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Summary
Recent genome-wide single nucleotide polymorphism (SNP) association studies (GWAS) have
identified a number of SNPs that were significantly associated with coronary artery disease (CAD)
and myocardial infarction (MI). However, many independent replication studies in other
populations are needed to unequivocally confirm the GWAS association. To assess GWAS
association, we have established a case-control cohort consisting of 1,231 well-characterized MI
patients and 560 controls without detectable coronary stenosis, all selected from the Cleveland
Genebank population. The Genebank cohort has a sufficient power to detect the association
between MI and four GWAS SNPs, including rs17465637 within the MIA3 gene, rs2943634
(intergenic), rs6922269 in MTHFD1L, and rs599839 near SORT1. SNPs were genotyped by
TaqMan assays and follow-up multivariate logistic regression analysis with incorporation of
significant covariates showed significant association with MI for MIA3 SNP rs17465637 (P-
adj=0.0034) and SORT1 SNP rs599839 (P-adj=0.009). The minor allele G of rs599839 was also
associated with a decreased LDL-C level of 5–9 mg/dL per allele, but not with HDL-C or
triglyceride levels. No association for MI or lipid levels was found for SNPs rs2943634 and
rs6922269 (P-adj>0.05). Our results establish two SNPs, rs17465637 in MIA3 and rs599839 near
SORT1 as significant risk factors for MI in the American Genebank Caucasian population.
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Introduction
Coronary artery disease (CAD), along with its leading complication of myocardial infarction
(MI), is the leading cause of mortality and disability worldwide (Lloyd-Jones et al., 2009).
CAD is considered to be a complex disease that is caused by multiple genetic factors,
environmental factors, and their interactions (Topol et al., 2006; Wang, 2005b; Wang,
2005a). As genetic factors play a substantial role in inherited risk for CAD/MI (Nora et al.,
1980), it is important to identify these specific molecular and genetic determinants. Large
scale genome-wide association studies (GWAS) with 500,000 to 1,000,000 single nucleotide
polymorphisms (SNPs) have been developed as a popular strategy for identifying genetic
factors for common, complex disease traits such as CAD and MI.

Recent GWAS have identified a number of candidate genetic loci for CAD and MI
(Erdmann et al., 2009; Helgadottir et al., 2007; Kathiresan et al., 2009; McPherson et al.,
2007; Samani et al., 2007; Samani et al., 2009; Tregouet et al., 2009). One limitation of
GWAS is a high rate of false positives; thus, rigorous replication studies in many
independent populations from different independent research groups are needed to replicate
the findings. To date, the very first chromosome 9p21 locus for CAD and MI identified by
GWAS has been replicated in more than 30 independent studies. GWAS also reported a
number of other candidate loci that confer risk of or protection from CAD and MI, including
SNPs rs17465637 on chromosome 1q41, rs2943634 on 2q36.3, rs6922269 on 6q25.1,
rs599839 on 1p13.3, rs9818870 on 3q22.3 and rs501120 on 10q11.21 (Erdmann et al., 2009;
Kathiresan et al., 2009; Samani et al., 2007; Samani et al., 2009). However, further
replication studies are needed to establish the unequivocal association between these SNPs
and CAD/MI using other independent populations. We have established a well-characterized
case-control population of 1,231 MI patients and 560 non-CAD controls (Shen et al., 2007),
which has a sufficient power for assessing the association between MI and four GWAS
SNPs: rs17465637 within the MIA3 gene, rs2943634 (intergenic), rs6922269 in MTHFD1L,
and rs599839 near SORT1. The aim of this study was to determine whether any of these four
SNPs was associated with risk of MI in our U.S. Caucasian population from the Northeast
Ohio area (Cleveland Clinic Genebank population).

Materials and Methods
Study population

We conducted a case-control association study involving a total population of 1,231
unrelated MI patients and 560 normal controls as previously reported by us (Shen et al.,
2007). The study subjects were selected from the Cleveland Clinic Genebank program,
which ascertained patients who were evaluated at the Cardiac Catheterization Laboratories.
Clinical diagnosis of CAD and MI was carried out by a panel of cardiologists. Individuals
with a stenosis of more than 70% or with a history of revascularization procedures
(percutaneous coronary angioplasty – PTCA, coronary artery bypass graft - CABG) were
classified as CAD patients. CAD patients with a previous diagnosis of MI were classified as
MI patients (Shen et al., 2007; Wang et al., 2004). A myocardial infarction was diagnosed
on the basis of chest pain of ≥ 30-minute duration, electrocardiogram patterns consistent
with patterns of acute MI, and significant elevation of cardiac enzymes (Shen et al., 2007;
Wang et al., 2004). All Caucasian patients who were enrolled in the first year of the program
(a total of 1,231 patients) were selected for this study. The 560 controls were chosen from
Cleveland Genebank, and included individuals who underwent coronary angiography. Only
Caucasian individuals without atherosclerotic lesions detected by angiography were
included. Every participant had fasted blood drawn, a lipid profile completed, glucose levels
measured, and each subject completed a health questionnaire as well. This study was
approved by the Cleveland Clinic Institutional Review Board on Human Subject Research.
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Informed consent was obtained from all participants, and the investigation conformed to the
guidelines of the Declaration of Helsinki.

Isolation of genomic DNA and SNP genotyping
Human genomic DNA was isolated from whole blood with the Puregene Kits (Gentra). SNP
genotyping was performed using the 5’ nuclease discrimination assay (Taqman Assays,
Applied Biosystems) on an ABI PRISM 7900HT Sequence Detection System (as previously
described by us) (Abdullah et al., 2008; Hu et al., 2008). The quality of SNP genotyping was
verified by direct DNA sequence analysis of 36 samples. The results from the Taqman
Assay were 100% in agreement with those from the sequencing analysis. In addition, all of
the DNA samples for case and control subjects were run in the same batches.

Statistical analysis
Allelic association of a SNP with a disease trait was assessed with Pearson’s 2x2
contingency table Chi-square test, implemented within SAS Ver 9.00 (SAS Institute Inc) as
described previously (Shen et al., 2007; Shen et al., 2008; Xu et al., 2010). Odds ratios and
95% confidence intervals (CI) were estimated through SAS Ver 9.00. Multivariate logistic
regression analysis was also performed using SAS Ver 9.00 to test relationships between
SNPs and to account for significant covariates as described (gender, age, smoking, body
mass index, hypertension, diabetes, total cholesterol, and triglyceride level) (Shen et al.,
2007; Shen et al., 2008; Xu et al., 2010). All SNPs were tested for Hardy-Weinberg
equilibrium among the normal controls using a chi-square test with one degree of freedom
from an online software program (http://www.genes.org.uk/software/hardy-weinberg.shtml).
Point-wise statistical significance was adjusted for multiple tests with the Bonferroni
method.

Power analysis was estimated using two group Chi-square tests of two unequal proportions
and performed using the nQuery Advisor 7.0 using reported ORs for individual SNPs
(Samani et al., 2007) and their minor allele frequencies for the U.S. residents with northern
and western European ancestry (HapMap Public Release #28
http://hapmap.ncbi.nlm.nih.gov/). Our Genebank case-control cohort has a power of 73%,
74%, 73%, and 77% for detecting MI association for SNPs rs17465637, rs2943634,
rs6922269, and rs599839, respectively.

Results
Significant association of SNPs rs17465637 in MIA3 and rs599839 near SORT1 with MI in
an American Caucasian population

We performed a case-control study with 1,231 MI patients and 560 controls from the
Cleveland Genebank population. The same study population was used in a previous study to
evaluate the association between an LRP8 SNP and platelet aggregation/MI (Shen et al.,
2007). All study subjects were of American Caucasian descent. The average age at onset for
case subjects was 60.6±12.1 years, and the average age at examination for control subjects
was 53.5±12.1 years. As expected, the male/female ratio and the rates of smoking,
hypertension, diabetes, total cholesterol, HDL cholesterol, LDL cholesterol, and
triglycerides were higher in the case population than in the control population.

Four SNPs (rs17465637 within the MIA3 gene, rs2943634 (intergenic), rs6922269 in
MTHFD1L, and rs599839 near SORT1) were genotyped in the study population. None of the
SNPs demonstrated deviation from Hardy-Weinberg equilibrium (Table 1) (PHW > 0.01).
After adjusting for the significant clinical covariates of age, gender, smoking, hypertension,
diabetes, BMI, total cholesterol, and triglyceride levels, a significant association was
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identified for SNPs rs17465637 in MIA3 and rs599839 near SORT1 with MI; P-adj=0.0034
and P-adj=0.009, respectively (Table 1). In both cases, the minor allele conferred a
protective effect on MI with an adjusted OR of 0.75.

No significant allelic association was detected for intergenic SNP rs2943634 and MTHFD1L
SNP rs6922269 with MI (Table 1).

Significant association of SNP rs599839 near SORT1 with plasma LDL-C levels
Further statistical analysis was performed for the association between the four SNPs and
plasma LDL-C, HDL-C, and triglyceride levels in the study population. General linear
model analysis showed no significant Bonferroni-corrected P-values for HDL-C and
triglyceride concentrations under an additive, dominant, or recessive model (Tables 2–4).
Interestingly, for LDL-C levels, one of the SNPs, rs599839 near SORT1, showed significant
association in an additive model in 1,231 MI cases and the combined population of 1,791
subjects with P-adj values of 0.0015 and 0.0003, respectively (Table 3). In the population of
560 controls, the association was significant before adjustment for significant clinical
covariates (P-obs=0.0009). However, this significance was reduced to P-adj=0.017 after
adjustment, which is higher than the accepted threshold for Bonferroni-corrected
significance (0.05/4=0.013). The association remained significant under a dominant model
(P-adj=0.000038 and 0.000034 in 1,231 MI cases and the combined population,
respectively) but not under a recessive model (best P-adj=0.012). Each minor allele G
decreases LDL-C levels by 4.87–9.19 mg/dL (AA=103.71 +/− 35.88; GA=98.84 +/− 34.35;
GG=89.65 +/− 32.43).

DISCUSSION
In this study, we assessed four SNPs (rs17465637 within the MIA3 gene, rs2943634
(intergenic), rs6922269 in MTHFD1L, and rs599839 near SORT1) for their association with
MI in an American Caucasian population. These four SNPs have previously been identified
as being associated with CAD and/or MI by GWAS (WTCCC CAD and German MI studies,
Figure 1) (Samani et al., 2007). The recruited MI cases and control subjects used in this
study were carefully ascertained and very strict criteria were used to define both the MI
phenotype and the normal phenotype. All the control subjects showed no detectable stenosis,
as verified by angiography. Two of the SNPs, rs17465637 in MIA3 and rs599839 near
SORT1, demonstrated significant allelic association with MI after adjustment by multivariate
logistic regression analysis incorporating the significant covariates of age, gender, smoking,
hypertension, diabetes, BMI, total cholesterol, and triglyceride levels (Table 1). SNP
rs599839 was also associated with plasma LDL-C levels. The minor allele G of rs599839
confers a protective effect on MI and is associated with decreased LDL-C levels.

SNP rs17465637 on chromosome 1q41 is located in the MIA3 gene, which encodes
melanoma inhibitor protein 3 required for export of collagen VII (COL7A1) from the
endoplasmic reticulum (Saito et al., 2009), and appears to be a tumor suppressor of
malignant melanoma (Arndt & Bosserhoff, 2007). MIA3 may be involved in facilitating the
migration of monocytic cells through fibrinogene or human microvascular endothelial cells
(Arndt et al., 2007), which may increase the risk of plaque formation. However, it remains
to be further established whether MIA3 is directly related to CAD and MI.

SNP rs599839 on chromosome 1p13.1 is located in the 3’ untranslated region of the PSRC1
gene and is near the SORT1 gene. SNP rs599839 has been reported to be associated with
LDL-C levels (Sandhu et al., 2008; Willer et al., 2008; Kleber et al., 2010). The minor allele
G was associated with increased expression levels of SORT1 mRNA and that overexpression
of SORT1 led to a significant increase in LDL uptake into cells (Linsel-Nitschke et al.,
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2010). A very recent study further showed that overexpression of SORT1 resulted in a
decrease in total plasma cholesterol and LDL-C levels (Musunuru et al., 2010). The study
also demonstrated that knockdown of SORT1 expression by siRNA caused a 46 percent
increase in total cholesterol and a more than twofold increase in LDL-C levels (Musunuru et
al., 2010). Thus, SORT1 appears to be the causal gene for reduced LDL-C levels at the
1p13.3 locus, and may lower the risk of MI by decreasing the LDL-C levels.

SNP rs17465637 in MIA3 was identified as a probable genetic locus for CAD only after
combining the Wellcome Trust Case Consortium study and the German MI family study
(more than 80% probability of a true association) (Samani et al., 2007). SNP rs599839 near
SORT1 was also identified as a probable genetic locus after combining the two studies
(Samani et al., 2007). A follow-up study by the Myocardial Infarction Genetics Consortium
replicated the association between rs17465637 and MI (Kathiresan et al., 2009) (Figure 1).
However, a study by the Coronary Artery Disease Consortium (Samani et al., 2009) and
another study with an African-American population and a U.S. Caucasian population
(Bressleret al., 2010) failed to confirm the association (Figure 1). Our study provides a
timely reassessment and provides new evidence that supports the association between SNP
rs17465637 and MI. The association between SNP rs599839 near SORT1 and CAD was
replicated in the Coronary Artery Disease Consortium study (Samani et al., 2009), but not in
another replication study with an African-American population and a U.S. Caucasian
population (Bressleret al., 2010). In the Ludwigshafen Risk and Cardiovascular Health
replication study, the association between SNP rs599839 and CAD/MI was confirmed
(Kleber et al., 2010). Our study further replicated the association of SNP rs599839 near
SORT1 with MI in an American Caucasian population. In our Genebank population, the
other two SNPs, intergenic SNP rs2943634 and SNP rs6922269 in MTHFD1L, did not
exhibit any association with MI although the 95% confidence intervals for ORs for these
two SNPs overlap with those in the original GWAS studies (Figure 1). Our results are more
consistent with a recent replication study in Austria and another study in the U.S. that did
not detect association between rs6922269 and rs2943634 and CAD (Muendlein et al., 2009;
Bressleret al., 2010) (Figure 1).

One limitation of this study is that, as in many other human genetics studies, the sample size
is fixed. And the phenotypes under study (MI, lipid levels) are complex and involve multiple
small-to modest-sized effects of genes and polygenic/environmental backgrounds. As such,
the results may be biased. Furthermore, the relatively small sample size with a limited power
of 73% to 77% and the small effect of their contribution to MI may explain why SNPs
rs2943634 and rs6922269 did not show significant association with MI.

In conclusion, we found significant associations of SNP rs17465637 in the MIA3 gene on
chromosome 1q41 and SNP rs599839 near the SORT1 gene on chromosome 1p13.3 with MI
in an American Caucasian population. We also found a significant association between SNP
rs599839 and LDL-C levels in the same population. However, no significant association was
found with MI for intergenic SNP rs2943634 on 1q36.3 and rs6922269 in MTHFD1L on
6q25.1. These results represent an important expansion of GWAS findings into an American
Caucasian Genebank population.
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Figure 1.
Forest plot of SNP effect estimates for CAD/MI. The data from original GWAS and follow-
up replication studies are summarized fro 4 SNPs, including rs17465637 within the MIA3
gene, rs2943634 (intergenic), rs6922269 in MTHFD1L, and rs599839 near SORT1. The X-
axis represents the odds ratios (ORs) and 95% confidence intervals (CI) as well as the
weight (marked as a filled box) from different studies, including Cleveland Genebank (this
study), WTCCC (CAD) and German (MI) (Samani et al., 2007), Europe (MI) and Europe
(CAD) (Samani et al., 2009), African-American (CAD) and USA (CAD) (Bressleret al.,
2010), Austria (CAD) (Muendlein et al., 2009), MI Genetics Consortium (Kathiresan et al.,
2009), and LURIC (CAD) (Kleber et al., 2010). The overall effect of each SNP from meta-
analysis of the combined data is shown as a filled diamond. The effect of each SNP was
based on the minor allele, thus conversion was made for some studies. The plot was created
using the CMA program (http://www.meta-analysis.com/pages/features/forest_plots.html).
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