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Time trajectories of medical costs-associated with onset of twelve aging-related cancer and chronic noncancer diseases were
analyzed using the National Long-Term Care Survey data linked to Medicare Service Use files. A special procedure for selecting
individuals with onset of each disease was developed and used for identification of the date at disease onset. Medical cost
trajectories were found to be represented by a parametric model with four easily interpretable parameters reflecting: (i)
prediagnosis cost (associated with initial comorbidity), (ii) cost of the disease onset, (iii) population recovery representing
reduction of the medical expenses associated with a disease since diagnosis was made, and (iv) acquired comorbidity representing
the difference between post- and pre diagnosis medical cost levels. These parameters were evaluated for the entire US population as
well as for the subpopulation conditional on age, disability and comorbidity states, and survival (2.5 years after the date of onset).

The developed approach results in a family of new forecasting models with covariates.

1. Introduction

Determining the national trends in health, disease burden,
and associated health expenditures in the US population with
growing proportions of elderly individuals is a major public
health concern and an important issue for policymakers
and governmental institutions. Aging-related deterioration
in health involves an important economical component—
that is, medical costs associated with disease treatment and
rehabilitation strategies to minimize the effect of disability
on economics. To forecast it, it is important to understand
the key factors driving progression of aging-related cancer
and noncancer chronic diseases and the associated medical
costs of health care providers such as Medicare and Medicaid.
In 2009, 46.3 million people were covered by Medicare:
38.7 million of them were 65 years and older, and 7.6 million
were disabled [1]. By 2031, the enrollment in Medicare
is expected to reach 77 million, when the baby-boomers
generation is fully enrolled [2]. The Medicare program
covers 95% of the nation’s aged population [3], therefore,

the prediction of future Medicare costs is an important
component of health care planning. Medicare costs result
from summarizing medical costs for each individual enrolled
in the system; individual costs deal with expenditures
associated with the disease onset and the consequences of
aging-related chronic conditions.

Detailed and comprehensive analysis has recently been
performed to investigate the aggregate spending on the
Medicare Part A and B programs for the U.S. elderly
population in their final years of life. The relationships
between Medicare costs and disability and morbidity were
considered by Goldman [4]: the Future Elderly Model
(FEM) was developed to predict the medical costs and health
status for the elderly. However, the “portrait” of individual
histories of changing health status, and the relationships of
such changes with dynamics of Medicare expenditures as the
person ages, were not investigated in detail. The important
topics requiring further analyses are the costs associated with
specific aging-related cancer and noncancer chronic diseases,
the influence of disease onset on individual medical cost



trajectories, the behavior of individual health trajectories
in presence of comorbid and concurrent disorders, how
analysis of structure of medical expenditures can help
healthcare providers find ways for controlling the costs,
and to what extent cumulative individual medical costs can
determine future changes in health status. Studies of such
problems appear episodically. New results in this area will
open new possibilities for population health and medical
cost forecasting, allowing for empirical base developing for
assessing the impact of new biotechnologies on increasing
the years of minimally disabled life [5].

The modern models of population health status fore-
casting with associated medical costs include three essential
components or submodels: (i) the model of medical cost
projections conditional on health state, (ii) health state
projections, and (iii) description of initial health state of a
cohort to be projected [4, 6-8]. Two major effects should
be taken into account while modeling the medical cost
projections: dynamics of the medical costs during the time
periods comprising the date of onset of chronic diseases and
the medical cost increase in the last years of life. In this paper,
we investigated and modeled the first of these two effects
(the latter was extensively investigated in the literature—
see [9-11]). The analyses of medical cost trajectories in the
time period of health change are capable of revealing many
substantive properties of Medicare expenditures for the
entire U.S. elderly population, as well as for subpopulations
conditional on a specific heath state (e.g., described by
disability and/or comorbidity indices). Besides, it could
generalize the approaches known as life tables with covariates
[12, 13] resulting in a family of new forecasting models with
a covariate such as comorbidity index or the medical cost.

Thus, this study is focused on developing a model capable
of a quantitative description of the relationships between
individual cost trajectories around the onset of an aging-
related cancer and noncancer chronic diseases. The model is
supposed to have demographically interpretable parameters
and to serve as a building block in constructing a more
precise and comprehensive forecasting model of medical
costs (including Medicare spending) on population level.
The underlying methodological idea was to aggregate the
health state information into a single (or several) covariate(s)
which can be determinative in predicting the risk of a health
event (e.g., disease incidence) and whose dynamics could
be determined by the model assumptions. An advantage of
such an approach is in its substantial reduction of degrees
of freedom compared with existing forecasting models—
as a result, the forecasting models in continuous time
estimated with the limited information might become a close
achievement.

2. Data and Methods

2.1. National Long-Term Care Survey (NLTCS), Medicare Files
of Service Use, and Medical Cost. The primary data to be
analyzed are the six waves of the NLTCS [14] spanning
the period from 1982 to 2004/5 linked to Medicare data.
Two of the six waves, namely, cohorts of 1994 and 1999,
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are used in the analysis. These specific waves were chosen
primarily because the high quality Medicare follow-up data
are available only starting from 1991, and also because the
complete 5-year follow-up after the NLTCS interview for
later than 1991 is accessible only for these two waves. The
NLTCS uses a sample of individuals drawn from the national
Medicare enrollment files. The NLTCS provides the reported
data on hundreds of variables including age, sex, and (instru-
mental) activities of daily living (ADL/IADL) allowing for
disability measurements. The same data collection agency,
the U.S. Census Bureau, was employed for collecting data
over all of the waves—so, the training methods and materials,
survey administration and management procedures, field
operations, computer processing, and editing procedures
were consistent across the surveys. In addition to these, the
high response rates (95%) across all NLTCS waves allowed to
minimize the bias in trend estimates. The results of interest
(i.e., parameters describing medical cost trajectories) are
similar for cohorts formed in 1994 and 1999 (that will be
further discussed in Section 4). The 1982 to 2004 NLTCS
files include information on 49,258 different individuals, and
34,077 of them were followedup in 1994-2004. The national
population estimates were produced using screener weights
released with the NLTCS.

Allindividuals in the NLTCS are continuously tracked for
Medicare Parts A and B service use. Thus, for all persons we
have continuous records of Medicare service use from 1991
or since the person passed age 65 after 1990 and until death.
These records are available for each institutional (inpatient,
outpatient, skilled nursing facility, hospice, or home health
agency) and noninstitutional (Carrier-Physician-Supplier
and durable medical equipment providers) claim type.

2.2. Date of Disease Onset Definitions. The date of disease
onset was identified using information collected in the
Medicare Claims files. Unlike mortality, the onset time of
chronic disease is difficult to define with precision due to
the variety of disease-specific criteria for onset/incident case
identification (e.g., incidence case for ACHD, fatal incidence
for stroke) used in clinical practice and epidemiological
and population-based analyses. Thus, there is a certain
arbitrariness in defining the date of onset which can be
used for constructing a unified definition of date of onset
appropriate for population studies. The scheme used in this
paper resulted from an overview of several approaches to
such definition [15-17]. The unified scheme is useful for
comparative analyses of the effects of different diseases on the
medical cost and is also appropriate for prediction purposes.

The following scheme was used to reconstruct the ages
at onsets of all diseases from the Medicare service use data.
First, the individual medical histories of the applicable dis-
ease were reconstructed from the Medicare files combining
all records with their respective ICD-9 codes. The following
ICD-9 codes were used: acute coronary heart disease (410.xx,
411.xx, 413.xx), stroke (431.xx, 433.x1, 434.x1, 436.xx), ulcer
(531.xx, 532.xx, 533.xx, 534.xx), breast cancer (174.xx),
prostate cancer (185.xx), melanoma (172.xx), lung cancer
(162.xx), colon cancer (153.xx), diabetes (250.xx), asthma
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TasLE 1: Characteristics of cohorts followedup for onsets of geriatric diseases.
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Total in two waves 34077 34077 34077 20771 13306 34077 34077 34077 34077 34077 34077 34077
Total without prevalent 31785 32807 33485 20241 12597 33970 33945 33752 31615 33503 33836 3386
Onsets 1375 1418 384 340 407 89 377 290 791 270 186 374
Level of IADL/ADL
Disability
Nondisabled 1094 904 265 254 361 68 301 220 616 198 119 209
IADL only or/and 1-2 151 211 55 48 31 6 50 45 82 37 27 52
ADLs
3—6 ADLs 130 303 64 38 15 15 26 25 93 35 40 113
Charlson index
0 600 576 151 159 231 32 131 127 432 100 86 155
1 298 301 99 85 80 11 105 61 157 80 41 71
2 208 203 49 42 43 18 50 51 102 39 24 57
>2 269 338 85 54 53 28 91 51 100 51 35 91
>2, mean 4.3 4.4 4.4 5.1 5.2 4.2 4.9 5.1 4.2 4.3 4.9 4.1
Age
<80 989 815 249 239 315 59 269 183 613 210 115 160
<80, mean 72 73 73 72 72 73 72 73 71 72 73 75
>80 386 603 135 101 92 30 108 107 178 60 71 214
>80, mean 85 86 85 84 84 84 83 84 86 85 86 86
Survived 2.5 years
No 340 600 90 62 74 21 289 112 125 57 61 161
Yes 1035 818 294 278 333 68 88 178 666 213 125 213
* Females only.
**Males only.

(493.xx), Parkinson’s disease (332.xx), and Alzheimer’s dis-
ease (331.0, 290.1). Then, the individuals with the history
of a considered disease before the date of interview in 1994
or in 1999 were excluded from the cohort. Because detailed
individual records in Medicare files are available from 1991,
we have a sufficient period of time to reject the prevalence
cases. The numbers of individuals in the pooled cohort
without the prevalent cases for each disease are shown in
Table 1. A date of a Medicare record (referred to as “this
record” below in the (i) and (ii)) is identified with the date of
onset of applicable condition if both conditions mentioned
below are met:

(i) this record is the earliest record with respective ICD
code as a primary diagnosis in one of four Medicare
sources (inpatient care, outpatient care, physician
services, and skilled nursing facilities).

(ii) in addition to this record, there is another record with
its respective ICD code as the primary diagnosis from
one of the four Medicare sources listed in (i), which

appeared with a date different from the date of this
record and no later than 0.3 years after this record.

This definition of the age at disease onset fixes a definition of
disease incidence. Since the date of onset of a certain chronic
disease is a quantity not defined as precise as mortality,
some assumptions are required to identify the date of onset
from individual records collected in administrative data. The
specifications used in this paper (e.g., choice of the four
Medicare sources in item (i) and time period of 0.3 year
in item (ii)) are in accordance with the general practice
of reconstruction of the date at onset from Medicare data
[15, 17].

2.3. Medical Cost Trajectories. For each disease, the individu-
als whose date of onset occurred during the 5 years after the
date of interview were selected (see Table 1). Then, they were
stratified into subgroups by certain indices. The following
variables were used for stratification: Charlson comorbidity
index (calculated using Medicare data), disability index
(measured in screener interview, see [18]), survival status
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FIGURrk 1: Empirical estimates (dots) and model predictions (solid lines) of cost per month per capita. The diseases are ordered according to
the cost of onset. Values in the right upper corners of all plots are X? per degree of freedom calculated as df ~! S200(Ci — C(m))*/a?, where
C; and g; are estimated mean and standard error of medical cost per month (for presentation purposes they were aggregated into two-month
groups); df denoted the degree of freedom calculated as the difference between the number of measured points (41) and the number of
estimated parameters (4). Note that the scale of the vertical axes is not the same for different rows of plots.

in 2.5 years, and age at diagnosis. The Charlson comor-  the Charlson index, and their weights are related to their
bidity index was calculated according to the specifications  relative risks of death. Disability index is constructed from
described in Charlson et al. [19] and Quan et al. [20], as a the screener questionnaire of elicited information on six
weighted sum of chronic conditions appeared in individual  activities of daily living (ADL, e.g., difficulty eating) and eight
medical records during the year prior to the date of interview.  instrumental activities of daily living questions (IADL, e.g.,
The seventeen groups of chronic conditions contribute to difficulties with light housework; laundry) [21]. The used
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FIGURE 2: Schematic representation of the pattern of cost per month

per capita and the notations for parameters estimated in the four

plots below (Figure 3) using dynamic model of changes in medical
costs accompanying the onset of chronic disease.

index is a variable with three categories: (i) nondisabled, (ii)
IADL only or/and 1-2 ADLs, and (iii) 3-6 ADLs.

For each of the twelve disease-specific groups and
strata-defined subgroups, means and standard errors of the
distributions of medical cost spending per month per capita
were estimated within 20 months before and after disease
onset. The empirical estimates demonstrated that 20 months
could be a sufficient period of time for “stabilization” after
disease onset by reaching a plateau in the mean of the medical
cost trajectories. In our study, these month patterns (or
medical cost trajectories) were subject to analysis, mutual
comparison, and modeling. The right censoring effects were
taken into account for the cohort of patients not surviving
2.5 years after diagnoses. All costs were presented in terms of
the dollar value from year 2000, being adjusted for inflation
using the Medical Care Consumer Price Index provided by
the Bureau of Labor Statistics [22].

3. Results

The empirical estimates of the cost trajectories are presented
in Figure 1. The shapes of the majority of medical cost
trajectories in the time range of 20 months before and after
the date of disease onset have the same structure. They can be
described in terms of four components sketched in Figure 2.
The first one is the pre-diagnosis cost level: this variable
measures comorbidity [23] and is referred to as initial
comorbidity. The second is the cost of the disease onset.
The third variable characterizes the rate of the reduction of
medical expenses associated with a disease during the period
since diagnosis was made; this variable could be interpreted
as a population recovery rate. The fourth variable is the
difference between the post and prediagnosis cost levels that
characterizes an acquired comorbidity due to a considered
disease.

The model for the month patterns of the medical cost
trajectories with four respective parameters was constructed
as follows. Before the month of disease onset all trajec-
tories demonstrated a plateau; therefore, this region can
be described by a single parameter ¢ associated with the
comorbidity of the studied population group. In the month
of onset the trajectories had a sharp peak associated with the
cost of onset, which was modeled by a single parameter P.
During the months after onset, medical costs decreased and
the decline was relatively exponential. Therefore, this decline
was modeled by an exponential function with a slope r
characterizing population recovery in terms of medical costs.
The level to which the trajectories converge leveling off could
also be associated with comorbidity; this level differs from
the initial one, ¢, by a quantity § that reflects the contribution
of the considered disease to an elevated comorbidity level.
Thus, the analytical expression for medical cost per month
per capita C(m) could be presented as

Cim) =c+ (6+(P—0)exp(—rm))[(m=0), (1)

where m is the time in months after onset (i.e., time before
the onset m is negative) and I (m = 0) is the indicator
function (I = 1 for m > 0 and I = 0 otherwise). The four
model parameters correspond exactly to the components
presented in Figure 2. Three of them—that is, the pre-
and post diagnosis costs associated with initial and acquired
comorbidity (c and §) and cost of the disease onset P—are in
U.S. dollars, while the slope of the population recovery rate r
is in months™!.

The model was applied to the data and estimated using
nonlinear least squares. The resulting curves are presented
in Figure 1. The model was estimated for the whole
population with the disease onset (see Figure 3) and for
subpopulations stratified over other measured variables, for
example, disability, comorbidity, or survival after onset.
The results of parameter estimates with standard errors
for all cases are presented in Tables 2-5 and graphically
presented by Supplemental Figures 1(a)-1(d) (see Figures
1(a)-1(d) in supplementary materials available online at
doi 10.1155/2011/857892) Comparisons of model estimates
allowed us to reveal the properties of the model components
described below.

The first component, pre-disease costs level associated
with the initial comorbidity, ¢, describes the plateau in the
cost trajectories that appeared before the disease onset. In
the majority of trajectories this is truly a plateau without a
significant time trend. Since only individuals with the disease
onset were selected for constructing cost trajectories, the
magnitude of the plateau (i.e., the value of the cost per month
per capita) reflects the mean comorbidity index measured
in terms of medical costs associated with the respective
diseases. In other words, the magnitude of the estimates of
the initial comorbidity depends on how strongly the risk
of the respective disease is determined by comorbidity. The
stronger is this association, the higher the mean comorbidity
index is in selected individuals. This hypothesis can be tested
directly using a separate analysis of subpopulation with
the Charlson comorbidity index [19, 20] estimated for a
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F1GURE 3: The model parameters (as sketched in Figure 2) were estimated within the 20-month period before and after onset of each of the
12 chronic conditions: (a) cost of initial comorbidity in U.S. dollars, that is, the mean cost per month per capita before onset, (b) cost of
onset in U.S. dollars, that is, the mean expenditures in the month of onset, (c) population recovery rate in 1/month, that is, the speed of
approaching new steady-state in medical expenditures, and (d) cost of acquired comorbidity in U.S. dollars, that is, an excess in expenditures
in a new steady-state compared to those before disease onset. Horizontal bars denote the standard errors of parameter estimates obtained

using the nonlinear least squares.

specific month using Medicare information of the previous
12 months. As one can see in Table 2, the positive correlation
between the Charlson index and the initial comorbidity is
found for all diseases. The strongest associations are detected
for stroke, ulcer, lung cancer, and diabetes. Thus, estimates
of the initial comorbidities for trajectories generated by
different diseases are similar and on average represent mean
comorbidity level measured by medical cost. Individual
variance of different diseases is moderate and comes from
associations of a disease onset with pre-diagnosis comorbid-
ity level. Disability index correlates with comorbidity, so its
pattern is similar to comorbidity index. Clear dependence
of the first component on the disability index was detected
for stroke, diabetes, asthma, ulcer, and ACHD. Dependence
on age group was modest; no significant dependence of
the initial comorbidity was detected for any disease. For
all diseases, except melanoma and colon cancer, the initial
comorbidity is larger for those people who died 2.5 years
after onset.

The second component, P, measures the peak at the date
of disease onset (i.e., for month zero in Figure 1): its height
reflects disease-specific cost at onset. The order of diseases
shown in Figure 1 is based on the decline of this component.
High variability of P in respect to the specific disease results
from the different medical procedures performed at the
time of onset (diagnostics and treatment). No significant
comorbidity and disability trends were detected for this
component. Dependence on age group is also modest,
though the difference at the level of 5% significance was
detected for ACHD, stroke, lung cancer—for which P is
larger for those aged 65-80 (i.e., for the younger group)—
as well as for diabetes and Parkinson’s diseases, for which
P was lower for younger individuals. For 2.5-year survivors
the cost was significantly lower for ACHD, stroke, ulcer,
asthma diabetes, and Parkinson’s disease, that is, for all
diseases except all cancers and Alzheimer’s disease. Note
that although for some diseases (e.g., asthma, Alzheimer’s,
ulcer, and melanoma) the increment in cost during several
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months before onset is visible (likely due to expenses for pre-
diagnosis procedures), in the developed version of the model
the effect is neglected. In further developments, the cost of
onset can be modeled using the normal distribution with
finite variance rather than the single parameter P.

The third component, r, characterizes the rate of reduc-
tion of medical expenses associated with a disease during
the period since diagnosis was made and is referred to
as population recovery rate. This quantity is defined as
positive, that is, the larger the estimate of this component
the higher the population recovery, or in other words, the
faster the decline in medical expenses associated with the
disease. Statistically significant estimates of this component
were found for all considered diseases (see Figure 3). On
the topic of recovery in its clinical meanings, there are
certain diseases (e.g., diabetes, Alzheimer’s disease) for which
the clinical recovery cannot be observed at the individual
level. For these diseases the estimate of r does not differ
significantly from zero. The reduction of medical costs for
these diseases (i.e., positive moderate effect of r) could
be explained by the costs of medical procedures around
the time of diagnosis and partial contribution of acute
events initiated by the diagnosis onset requiring a specific
treatment. The tested associations with comorbidity and
disability showed no essential dependences on these indices
being detected. Also, no critical dependence on age group
was found, though for several diseases (ulcer, colon cancer,
diabetes, and Parkinson’s disease) the effect was detected
at 5% significance level, and for all of these diseases the
population recovery for more advanced ages (i.e., 80+) was
larger. The population recovery was typically higher for
survivors as expected (excluding colon cancer—it had the
opposite effect). The high variability in estimates of the
component r was detected for asthma, diabetes, Parkinson’s
disease, and Alzheimer’s disease, resulting in insignificant
associations in comparison of the effects for the two age
groups. This set of diseases included primarily the chronic
diseases which are defined as the permanent conditions with
nonreversible pathologic alterations and generally cannot
be completely cured by medications (treatment results in
disease remission) [24].

The fourth component, &, represents the acquired
comorbidity resulting from the onset of the respective disease
(actually, this is the difference between post and prediagnosis
cost levels). As one can see in Figure 3, this component is
disease specific. A clear positive association of the acquired
comorbidity with the disability index was detected for
ACHD and prostate cancer. The dependence of acquired
comorbidity on the comorbidity index was modest. For some
diseases (ACHD and prostate cancer) the correlation was
positive, and for several others (e.g., Parkinson’s disease) it
was the opposite. The latter probably means that the onset of
these diseases does not add significant expenditures in case
of large initial comorbidity. For the majority of the diseases,
a higher age group implied higher acquired comorbidity.
For ulcer, this association was significant. However for
majority of other diseases it was not (i.e., P value is of
order .1—-.2). For lung cancer this association was inverse
(i.e., lower age group implies higher acquired comorbidity)

and significant. As one can expect, for all diseases that the
acquired comorbidity was larger for those who died during
the first 2.5 years after disease onset. These associations were
strongly significant.

4. Discussion

In this study, a model was developed capable a quantitative
description of the relationships between individual cost
trajectories around the onset of an aging-related cancer
and noncancer chronic diseases. In total, twelve diseases
were analyzed including circulatory diseases (acute coronary
heart disease and stroke), cancers (breast, prostate, lung,
colon cancers, and melanoma), neurodegenerative diseases
(Parkinson’s and Alzheimer’s diseases), diabetes mellitus,
ulcer, and asthma. The main methodological idea was to
develop a mathematical model to predict health care costs
for these diseases for the time period around the date of the
disease onset and create a methodological background for
development of forecasting models of dynamic changes of
the health state and associated medical costs. The obtained
results are important for the whole U.S. elderly population
because the diseases included into analysis have high preva-
lence and high medical costs. Datasets selection was based
on the study focus: the trajectories were reconstructed using
the NLTCS data linked to the Medicare service use files.
This database is nationally representative of the U.S. elderly,
so all parameter estimates are supposed to characterize the
whole U.S. elderly population (see Supplemental Figure 2
for estimates for 1994 and 1999 cohorts). An innovative
approach was developed for selecting the individuals with
disease onset and used for identification of the age at
onset. We found that the time patterns of the medical
costs trajectories were similar for all considered diseases and
can be described in terms of four components having the
meanings of (i) the pre-diagnosis cost associated with initial
comorbidity represented by medical expenditures, (ii) the
cost associated with the onset of each disease, (iii) a reduction
in medical expenditures after the disease onset, and (iv)
the difference between post and prediagnosis cost levels
associated with an acquired comorbidity. The description of
the trajectories was formalized by a model which explicitly
involves four parameters reflecting these four components.
The patterns of medical expenditures evaluated in this
paper could help clarify which of the model components
is responsible for integrated effects and which of them is
more (or less) sensitive to subpopulation specification. Thus,
in this paper all medical cost trajectories were considered
for the whole population, as well as for the subgroups
stratified by disability, comorbidity, age, and survival (for
2.5 years after the onset). The model of medical costs
trajectories was applied to all empirically verified patterns,
and parameters of the model were statistically estimated
and compared. This analysis revealed the basic properties
of the medical costs trajectories. The most important of
them were the following. The differences in estimates of pre-
disease cost level for different diseases were moderate but
not identical (Figure 3 and Table 2): since the medical cost



trajectories were considered to be conditional on disease-
specific incidence, the detected differences reflect variations
in disease risk depending on comorbidity. In contrast, the
cost of the disease onset was essentially disease specific
(Table 3), and the diversity was likely due to the disease-
specific diagnostic procedures and initial therapies at the
disease onset. The diseases were considered as (i) those with
the possible clinical recovery (e.g., ACHD, stroke, and ulcer)
and (ii) those with unlikely clinical recovery (e.g., diabetes
and Alzheimer’s disease). Estimates of population recovery
(i.e., the rate of reduction of postdiagnosis cost level) reflect
these properties of aging-related diseases. The positive esti-
mates were detected for all diseases; however, the significance
of those for diseases with unlikely recovery was lower or
absent, especially in subpopulations stratified by disability or
comorbidity (Table 4). The acquired comorbidity (i.e., the
difference between pre- and postdiagnosis cost levels) was
disease specific and strongly depended on the survival status
of patients after the onset (Table 5). The parameter estimates
(Tables 2-5) confirm that model parameters are chosen so
that the effects of multiple diseases on their estimates do
not occur or are minimal. The first parameter measures
comorbidity before disease onset and represents the effects
of multiple comorbidities. The cost of disease onset and
acquired comorbidity are defined as the cost level above the
mean level of comorbidity. The rate of population recovery,
for example, the rate of reduction of medical expenses after a
diagnosis, is caused by reduction of costs from the considered
disease while changes in the cost due to other diseases are less
essential (at least in the first approximation).

Typically, the medical costs associated with a specific
chronic disease were analyzed and projected for a certain
period of time after the disease onset or health-related event
(e.g., hospitalization) [25]. Often, analyses were performed
for specific population groups such as subpopulation of
disabled or comorbid individuals [4, 26, 27]. Recently,
the ETG approach has been adopted by the Medicare for
estimation of disease episode-based medical costs [28]: the
detailed information is collected for each disease episode
for about 600 clinically homogeneous groups adjusted for
patient’s severity, age, complications, comorbidities, and
major surgeries. Despite being a very useful tool for direct
comparison of treatment patterns among providers within
the ETG, this approach was not intended to provide the
basis for the population-level analysis. Compared to this
approach, our method has less details on each disease
episode, but allows for inclusion in analysis of all patient-
related information on comorbidities (i.e., not only related to
one specific disease) and disabilities thus making the whole
model more flexible and nondependent on the preselected in
the ETG episode-related conditions. In our approach, only
data-driven information was incorporated into the model,
and the human factor related issues, such as episode-specific
information on disease-specific procedures, disabilities, and
comorbidities were avoided.

Models of medical costs projections are usually based
on the estimated regression models with the majority of
independent predictors describing demographic status of the
individual, his/her health states, and a level of functional
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limitations, as well as their interactions [4, 29]. If the
health state needs to be described by a number of simul-
taneously manifested chronic diseases, then the detailed
stratification over the respective categorized variables or
use of multivariate regression models allows for better
description of health states. However, it can result in the
abundance of model parameters to be estimated. One way to
overcome these difficulties is to use an approach in which the
model components would be some demographically based
aggregated characteristics allowing to mimic the effects of
specific states.

The model developed in this paper is an example of
such an approach: the use of comorbidity index rather
than of the set of multiple correlated categorical variables
representing the health state allows for essential reduction
in the degrees of freedom of the problem. The medical
costs of both the first months and the last months of the
trajectories investigated in this paper are associated with
comorbidity. Since the complete individual trajectory of
health changes can be simplified in terms of subsequent
incidence events, the developed model of medical costs
before and after an incidence event can serve as a building
block for constructing the complete individual trajectory.
Many uncertainties typical for existing models are overcome
with such an approach. Thus, the evaluated model for
dynamics of medical costs before and after a chronic disease
onset can serve as a key component of a model for projecting
the medical expenditures.

The obtained results are new and important, both sub-
stantially and methodologically. Substantially, the evaluated
trajectories of medical costs at the disease onset in the U.S
elderly provide new information of potential interest for
public health expenditures planning and policymakers. This
study demonstrated that these trajectories could be described
well by the model with four well-defined and interpretable
components which were estimated for each of the studied
diseases. Interestingly, all studied aging-related cancer and
noncancer diseases in elderly had very similar structure
of cost trajectories. The model was validated for several
population groups and demonstrated a good ability to
describe cost trajectories for different levels of disability and
comorbidity. There is a useful possibility for this model to
be extended to the level of even higher practical importance,
such as to forecast health/incidence, mortality, and associated
medical costs in the U.S. elderly using even the limited set
of parameters (and with a great potential for improvements
when more detailed data becomes available), as well as for
understanding the currently debated effects of biomedical
research, screening, and therapeutic innovations on changes
in disease incidence with advancing age.

Methodologically, the developed model brings us to a
general microsimulation comprehensive forecasting model
of medical expenditures which is formulated as follows. The
population dynamics is represented by random trajectories
in a covariate space. End of each trajectory is associated
with individual death. To simulate an individual trajectory
means to evaluate covariates for all time points between
beginning age (e.g., 65 years old) and the age of death.
During each time point, an individual is under risk of a
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TaBLE 2: Estimates of the initial comorbidity costs in U.S. dollars, c.

X 2 2
E 5 s 5 8 g g
5 g 5 2 £ E 2 £ & g = =
os S 8 g 3 = S S 2 = - o
S 8 5 2 Y = &n 5 = 7 g 5
= 7 : T 5 =2 &8 % & £
& g SIS z  E
=3 < o
= <
. 815 1176 1071 795 618 744 876 1132 800 1198 1130 926
Total population
+66 +100 +98 +53 +45 +133 +104 +134 +£59 +118 +98 +112
Level of IADL/ADL
Disability
. 712 824 804 562 592 326 829 974 610 773 853 663
Nondisabled
+58 +79 +75 +54 +44 +53 +103 +123  +55 +102 +114 +97
IADL only or/and 1-2 732 1468 854 636 380 1550 579 741 650 806 684 782
ADLs £85  +154 120 £106 65 319  +95 +114 =103 =+139  +76  x112
3.6 ADLs 1604 1723 1784 1079 1549 735 758 920 1658 2733 1154 1127
+143 +108 +225 +129 +151 +193 +134  +223 +153 +291 +159 +144
Charlson index
0 414 522 388 329 403 160 327 249 466 478 687 349
+48 +60 +50 +42 +38 +27 +74 +70 +51 +64 +66 +62
1 909 903 503 941 635 609 714 602 749 868 697 915
+90 +86 +74 +103 +67 +92 +121 +90 +76 +107 +88 +122
) 719 913 563 292 324 762 712 1083 750 829 277 886
+98 +101 +76 +52 +60 +156 +100 +157 +82 +124 +65 +135
-2 1447 2154 2468 1296 1062 627 1286 716 1661 2507 1988 1125
+96 +134 +237 +141 +107 +117 +120 +143 +147 +236 +192 +168
Age
<80 770 1191 1119 650 598 449 732 1086 720 1154 1095 637
B +64 +107 +113 +55 +46 +86 +106 +163 +£50 +103 +120 +123
80 927 1091 901 723 708 687 812 763 855 1182 980 815
+76 +94 +82 +112 +82 +94 +111 +121 +92 +196 +123 +84
Survived 2.5 years
No 1156 1608 1772 1236 923 367 865 382 1488 1434 1139 909
+109 +145 +234 +157 +123 +84 +111 +67 178 +206 +146 +125
Yes 692 820 692 656 519 757 736 1237 637 1037 950 858
+54 +72 +67 +45 +54 +112 +104 +144 +46 +93 +93 +105

*Females only.
**Males only.

disease onset and death. The model can be Markov and
non-Markov. In the former case, the risks and dynamics are
defined by the current health status represented by covariates
and age. The model developed in the present paper (or its
generalizations) can be used to simulate dynamics of the
covariate (i.e., comorbidity index represented by medical
cost aggregated during a certain time period) before and after
disease onset, and an auxiliary model of the risks of disease
onset and mortality associated with the covariate and age
has to be attracted to simulate these events. An important
property of the model (1) is that it has an input and
output represented by the same single quantity: comorbidity
measured by medical cost, and this property allows the

researchers to use the base model (1) as a building block
in simulating the life history as a sequence of such blocks
associated with disease onsets. This property also allows for
including different chronic diseases into the same approach
without increasing the dimensionality of the model. Note
that risks of the diseases as well as associations of these
risks with potential covariates such as comorbidity, disability
indices, and age groups can be roughly estimated using the
numbers presented in Table 1 (the detailed investigation
of the model for health state projections estimated with
Medicare data will be presented in a separate publication).
In many specific cases, averaging over individual trajec-
tories can be performed analytically by reducing the results
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TaBLE 3: Estimates of the cost of onset in U.S. dollars, P.
* Y 3
5 0% oz 8 B . . 4
O 5 5 it Y = on g = 2 5 g
= & z = 2 g 2 a < & £
& e ~ © 2z g
A E 3
Total population 29842 22542 17849 10477 6466 3482 20524 27959 3045 5530 3667 5323
+2513 #2098 +£3222 +1017 +£544 +977 +3683 +3056 +659 +1362 +1145 =+1224
Level of IADL/ADL
Disability
Nondisabled 30563 22778 16532 8604 6710 4009 21499 26792 2594 4594 3960 5292
+2511 #2301 +£2790 +535 +560 +928 +4148 +2365 +641 +1447 +1395 =+1348
IADL only or/and 1-2 24485 25938 21982 11108 4273 6968 12573 23622 3127 8383 7283 6340
ADLs +3421 +4199 +8714 +2516 +1426 +4072 +2320 +6315 +£1239 +£2934 =+2825 +1578
3.6 ADLs 28734 19711 26256 14050 9916 711 30138 51654 7002 11164 2064 4996
+3896 +1975 +£7450 +3392 +£2121 +478 +7767 +28586 +1880 +3861 =*1168 1711
Charlson index
0 31622 21770 15913 9489 7246 3739 16684 24537 3013 5469 5109 4973
+3243 +2260 +3838 +806 +722  +1096 =+4080 +3276 +753 +1648 +1422 =+1147
1 26803 24105 8732 8685 4393 3866 21846 26677 2648 5688 6991 3674
+2892 =+3062 +2556 +£846 +696 1761 +£3421 +5773 +647  +1793 =+£3529 <1136
2 25813 24025 25373 9813 4876 3639 17694 28816 2987 7046 6016 3553
+5007 #3511 +£8658 +1716 =*1219 1504 =+3385 +3862 +1816 +£2604 +1647 =*1154
-2 29023 23317 24405 7522 7526 1903 18227 34630 6013 5211 1897 6680
+2621 +2289 +£5541 +1907 =*£1265 +646 +3429 +13543 +2207 +2108 +886 +2462
Age
~30 31275 24203 17059 8892 6731 3734 23050 24863 2615 5316 1553 6517
+2598 +2288 +£3381 +552 +677 +1220 =+4653 2767 +546 +1253 +367 +£2159
>80 24739 19455 18669 10312 5389 3547 13181 34435 6193 6780 7829 4462
+2627 +2193 +£3976 +2859 +983 +876  +£2542  +7549 +1797 +£2706 =+2819 +884
Survived 2.5 years
No 37980 25559 38553 10233 7061 5562 20197 34916 4110 11995 8860 6267
+5414 =+£2967 +£9250 =+£1529 +1498 =+3151 +4677 +8162 +1011  +3927 +£2950 #1717
Yes 27690 21149 13845 11284 6815 2614 19755 24075 2626 4098 1990 4861
+1877 +1902 +£2484 +1218 +741 +537 +3176  +2379 +536 +1003 +703 =*1166

* Females only.
**Males only.

to aggregated characteristics studied in the present paper
and some other quantities observed at the population level.
Consider a cohort of individuals under a risk of a certain
disease. Let respective survival function S(x) be known
from other studies. This survival function (or corresponding
hazard rate h(x) = —[log S(x)]; or density function f(x) =
h(x)S(x) or probability distribution F(x) = 1 — S(x))
can be estimated from Medicare data as well [30, 31].
Assume also that, during the followup, the individuals are
not subject to another health event, including death. The
medical cost for the cohort of individuals at age x can be

predicted by summing individual cost trajectories given by

(1):
Ciot(x) = ¢S(x) + (¢ + 8)F(x)

(P 6)J(exp(—r(x — W) fuw)du.
0

The first term reflects the contribution of healthy indi-
viduals, that is, those that have not developed this disease yet.
The mean of their cost is characterized by initial comorbidity
¢, and their fraction equals S(x). The last two terms
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TaBLE 4: Estimates of the slope of population recovery rate r.

i ¥ 2
s v , £ £ E & £ 8 g 4 =
T g g g 5 g g § = E 2 2
Q =] S e P < o0 o = ) g o)
= 3 : & 2 B 52 & % & ¢
2 B S = 2
=3 < |
= =<
. 1.15 0.80 1.15 0.42 0.20 0.22 0.42 1.03 0.68 1.63 0.52 1.14
Total population
+0.13 +0.10 +0.24 =+0.05 =+0.03 =+0.13 =+0.12 =+0.12 +0.29 +1.12 +0.32 +0.66
Level of IADL/ADL
Disability
. 1.14 0.78 1.42 0.37 0.21 0.32 0.45 1.06 0.82 1.79 0.45 0.98
Nondisabled
+0.12 +0.11 +0.29 =*0.04 +0.03 =+0.12 =+0.13 =+0.13 +0.51 +1.82 +0.30 +0.64
IADL only or/and 1-2 0.95 1.01 2.59 0.37 0.67 0.51 0.16 0.92 0.21 0.59 1.78 0.19
ADLs £0.21 20.17 +0.65 =+0.16 +0.57 =20.60 +0.07 026 +0.15 =027 +1.59 +0.11
36 ADLs 1.36 0.68 0.85 0.56 2.06 0.11 0.64 2.10 0.67 1.10 0.09 14.19
+0.25 =+0.10 =+0.22 =*0.14 +1.22 =+0.34 =+0.20 =+0.75 =+0.31 +0.61 =+0.25 >100
Charlson index
0 1.21 0.78 1.36 0.38 0.22 0.23 0.31 0.91 0.86 1.05 1.66 0.29
+0.15 +0.09 +0.37 +0.06 +0.04 +0.11 =+0.14 +0.17 =+0.40 +0.48 +0.99 +0.19
1 1.04 0.85 0.29 0.33 0.17 0.82 0.49 0.63 0.37 2.04 3.20 1.07
+0.14 +0.14 +0.10 =+0.05 =+0.06 =+0.71 =+0.11 =+0.12 +0.19 +1.80 +3.05 +0.91
) 0.77 1.27 1.92 0.52 0.21 0.23 0.38 0.85 0.68 1.65 0.16 0.07
+0.19 +0.27 +0.68 +0.14 +0.13 +0.16 =+0.14 +0.13 +0.61 +0.87 =+0.10 +0.15
-2 1.26 0.74 1.43 0.32 0.30 0.15 0.31 1.63 1.17 0.92 0.13 18.87
+0.17 +0.10 +045 =+0.09 =+0.12 =+0.45 =+0.10 =+0.60 +0.91 +0.63 +0.19 >100
Age
<80 1.13 0.84 0.94 0.34 0.20 0.20 0.44 0.88 0.50 1.46 0.01 1.49
B +0.12 +0.11 +0.21 =+0.04 +0.04 =+0.16 =+0.14 =+0.12 +0.23 +0.88 +0.00 +1.21
>80 1.23 0.71 1.54 0.44 0.22 0.27 0.34 1.44 2.81 2.90 0.88 0.71
+0.16 +0.11 +0.33 =*0.14 +0.08 =*0.12 =*0.09 =+0.30 =*1.71 +6.48 +0.58 +0.41
Survived 2.5 years
No 1.04 0.75 1.13 0.34 0.20 0.33 0.48 1.65 —-0.01 2.08 0.56 1.55
+0.24 +0.15 +0.37 +0.15 =+0.17 +0.75 +0.23 +0.45 +0.01 +2.42 +0.32 +2.21
Yes 1.28 0.92 2.05 0.50 0.28 0.21 0.58 0.85 0.66 1.51 2.60 1.53
+0.12 +0.10 +040 =+0.05 =+0.04 =+0.08 =+0.12 =+0.09 +0.22 +1.01 +5.34 +0.77

* Females only.
**Males only.

characterize the contribution of unhealthy people. They are
resulted from integration of individual trajectories C(u) over
different time of onsets denoted by u. The second term in
(2) describes the acquired comorbidity, and the third term
reflects the cost of treatment after onset. The integration can
be performed analytically in many specific cases including
when (i) the model is characterized by the constant hazard
rate, (ii) the cohort of interest is exposed to a specific risk
factor (e.g., infection, smoking, or ionizing radiation) with
known latent period, and (iii) survival function for a disease
is known from empirical analysis, for example, represented
by the Kaplan-Meier estimator.

If the general comprehensive microsimulation model
is defined as Markov model, the past individual history
does not contribute to probabilities of future events or, in
other words, current covariates and age have to represent
a sufficient set of information for proper description of
health state and future event probabilities. By reducing
the dimensionality of the model, we are able to better
estimate the covariate-specific effect; however, the model
becomes less precise. Therefore, the model with a specific
set of covariates always represents an approximation to a
reality. This is a limitation of used approach, as well as
of all Markov models. Specifically, the situation when the
model (1) needs to be improved is when the second disease
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TABLE 5: Estimates of the Acquired Comorbidity Costs in U.S. dollars, §.
* (5] g
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v <
. 1005 949 630 613 399 201 2818 1288 637 985 864 1244
Total population
+157 +189 +204 +116 +185 +410 +681 +230 +124 +242 +223 +251
Level of
IADL/ADL
Disability
. 846 977 657 662 293 309 2913 1507 729 959 777 1109
Nondisabled
+134 +173 +167 +137 +168 +174 +685 +226 +138 +213 +260 +256
IADL only 1779 693 362 1095 1360 2036 —-331 690 -11 419 1749 347
X%Z‘Lrld 1-2 +£339  +294 211 416  £326  +772  +1085 235 433  +321  +247  +663
3.6 ADLs 1673 1347 467 423 2917 -371 1053 2289 470 1016 —-521 1477
+325 +245 +479 +240 +471 +1306 +416 +625 +273 +597 +3671 +344
Charlson index
0 702 868 696 908 347 117 2779 1321 535 838 1140 1024
+119 +150 +175 +188 +185 +240 +935 +238 +111 +196 +172 +365
1 898 1061 329 173 272 678 1401 923 447 1394 1076 874
+179 +207 +209 +197 +354 +283 +478 +227 +180 +257 +215 +240
2 974 2332 1180 672 638 —144 2474 771 417 215 106 —-28
+263 +308 +303 +188 +494 +435 +951 +293 +194 +261 +938 +4125
-2 1357 657 —431 253 1568 886 2211 2423 1107 201 —423 1198
+239 +239 +348 +268 +444 +1024 +734 +521 +345 +363 +1174 +370
Age
<80 934 860 338 705 242 518 3436 1122 644 997 NA* 1613
B +149 +186 +210 +141 +219 +517 +811 +246 +117 +220 +336
>80 1227 1068 1002 364 581 42 506 1432 895 555 1343 1183
+198 +223 +210 +238 +323 +226 +335 +296 +198 +352 +320 +233
Survived 2.5
years
No 3836 2444 2856 2768 2117 2857 5288 3687 NA* 2895 1591 3067
+616 +425 +900 +563 +1086 +1144 +1066 +584 +725 +485 +518
Yes 767 785 646 533 392 —140 721 410 448 730 574 667
+106 +127 +143 +99 +141 +240 +267 +185 + 86 +174 +168 +179

* Females only.
**Males only.

#Parameter is not identified because of small respective estimate of r. The model C(m) = ¢+ P - I (m > 0) needs to be used instead of that given in (1).

onset occurs almost immediately after the first one. Partly,
this can be done using the comprehensive microsimulation
model: if the simulation is performed on month-by-month
basis, the onset of the second disease can be simulated in
any time after onset, including the time period when the
recovery is not completed. The higher values of a covariate
will provide with higher probabilities of such an event.
The approach’s precision can be estimated by developing
individual trajectories for a pair of disease onsets using
the approach close to that described in this paper. Another
limitation of the developed modeling approach is that model

(1) is not capable of describing all types of diseases equally
well: for example, several months before the onset, asthma,
Alzheimer’s and Parkinson’s diseases, and melanoma are not
described very well by the model. That could be explained
by the diagnostic tests/procedures performed before clinical
diagnosis, and therefore these effects were not crucial for the
modeling approach.

At a certain stage of the model development, analytic
solutions become no longer possible. Instead, the approach
based on microsimulation might be used. Several further
generalizations might also be required for improving the
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comprehensive microsimulation model. One important gen-
eralization of the model is an attraction of a model for
mortality risks that need to be constructed on assumptions
other than those used in model (1). The assumption could
include considering a rate of changing cost level as a
main predictive variable. Given the model estimated, the
simulation of individual trajectories is naturally generalized
by considering two competing risks (i.e., the risk of disease
onset and the risk of death) which can be dependent or,
more specifically, conditionally independent given the value
of a covariate (i.e., the medical cost level). Other directions
for model generalization could include (i) adjustment to
the effect of a second health event that occurred before the
complete recovery from the previous one, (ii) adjustment
to possible recurrence of the disease diagnosed earlier, (iii)
implementation of period and cohort effects, (iv) imple-
mentation of generalized models of the risks of the health
events with the dependence on the covariate incorporated
additional to the dependence on age, (v) incorporation of
the effects of increasing medical expenditures before death,
and (vi) modeling and implementation of the distribution
of the covariate, including the distribution conditional on a
specific value in the previous time period. This approach will
provide with population projections of health and associated
medical costs under the assumption that current tendencies
(i.e., those which can be captured by available data) will be
held. Specific scenarios regarding the future healthcare envi-
ronment elaborated by respective panels of experts [7] can
also be incorporated into the simulation model. In all these
developments models (1) and (2) will serve conveniently in
the particular case which must be reproduced numerically
or analytically with respective simplifying options of the
comprehensive forecasting programs.
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