Skip to main content
. Author manuscript; available in PMC: 2012 Jun 1.
Published in final edited form as: Bioorg Med Chem. 2011 Apr 24;19(11):3347–3356. doi: 10.1016/j.bmc.2011.04.042

Table 5.

Analysis of the effect of different fragment distinction sets on HQSAR models.

Model Fragment distinction a q2b SE c r2d SE c Components HL e
7 None 0.193 0.502 0.408 0.430 6 353
8 A 0.046 0.529 0.256 0.467 6 353
9 A B 0.333 0.442 0.574 0.353 2 353
10 A B C 0.237 0.476 0.572 0.357 3 97
11 A B C H 0.250 0.484 0.705 0.303 6 151
12 A B C D 0.361 0.443 0.793 0.252 5 199
13 A B C H D 0.250 0.484 0.773 0.266 6 199
14 A B H 0.268 0.467 0.522 0.377 3 353
15 A B H D 0.212 0.496 0.794 0.254 6 151
16 A B D 0.082 0.535 0.788 0.257 6 257
17 A C 0.250 0.472 0.588 0.350 3 353
18 A C H 0.281 0.473 0.734 0.288 6 257
19 A C H D 0.201 0.491 0.659 .0321 4 199
20 A C D 0.322 0.456 0.734 0.285 5 97
21 A D 0.028 0.551 0.683 0.314 6 257
22 A H D 0.199 0.488 0.472 0.396 3 199

Footnotes.

a

Fragment distinction; molecular features to be used in distinguishing among fragments, include A, atom, B, bond, C, connections, H, hydrogens, D, donor acceptor.

b

q2, cross validated r2.

c

SE, standard error.

d

r2, non-cross-validated correlation coefficient. All models were generated using a fragment atom count range of 4 to 7 and selected based on best cross-validated r2.

e

HL, Hologram Length.