative activities of each
ligand underwent a two-sample t-test to compare the relative activities with and without
ligand for each type of receptor. One-way ANOVA was performed between different
concentrations to distinguish between these activities (statistically significant (p < 0.05);
very significant (p < 0.01)).

Results and discussion
Single-structure docking only predicts binding affinity

Single-structure docking approaches were first applied to ligand interactions with ERα and
ERβ. A similar method for screening ERβ selective ligands was applied earlier by Wolohan
and Reichet (31) to predict the relative binding affinity ratio (RBAratio) of a ligand to ERβ
and to ERα. In their study, ligand RBAratio value was predicted directly by dividing its
docking scores to ERβ by those to ERα. Higher RBAratio value indicates better affinity
toward ERβ than ERα.

We first select two native ligand (17β-estradiol) ER-bounded structures as receptor
structures (PDB codes: ERα 1a52 and ERβ 2j7x). These allow us to investigate the ability of
a compound to replace the native 17β-estradiol, following experiments that measure the
ligand’s ability to replace 17β-estradiol binding to ERα and ERβ (18). We collect 12 ERβ
selective compounds with known experimental RBAratio values as a validation set (34–41).
Instead of using the absolute docking scores of a ligand to ERα and ERβ, we predict the
relative binding affinity ratio by comparing docking score to that of the native ligand (17β-
estradiol) which mimics the competition experiment used for measuring binding affinity.
Our predictions of RBA are based on equation 1:

(1)

where DS(ERα) and DS(ERβ) are the docking scores of a compound to ERα and ERβ,
respectively, and the constants 13.92 and 13.75 obtained from the docking score of 17β-
estradiol to ERα (−13.92) and ERβ(−13.75). The result of subtraction of ligand docking
score to that of 17β-estradiol is supposed to be inversely proportional to the ligands’ binding
affinity. The structure of each ligand and corresponding RBAratio values obtained from eqn
1 are listed in Table 1.

Overall, our computed RBAratio were in line with the experimental RBAratio values. In
Figure 1, we plot the linear regression of the experimental RBAratio values versus the
computed RBAratio. The good correlation between predicted and experimental RBAratios (R2

= 0.95, Figure 1A) suggests that the docking procedure and parameters are reasonable
candidates. However, in spite of the fit shown in Figure 1A, the current model cannot
discriminate between a ligand agonist and antagonist which is what we are primarily
interested in, because single-structure docking does not have additional scores to distinguish
between these. Thus, the ligand’s efficacy cannot be predicted directly using the RBAratio.
Consequently, we design a conformational ensemble model to predict the ligand’s efficacy.
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The conformational ensemble model can assist in ER agonist-antagonist discrimination
The conformational ensemble of ERs can be divided into four groups: ERα in agonist
conformation, ERβ in agonist conformation, ERα in antagonist conformation, and ERβ in
antagonist conformation. Ideally, a ligand can selectively bind to a specific group; in reality,
a ligand will bind all four ER groups with different populations.

In order to analyze the ligand affinity to different receptor conformations, we calculated the
ligand-binding affinity to all ER structures in the four groups. We selected twelve ER
structures to represent the four conformers, three structures for each group (Table S1). To
avoid bias when the ensemble structures were used to screen phytoestrogens, we excluded
several known structures of ER-phytoestrogens complexes (1×7r, 1qkm, and 1×7j for ER-
Genistein complex). For each group, the average binding affinities was averaged using
partition function to reflect possible Boltzman distribution:

(2)

The theoretical foundation of conformational ensemble model lies in the correlation between
efficacy and binding affinity, which has been elaborately described in the ‘two-state model’
(42). Based on that model, efficacy can be interpreted as ligand’s binding affinity to active
conformer. In real world, equilibrium of ligand population binding to different receptor
conformers gives rise to apparent RBA. Costa et al. (43) and Kenakin et al. (44)
demonstrated that in ligand-binding studies, ligands’ potencies (ability to bind) depend not
only on ligand efficacy (ability to activate) but also on that of the tracer. In the case of ER,
competition experiment favors agonist conformation since 17β-estradiol is a pure agonist.
Thus experimental RBAratio should be correlated to agonism ratio and inversely correlated
to antagonism ratio.

To test whether docking score represents ligand affinity to different conformers, two sets of
RBAratio were derived from these data:

(3)

(4)

These procedures were applied to the twelve compounds and 17β-estradiol (Table S1 and
Table 2). When the RBAratio(agonist) and RBAratio(antagonist) were compared with the
experimental RBAratio (Figures 1B,1C), we found ‘medium’-level correlations: the
RBAratio(agonist) positively correlated with experimental RBAratio (Figure 1B), while the
RBAratio(antagonist) inversely correlated with experimental RBAratio (Figure 1C). This
suggests that RBAratio(agonist) and RBAratio(antagonist) may be informative with respect to
ligand preferences.

In order to investigate whether ligand preferences to different receptor conformations were
actually linked to ligand’s efficacy, we further tested several well-characterized SERMs. Six
compounds [ERB-041, Way 20070 (45) (selective ERβ agonists), propyl pyrazole triol (46)
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(PPT, selective ERα agonist), 17β-estradiol (agonist for both subtype), ICI164384 and 12a
(47) (antagonists for both subtypes)] were docked into the twelve receptor structural
ensemble (Table S1). Take PPT as an example, its Eave for ERα agonist is −16.54, and ERα
antagonist is −8.79. Thus, the score ratio of agonist to antagonist for ERα is 1.88, which
suggests that PPT prefers to select the ERα agonist conformation. In the case of ERβ, PPT
gave a ratio of 0.54 for agonist versus antagonist. As shown in Figure 1D, PPT can be
located in the fourth quadrant, which may suggest that the ligand is a preferred ERα agonist.
The docking scores of other ligands were similarly analyzed and plotted in Figure 1D, with
all ligands tested located in the correct quadrant. Therefore, the results demonstrate a good
match between score ratios and the ligands’ efficacy profiles.

Taken together, the results in Figure 1B,C,D show that the binding affinities to different
structures correlate with the ligands activity, which may suggest that conformational
selection among the ligands might be used to predict the ligand efficacy.

Conformational ensemble model can be used in predicting selective ERβ agonists
In order to select the ERβ agonist, we further normalize the docking scores using following
equation:

(5)

The Selection ERβratio may reflect the preference of a compound to ERβ agonist
conformations: conformations of ERβ-agonist and ERα-antagonist should be positively
selected, while the ERα-agonist and ERβ-antagonist conformers should be discriminated.
Intuitively, the higher the Selection ERβratio is, the more possible for the ligand to be a
selective ERβ agonist. However, to use this index practically, a good threshold is needed, as
the ligand-receptor interaction should not be interpreted as rigid activation or inactivation,
but as a probability of an event happens in ligand–receptor population. A quantitative and
statistical threshold can be set by a Monte Carlo simulation as described elsewhere.

Eave in each conformer group is in range of the highest and lowest docking score in that
group. Random-assigned Eave within the range gives result for the distribution of Selection
ERβratio. As different function groups have different Eave ranges, four Selection ERβratio
distributions can be obtained for statistical analysis. Ligands used in Figure 1D have good
representatives from each function groups and is again used in this Monte Carlo simulation.
A total of 10 000 interactions for each group is calculated and plotted in Figure 2. It clearly
shows that Selection ERβratio distributes significantly different from each function group
with the given Eave ranges. The only complication for predicting selective ERβ agonist is
the overlapped part between ERβ selective agonist and both agonist group. To distinguish
these two groups from each other, the upper limit for both agonist group is set at 1.11 (one
side 95% confidence). With this threshold, ligands with Selection ERβratio higher than 1.11
is believed to have a better chance to be selective ERβ agonists, while lower ones might be
in one of the three function groups with corresponding depending on the value.

In accordance with our model, the Selection ERβratio for 17β-estradiol is 0.98, which falls
into the both agonist group. The value for ERB 041 is 1.29, showing a good ERβ selectivity.
But it should be noted that the lower limit of selective ERβ group extends to 0.99 (95%
confidence), where three function groups (except for selective ERα) all have an
unneglectable probability. So when ligand’s Selection ERβratio lies in 0.99–1.11, its
functional property cannot be determined by our analysis. Nevertheless, as described in the
following section, conformational ensemble model gives accurate predictions about
phytoestrogens’ interactions with ERs.
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Selection ERβratio may predict phytoestrogens properties as selective ERβ agonists and
low ERα activation

We initially screened 51 plant extracts (see Appendix S1) using a single structure model
(one ERα crystal structure: 1a52; and one ERβ crystal structure: 2j7x). Twenty compounds
with relatively large score ratios of ERβ to ERα were selected as ERβ selective binder
candidates and were used to test the effect of different receptor conformations (Figures 3
and 4). Their initial RBA varied from about 0.45 to 1.60.

The predicted ERβratios are reported in Table 3. Ligands are grouped into positive prediction
(higher than 1.11), neutral prediction (between 0.99 to 1.11) and negative prediction (lower
than 0.99). Note that Cordycepin was marked as negative although it has higher Selection
ERβratio, because of its very low overall docking scores (Table S2). Among those negative
predictions, some ligands were already investigated. Phenylephrine was reported to have a
pure antagonist activity (48), and Tanshinone II A was demonstrated not to be selective
between two ER subtypes (49). Bergenin is not an effective agonist for ERβ, as it had a low
cytotoxicity on Murine Breast Cancer Cell Line, FM3A (50). Our lab further confirmed that
Bergenin hardly exhibited protective effect on amyloid-beta-treated neuroblastoma cell line,
while many ERβ selective agonists did (data not shown). Cordycepin did not affect MCF7
cell—line proliferation, indicating a lack of ER activation (51). Among the ligands within
neutral prediction group, some were confirmed as ERβ agonist previously, such as Apigenin
and Naringenin (52). Osthole could significantly prevent cancellous bone loss without the
change of uterus weight compared with 17β-estradiol (53), suggesting ERβ activation. And
in positive prediction group, Daidzein (52) and Glycitein (54) have already been tested as
ERβ selective agonists.

We selected three ligands from the seven positive predictions, two from five neutral
predictions and three from eight negative predictions to investigate their transcription
activity with a bipartite recombinant yeast reporter system. 17β-estradiol was also tested as
positive control (Figure 5A). The relative activities were calculated using the measured
absorption data according to our previous work (33). The relative activity of 17β-estradiol
was in accordance with our previous work, confirming the reporter systems’ stability.
Whereas ERα maximal activation by 17β-estradiol reached about 200 normalized units, ERβ
reached about 120 normalized units. Three ligands, which were predicted as ERβ selective
agonists, including trans-Resveratrol, (+)-Catechin and Luteolin were experimentally
confirmed as ERβ-selective agonists. Galanthamine and Salidroside (from neutral
prediction) also activated ERβ. The activation of ERβ reached statistical significance of p <
0.01. Isoalantolactone, Genistein, and Curcumol were predicted as impotent ERβ selective
agonists. Isoalantolactone and Curcumol did not show any estrogenic activity as predicted.
Genistein was experimentally confirmed as a known ERβ-selective agonist.

We further investigated ligands’ ERα antagonism. Water was used as control and its result is
set as 100%. As shown in Figure 5B, among three positive prediction ligands, (+)-Catechin
showed significant inhibition; Resveratrol and Luteolin did not change much of the
estrogen’s effect. In neutral prediction group, Galanthamine showed potent inhibition but
Salidroside had some agonism effect when treated together with 17β-estradiol. Two of the
negative prediction ligands, Genistein and Curcumol, synergized 17β-estradiol effect, while
Isoalantolactone significantly reduced activation. The results show that higher ERβ
selectionratio would be better interpreted as low ERα activation but not necessarily as ERα
antagonism.

Our models indicate that Genistein may not be selective ERβ agonist, in contrast to several
reported assays and our own activation assay. However, it is known that Genistein can bind
both ERα agonist and ERβ partial agonist, as indicated by three crystals structures of ER—
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Genistein complexes, i.e., ERα agonist 1×7r and two ERβ partial agonists, 1qkm and 1×7j.
Several experiments clearly indicate that Genistein can be ERα-selective in different
environments, in agreement with our inhibition assay. Barkhem et al. (55) found that
genistein has an ERβ selective affinity and potency but an ERα-selective efficacy. It was
also found recently that in cells with a predominance of ERα, genistein acts as an agonist to
ERα, and in cells with ERβ alone, genistein most likely acts as an antiestrogen (56). Di et al.
(57) also found that a low concentration of genistein induces ERα signaling.

Several compounds are not available (Huperzine and Xanthotoxol) or not the most stable
isomers (cis-Resveratrol); thus, there is no information about their experimental activities.
Combining activation and inhibition assay results, all ligands exhibit properties as predicted
by conformational ensemble model. Salidroside and Genistein are marked negative because
of their agonist actions when treated together with 17β-estradiol. From these results, we
demonstrate that Selection ERβratio makes good prediction for specific ERβ agonists.
Compared with the quadrant plot used in Figure 1D, the single parameter is easier to
compare. Selection ERβratio would actually be more accurate in prediction for ERβ agonist,
as the Monte Carlo simulation gave statistically significant threshold.

The conformational ensemble model may give more functional information and show
higher success rate than other models in efficacy prediction

Conformation ensemble model is more powerful than traditional single-structure model in
predicting ERβ selective agonists. Using data from literature and our present work, all
ligands exhibit the predicted action in vivo. If we use ligand’s docking score to 2j7x versus
to 1a52, as a simple representation of single-structure model, and set cut-off value using that
of 17β-estradiol’s, the success rate will be 8 of 17 (Table 3, 47%). RBAratio(agonist) does
not show good correlation with ERβ activation neither, with the same success rate. And
RBAratio(antagonist) has the worst success rate as 4 of 17 (24%).

Table 3 also presents prediction results from a flexible docking model (58). For each do
cked structure, we run 20 molecular dynamics simulated annealing (MD-SA) calculations,
with same protocol described in the aforesaid references. The Charmm parameters for
ligands were estimated using program. Antechamber was running at CHARMMGUI web-
server (http://www.charmm-gui.org). After MD-SA, the ligand—protein interaction energies
were calculated with distance-dependent dielectric constant (4r). We selected ERα agonist
(pdb: 1a52) and ERβ agonist (pdb 2j7x) for the calculation (see Table S3). Energyratio(MD-
SA) was the ratio of docking energy 2j7x to energy 1a52. The MD-SA method shows
similar prediction as our conformation ensemble model in positive and neutral prediction
groups (100% hit). However, it does not work well in negative prediction group, giving an
overall success rate of 59%. The main reason is that the protein flexibility in the MD-SA
method is still limited, not enough to cover large conformational change. In future, the
combination of the MD-SA method with multiple protein structures should be examined.

These predictions are summarized in Figure 6, with two groups of experimental results.
Selection ERβratio model gives a clear border between these two groups while other models,
even with different structures average, would not be able to distinguish the two.

Conclusions and future directions
Estrogen receptors are classical examples of coupling between protein conformational
change and selective transcription activation. This study suggests that ligands can interact
with similar targets in different conformations, and that the biological outcomes like ERβ
selective agonist depend on the relative affinities of a ligand to ensembles of protein
conformations. While docking screening for SERMs are becoming more popular, the present
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work illustrates the usefulness of an ensemble of crystallized ligand—receptor complexes.
The variability in these crystal structures represent ensemble snapshots and provide
information relating to protein dynamics.

Current study has some interesting findings in phytoestrogens. Resveratrol was shown to
have higher affinity to ERα than to ERβ (59), but our yeast experiments indicate that it
stimulates ERβ more than ERα (Figure 5A). A similar result was reported earlier (52).
Furthermore, trans-Resveratrol was found to be an anti-breast cancer agent (50), which may
suggest that the ligand could be a selective ERβ agonist. Our results may provide insights
into the apparent contradiction between binding affinity and transcriptional activity: as
shown in Table S2, the docking score indeed indicates that trans-Resveratrol has higher
affinity towards ERα agonist and antagonist conformations. However, trans-Resveratrol has
similar binding affinities toward both ERα agonist and antagonist conformations. In
contrast, trans-Resveratrol has much higher affinity to ERβ-agonist conformations than to
ERβ-antagonist; consequently, trans-Resveratrol is expected to select the ERβ agonist
conformation over the ERβ antagonist. Thus, trans-Resveratrol activates ERβ more than
ERα. It is interesting to note that cis-Resveratrol, which is thermodynamically less stable
than the trans-isomer, was also predicted to have high ERβ agonist selectivity.

Another interesting finding was that Galanthamine and Huperzine were also predicted to be
ERβ agonists. Both are well-known acetylcholinesterase inhibitors (AChEIs) (60, 61) and
used in treatment of Alzheimer’s disease (62). They were believed to act through pathways
irrelevant to ER. However, Galanthamine was confirmed to be an ERβ agonist in our yeast
system; it could be an effective multi-target ligand and provide a scaffold for medicinal
design.

Our approach is also in consistent with a previous finding that THC has different activation
profiles on two ERs (63). Consistent with the conformational change of the THC-ERα and
the THC-ERβ complexes, THC acts as an ERα agonist and an ERβ antagonist. In order to
find ERβ selective agonist, the ligand should not only bind well to ERβ, but also have
sufficiently favorable affinities towards agonist-induced ERβ and antagonist-induced ERα.

Even though our model generally agrees with experimental data, the conflicting
computational and experimental results for genistein selectivity prompt us to revisit the
“genistein discrepancy”. While the “genistein discrepancy” may correctly reflect the
sensitivity of ERs in complex with genistein to different environments, it nevertheless
emphasizes some limitations of the current conformational ensemble model: (i) twelve
ensemble structures are too few to accurately reflect the high conformational flexibility of
ERs (64); (ii) ER binding does not exactly match functional activity (65); (iii) allosteric
effects may reduce the accuracy of the current model. ER—ligand interactions (as all
binding events) are allosterically controlled (66); (iv) the model may not provide a
sufficiently accurate prediction. This is because SERMs exhibit distinctive effects in
different tissues, selectively activating/deactivating estrogen receptor, which may also relate
to allosteric effects. Cell variability and auxiliary (co-factor) molecules need to be
considered. The present model only considers functional similarity. Finally, (v) the scoring
function needs improvement.

In the present study, we test ligands that were not only predicted to activate ERβ, but also
expected to not activate/inactivate ERα. Synergetic multiple-targeting docking could be an
alternate approach for drug screening and design. Even though the ERα and ERβ are closely
related, they represent different targets because of their different biological functions. Multi-
target drugs were suggested to be more efficient than a drug that hits only one target (67).
Computational multi-target screening was proposed to be a novel paradigm for drug
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discovery (68). Indeed, experimental evidence has shown that simultaneous targeting of
multiple opioid receptors could improve the side-effects profile (69). Our current study
combined multiple-targeting and conformational ensembles. Whether this principle can be
applied in other receptors beyond ER needs further investigation.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Docking scores to different conformers indicate ligands’ preferences towards different
receptor conformation. (A) linear fitting of the computational RBAratio and experimental
RBAratio values. The fitting coefficient was about 0.95, indicating a good fit to experimental
RBAratio. (B) and (C) linear fitting of RBAratio (agonist), RBAratio (antagonist), and
experimental RBAratios. The RBAratio (agonist) positively correlates with experimental
RBAratio, while the RBAratio (antagonist) reversely correlates with experimental RBAratio.
The edges of the scatter dots area are shown by dashed lines. (D) docking score ratios of
some known SERMs. The docking scores reflect ligands efficacy and match with
experiments in the literature (see text).
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Figure 2.
Threshold Selection ERβratio value by Monte Carlo simulation. A total of 10 000 random
Eave values for each group were used in Selection ERβratio calculation as described in text.
ERβ selective agonist group is quite distinguishable from ERα selective agonist and both
antagonist group but has some overlap with both agonist group. Red dash line shows the one
side 95% confidence value of both agonist group. And blue dash line shows the lower limit
of ERβ selective agonist group (95% confidence).
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Figure 3.
Schematic flowchart of the conformation ensemble model used to screen phytoestrogens.
Receptor conformations were extracted from RCSB-PDB. PDB ID of each conformation
used is noted.
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Figure 4.
Twenty phytoestrogens with relatively large docking score ratios assumed to be ERβ
selective binders were further calculated.
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Figure 5.
Transcription activity of the tested ligands through different estrogen receptors by a
biparticle recombinant yeast reporter gene system. (A) 17β-estradiol was used as control.
Resveratrol, (+)-Catechin, Galanthamine, Luteolin and Salidroside selectively activated gene
expression through estrogen receptor β as predicted. On the other hand, Curcumol and
Isoalantolactone did not activate gene expression as predicted. Only genistein showed
response different from that predicted. (B) Inactivation profile of these ligands. Yeast cells
expressing ERα are treated with 17β-estradiol and one of the ligands at the same time. Only
results at ligand final concentrations in 10−5M are shown, because all the curves are
monotonic that highest concentration showed biggest effect. (+)-Catechin, Galanthamine,
and Isoalantolactone significantly inhibit receptor activation. ** indicates the results are
statistically significant (p < 0.01).
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Figure 6.
Comparison of conformational ensemble model to other kinds of models. Each column of
the figure describes a model. Sixteen ligands with experimental information (except for
Cordycepin) are plotted. Black dots indicate the ligand is confirmed by reference or yeast
test as selective ERβ agonist, while empty dots shows they are not. The bar in each column
shows the value of 17β-estradiol calculated in that model, as the cut-off value. For
conformational ensemble model, thresholds are marked at 1.11 and 0.99 as described in text.
The figure shows that only the conformational ensemble model gives the closest prediction
to experimental data.
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