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Abstract
We establish limit theory for the Grenander estimator of a monotone density near zero. In
particular we consider the situation when the true density f0 is unbounded at zero, with different
rates of growth to infinity. In the course of our study we develop new switching relations using
tools from convex analysis. The theory is applied to a problem involving mixtures.
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1. Introduction and Main Results
Let X1,…,Xn be a sample from a decreasing density f0 on (0, ∞), and let f̂n denote the
Grenander estimator (i.e. the maximum likelihood estimator) of f0. Thus  is the left
derivative of the least concave majorant F̂n of the empirical distribution function ; see e.g.,
Grenander (1956a,b), Groeneboom (1985), and Devroye (1987, Chap. 8).

The Grenander estimator f̂n is a uniformly consistent estimator of f0 on sets bounded away
from 0 if f0 is continuous:

for each c > 0. It is also known that f̂n is consistent with respect to the L1 (||p − q||1 ≡ ∫ |p(x)

− q(x)|dx) and Hellinger ( ) metrics: that is,

see e.g. Devroye (1987, Thm. 8.3) and van de Geer (1993).

NIH Public Access
Author Manuscript
Stat Sin. Author manuscript; available in PMC 2012 April 1.

Published in final edited form as:
Stat Sin. 2011 April ; 21(2): 873–899.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



However, it is also known that f̂n(0) ≡ f̂n(0+) is an inconsistent estimator of f0(0) ≡ f0(0+) =
limx↘0 f0(x), even when f0(0) < ∞. In fact, Woodroofe and Sun (1993) showed that

(1.1)

as n → ∞, where ℕ is a standard Poisson process on [0, ∞) and U ~ Uniform(0, 1).
Woodroofe and Sun (1993) introduced penalized estimators f̃n of f0 which yield consistency
at 0: f̃n(0) →p f0(0). Kulikov and Lopuhaä (2006) study estimation of f0(0) based on the
Grenander estimator f̂n evaluated at points of the form t = cn−γ. Among other things, they

show that f̂n(n−1/3) →p f0(0) if .

Our view in this paper is that the inconsistency of f̂n(0) as an estimator of f0(0) exhibited in
(1.1) can be regarded as a simple consequence of the fact that the class of all monotone
decreasing densities on (0, ∞) includes many densities f which are unbounded at 0, so that
f(0) = ∞, and the Grenander estimator f̂n simply has difficulty deciding which is true, even
when f0(0) < ∞. From this perspective we seek answers to three questions under some
reasonable hypotheses concerning the growth of f0(x) as x ↘ 0.

Q1 How fast does f̂n(0) diverge as n → ∞?

Q2 Do the stochastic processes {bn f̂n(ant): 0 ≤ t ≤ c} converge for some sequences
an, bn, and c > 0?

Q3 What is the behavior of the relative error

for some constant cn?

It turns out that answers to questions Q1 – Q3 are intimately related to the limiting behavior
of the minimal order statistic Xn:1 ≡ min{X1,…,Xn}. By Gnedenko (1943) or de Haan and
Ferreira (2006, Thm. 1.1.2)), it is well-known that there exists a sequence {an} such that

(1.2)

where Y has a nondegenerate limiting distribution G if and only if

(1.3)

for some γ > 0, and hence an → 0. One possible choice of an is , but any
sequence {an} satisfying nF0(an) → 1 also works. Since F0 is concave the convergence in
(1.3) is uniform on any interval [0, K]. Concavity of F0 and existence of f0 also implies
convergence of the derivative:

(1.4)
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By Gnedenko (1943), (1.2) is equivalent to

(1.5)

Thus (1.2), (1.3), and (1.5) are equivalent. In this case we have

(1.6)

Since F0 is concave, the power γ ∈ (0, 1].

As illustrations of our general result, we consider three hypotheses on f0:

G0 the density f0 is bounded at zero, f0(0) < ∞;

G1 for some β ≥ 0 and 0 < C1 < ∞, (log(1/x))−βf0(x) → C1, as x ↘ 0;

G2 for some 0 ≤ α < 1 and 0 < C2 < ∞, xαf0(x) → C2, as x ↘ 0.

Note that in G2 the value α = 1 is not possible for a positive limit C2, since xf(x) → 0 as x →
0 for any monotone density f; see e.g. Devroye (1986, Thm. 6.2). Below we assume that F0
satisfies the condition (1.5). Our cases G0 and G1 correspond to γ = 1 and G2 to γ = 1 − α.

One motivation for considering monotone densities which are unbounded at zero comes
from the study of mixture models. An example of this type, as discussed by Donoho and Jin
(2004), is as follows. Suppose X1,…,Xn are i.i.d. with distribution function F where,

If we transform to Yi ≡ 1 − Φ(Xi) ~ G, then for 0 ≤ y ≤ 1

It is easily seen that the density g∈,μ of G∈,μ, given by

is monotone decreasing on (0, 1) and is unbounded at zero. We show in Section 4 that G∈,μ
satisfies our key hypothesis (1.5) with γ = 1. Moreover, we show that the whole class of
models of this type with Φ replaced by the generalized Gaussian (or Subbotin) distribution,
also satisfy (1.5), and hence the behavior of the Grenander estimator at zero gives
information about the behavior of the contaminating component of the mixture model (in the
transformed form) at zero.
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Another motivation for studying these questions in the monotone density framework is to
gain insights for a study of the corresponding questions in the context of nonparametric
estimation of a monotone spectral density. In that setting, singularities at the origin
correspond to the interesting phenomena of long-range dependence and long-memory
processes; see e.g. Cox (1984), Beran (1994), Martin and Walker (1997), Gneiting (2000),
and Ma (2002). Although our results here do not apply directly to the problem of
nonparametric estimation of a monotone spectral density function, it seems plausible that
similar results hold in that setting; note that when f is a spectral density, G1 and G2
correspond to long-memory processes (with the usual description being in terms of β = 1 − α
∈ (0, 1) or the Hurst coefficient H = 1 − β/2 = 1 − (1 − α)/2 = (1+α)/2). See Anevski and
Soulier (2009) for recent work on nonparametric estimation of a monotone spectral density.

Let ℕ denote the standard Poisson process on ℝ+. When (1.5), and hence (1.6) hold, it
follows from Miller (1976, Thm. 2.1) together with Jacod and Shiryaev (2003, Thm. 2.15(c)
(ii)), that

(1.7)

which should be compared to (1.3).

Since we are studying the estimator f̂n near zero, and because the value of f̂n at zero is
defined as the right limit limx↘0 f̂n(x) ≡ f̂n(0), it is sensible to study instead the right-
continuous modification of f̂n, and this of course coincides with the right derivative  of the
least concave majorant F̂n of the empirical distribution function . Therefore we change
notation for the rest of this paper and write f̂n for  throughout. We write  for the left-
continuous Grenander estimator.

Theorem 1.1—Suppose that (1.5) holds. Let an satisfy nF0(an) ~ 1, let ĥγ denote the right
derivative of the least concave majorant of t ↦ ℕ(tγ), t ≥ 0. Then

i. nan f ̂n(tan) ⇒ ĥγ(t) in D[0,∞),

ii. for all c ≥ 0,

The behavior of f̂n near zero under the different hypotheses G0, G1, and G2 now follows as
corollaries to Theorem 1.1. Let Yγ ≡ ĥγ(0). We then have

(1.8)

Here we note that Y1 =d 1/U, where U ~ Uniform(0, 1) has distribution function H1(x) = 1 −
1/x for x ≥ 1. The distribution of Yγ for γ ∈ (0, 1] is given in Proposition 1.5 below. The first
part of the following corollary was established by Woodroofe and Sun (1993).

Corollary 1.2—Suppose that G0 holds. Then γ = 1,  satisfies nF0(an) → 1,
and it follows that
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i. f ̂n(0) →d f0(0)ĥ1(0) = f0(0)Y1,

ii. the processes {t ↦ f ̂n(tn−1): n ≥ 1} satisfy

iii. for cn = c/n with c > 0,

which has distribution function H1(x + 1) = 1 − 1/(x + 1) for x ≥ 0.

Corollary 1.3—Suppose that G1 holds. Then F0(x) ~ C1x(log(1/x))β so γ = 1, and
 satisfies nF0(an) → 1. It follows that

i. f ̂n(0)/(log n)β →d C1Y1,

ii. the processes {t ↦ (log n)−β f ̂n(t/(n(log n)β)): n ≥ 1} satisfy

iii. for cn = c/(n(log n)β) with c > 0,

Corollary 1.4—Suppose that G2 holds and set C̃2 = (C2/(1 − α))1/(1 − α). Then F0(x) ~

C2x1 − α/(1 − α) so γ = 1 − α,  satisfies nF0(an) → 1, and it follows that

i.

(1.9)

ii. the processes {t ↦ n−α/(1 − α) f ̂n(tn−1/(1 − α)): n ≥ 1} satisfy

iii. for cn = c/n1/(1 − α) with c > 0,

Taking β = 0 in (i) of Corollary 1.3 yields the limit theorem (1.1) of Woodroofe and Sun
(1993) as a corollary; in this case C1 = f0(0). Similarly, taking α = 0 in (ii) of Corollary 1.4
yields the limit theorem (1.1) of Woodroofe and Sun (1993) as a corollary; in this case C2 =
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f0(0). Note that Theorem 1.1 yields further corollaries when assumptions G1 and G2 are
modified by other slowly varying functions.

Recall the definition (1.8) of Yγ. The following proposition gives the distribution of Yγ for γ
∈ (0, 1].

Proposition 1.5—For fixed 0 < γ ≤ 1 and x > 0,

where the sequence {ak(x, γ)}k≥1 is constructed recursively as follows:

and, for j ≥ 1,

where p(m; k) ≡ e−mmk/k!.

Remark 1.6—The random variables Yγ are increasingly heavy-tailed as γ decreases; cf.

Figure 1. Let T1, T2, … be the event times of the Poisson process ℕ, i.e., .
Then note that

where T1 ~ Exponential(1). On the other hand

where U ~ Uniform(0, 1). Thus it is easily seen that  if and only if r < γ, and that
the distribution function Fγ of Yγ is bounded above and below by the distribution functions

 and  of  and 1/U1/γ, respectively.

The proofs of the above results appear in Appendix A. They rely heavily on a set equality
known as the “switching relation”. We study this relation using convex analysis in Section
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2. Section 3. gives some numerical results that accompany the results presented here, and
Section 4. studies applications to the estimation of mixture models.

2. Switching Relations
In this section we consider several general variants of the so-called switching relation first
given in Groeneboom (1985), and used repeatedly by other authors, including Kulikov and
Lopuhaä (2005, 2006), and van der Vaart and Wellner (1996). Other versions of the
switching relation were studied by van der Vaart and van der Laan (2006, Lemma 4.1). In
particular, we provide a novel proof of the result using convex analysis. This approach also
allows us to restate the relation without restricting the domain to compact intervals.
Throughout this section we make use of definitions from convex analysis (cf. Rockafellar
(1970); Rockafellar and Wets (1998); Boyd and Vandenberghe (2004)) that are given in
Appendix B.

Suppose that Φ is a function, Φ: D → ℝ, defined on the (possibly infinite) closed interval D
⊂ ℝ. The least concave majorant Φ̂ of Φ is the pointwise infimum of all closed concave
functions g: D → ℝ with g ≥ Φ. Since Φ̂ is concave, it is continuous on Do, the interior of
D. Furthermore, Φ̂ has left and right derivatives on Do, and is differentiable with the
exception of at most countably many points. Let φ ̂L and φ ̂R denote the left and right
derivatives, respectively, of Φ̂.

If Φ is upper semicontinuous, then so is Φy(x) = Φ(x) − yx for each y ∈ ℝ. If D is compact,
then Φy attains a maximum on D, and the set of points achieving the maximum is closed.
Compactness of D was assumed by van der Vaart and van der Laan (2006, see their Lemma
4.1). One of our goals here is to relax this assumption.

Assuming they are defined, we consider the argmax functions

Theorem 2.1—Suppose that Φ is a proper upper-semicontinuous real-valued function
defined on a closed subset D ⊂ ℝ. Then Φ̂ is proper if and only if Φ ≤ l for some linear
function l on D. Furthermore, if conv(hypo(Φ)) is closed, then the functions κL and κR are
well defined and for x ∈ D and y ∈ ℝ,

S1 φ ̂L(x) < y if and only if κR(y) < x.

S2 φ ̂R(x) ≤ y if and only if κL(y) ≤ x.

When Φ is the empirical distribution function  as in Section 1, then Φ̂ = F̂n is the least
concave majorant of , and  the Grenander estimator, while  is the right
continuous version of the estimator. In this situation the argmax functions κR, κL correspond
to
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The switching relation given by Groeneboom (1985) says that, with probability one,

(2.1)

van der Vaart and Wellner (1996, p.296), say that (2.1) holds for every x and y; see also
Kulikov and Lopuhaä (2005, p.2229), and Kulikov and Lopuhaä (2006, p.744). The
advantage of (2.1) is immediate: the MLE is related to a continuous map of a process whose
behavior is well-understood.

The following corollary gives the conclusion of Theorem 2.1 when Φ is the empirical
distribution function .

Corollary 2.2—Let F̂n be the least concave majorant of the empirical distribution function
, and let  and  denote its left and right derivatives, respectively. Then

(2.2)

(2.3)

The following example shows, however, that the set identity (2.1) can fail.

Example 2.3—Suppose that we observe (X1, X2, X3) = (1, 2, 4). Then the MLE is

The process  is given by

Note that (2.1) fails if x = 4 and 0 < y < 1/6, since in this case  and the
event { } fails to hold, while  and the event { } holds. However,
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(2.2) does hold: with x = 4 and 0 < y < 1/6, both of the events { } and { } fail
to hold. Some checking shows that (2.2) and (2.3) hold for all other values of x and y.

Our proof of Theorem 2.1 is based on a proposition that is a consequence of general facts
concerning convex functions, as given in Rockafellar (1970) and Rockafellar and Wets
(1998). Let h be a closed proper convex function on ℝ, and let f be its conjugate, f(y) =
supx∈ℝ{yx − h(x)}. Let  and  be the left and right derivatives of h, and define functions
s− and s+ by

(2.4)

(2.5)

Proposition 2.4—The following set identities hold:

(2.6)

(2.7)

Proof—All references are to Rockafellar (1970). By Theorem 24.3 the set Γ = {(x, y) ∈ ℝ2:
y ∈ ∂h(x)} is a maximal complete non-decreasing curve. By Theorem 23.5, the closed
proper convex function h and its conjugate f satisfy h(x) + f(y) ≥ xy, and equality holds if
and only if y ∈ ∂h(x), or equivalently if x ∈ ∂f(y) where ∂h and ∂f denote the subdifferentials
of h and f, respectively. Thus we have Γ = {(x, y) ∈ ℝ2: x ∈ ∂f(x)} and, by the definitions of
s− and s+, Γ = {(x, y): s−(y) ≤ x ≤ s+(y)}. By Theorem 24.1, the curve Γ is defined by the left
and right derivatives of h:

(2.8)

Using the dual representation we obtain

(2.9)

so  and . Moreover, the functions  and  are left-continuous, the functions
 and  are right continuous, and all of these functions are nondecreasing.

From (2.8) and (2.9) it follows that , which implies (2.6). Since the
functions h and f are conjugate to each other, the relations between them are symmetric.
Thus we have  or, equivalently, , which implies
(2.7).

Before proving Theorem 2.1 we need two lemmas.
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Lemma 2.5—Let S = argmax D Φ and Ŝ = argmax D Φ̂ be the maximal superlevel sets of Φ
and Φ̂. Then the set Ŝ is defined if and only if the set S is defined and, in this case, conv(S)
⊆ Ŝ.

Lemma 2.6—If conv(hypo(Φ)) is a closed convex set then conv(S) = Ŝ.

Proof of Lemma 2.5—Since cl(Φ) ≤ Φ̂ the set S is defined if Ŝ is defined. On the other
hand, if S is defined then Φ is bounded from above on D. Since

the function Φ̂ is also bounded from above on D, i.e. the set Ŝ is defined.

By (2.10) we have S ⊆ Ŝ. Since Φ and Φ̂ are upper semicontinuous the sets S and Ŝ are
closed. Since Ŝ is convex we have conv(S) ⊆ Ŝ.

Proof of Lemma 2.6—Indeed, we have conv(hypo(Φ)) ≡ conv(cl(hypo(Φ))), and
conv(hypo(Φ)) ⊆ hypo(Φ̂). Therefore conv(hypo(Φ)) is a hypograph of some closed concave
function H such that Φ ≤ H ≤ Φ̂. Thus H = Φ̂. The set Ŝ is a face of hypo(Φ̂) and the set
conv(S) is a face of conv(hypo(Φ)). The statement now follows from Rockafellar (1970,
Thm. 18.3).

Proof of Theorem 2.1—To prove the first statement, start with Φ̂ proper. We have

(2.10)

and therefore hypo(Φ) is bounded by any support plane of hypo(Φ̂). This implies that there
exists a linear function l such that Φ ≤ l.

Now suppose that there is a linear function l such that Φ ≤ l on D. Then cl(Φ) ≤ l and, from
(2.10), we have hypo(Φ) ⊆ hypo(l), conv(hypo(Φ)) ⊆ hypo(l), and hypo(Φ̂) ≡
cl(conv(hypo(Φ))) ⊆ hypo(l). Thus Φ̂ < +∞ on D. Since hypo(Φ) ⊆ hypo(Φ̂) there exists a
finite point in hypo(Φ̂).

To show that the two switching relations hold, first consider the convex function h = −Φ̂.
Then , and κR(y) = s+(−y). By the properness of
Φ̂ proved above and Proposition 2.4, it suffices to show that

To accomplish this, it suffices, without loss of generality, to prove the equalities in the last
display when y = 0, and this in turn follows if we relate the maximal superlevel sets of Φ and
Φ̂. This follows from Lemmas 2.5 and 2.6.

Remark 2.7—Note that conv(S) ≠ Ŝ in general. To see this, consider the function
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We have that Φ is upper-semicontinuous, S = {0} and Φ̂ ≡ 1, so Ŝ = ℝ.

Remark 2.8—Note that if conv(hypo(Φ)) is a polyhedral set, then it is closed (see e.g.,
Rockafellar (1970, Corollary 19.1.2)). This is the case in our applications.

3. Some Numerical Results
Figure 2 gives plots of the empirical distributions of m =10,000 Monte Carlo samples from
the distributions of f̂n(0)/(C2nα/(1 − α))1/(1 − α)) when n = 200 and n = 500, together with the
limiting distribution function obtained in (1.9). The true density f0 on the right side in Figure
2 is

(3.1)

For c ∈ (0, 1), this family satisfies (G2) with α = 1 − c and C2 = 1/(αΓ(1 − α)). (Note that for
c = 1, f0(x) ~ log(1/x) as x ↘ 0.)

The true density f0 on the left side in Figure 2 is

(3.2)

For a ∈ [0, 1), this family satisfies (G2) with α = a and C2 = 1/Beta(1 − α, 2).

Figure 3 shows simulations of the limiting distribution

(3.3)

for different values of c and γ. Recall that if γ = 1 the supremum occurs at t = 0 regardless of
the value of c, and the limiting distribution (3.3) has cumulative distribution function 1 − 1/
(x + 1). However, for γ < 1, the distribution of (3.3) depends both on γ and on c, although the
dependence on c is not visually prominent in Figure 3. Table 1 shows estimated values of

(3.4)

for different c and γ < 1, which clearly depends on the cutoff value c (upper bound on the
standard deviation in each case is 0.016). Note that (3.3) is equal to one if the location of the
supremum occurs at t = 0 (with probability one).

Balabdaoui et al. Page 11

Stat Sin. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Cumulative distribution functions for the location of the supremum in (3.3) are shown in
Figure 4; these depend on both γ and c.

4. Application to Mixtures
4.1. Behavior near zero

Suppose X1, …, Xn are i.i.d. with distribution function F, where

where  with φr(y) ≡ exp(−|y|r/r)/Cr for r > 0 gives the generalized
normal (or Subbotin) distribution; here Cr ≡ 2Γ(1/r)r(1/r)−1 is the normalizing constant. If
we transform to Yi ≡ 1 − Φr(Xi) ~ G, then, for 0 ≤ y ≤ 1,

Let gε,μ,r denote the density of Gε,μ,r; thus

(4.1)

It is easily seen that gε,μ,r is monotone decreasing on (0, 1) and is unbounded at zero if r > 1.
Figure 5 shows plots of these densities for ε = .1, μ = 1, and r ∈ {1.0, 1.1, …, 2.0}. Note that
gε,μ,1 is bounded at 0, in fact gε,μ,1(y) = 1−ε+εeμ for 0 ≤ y ≤ 2−1e−μ.

Proposition 4.1—The distribution  is regularly varying at
0 with exponent 1. That is, for any c > 0,

Proof—Let . Our first goal is to show that

(4.2)

where (for y small)
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To prove (4.2), it is enough to show that

(4.3)

This result follows from de Haan and Ferreira (2006, Thm. 1.1.2). Let bn = κ̃r(1/n),
, and choose F = Φr in the statement of Theorem 1.1.2. Then, if we can show that

(4.4)

it would follow from de Haan and Ferreira (2006, Thm. 1.1.2 and Sec. 1.1.2) that for all x ∈
ℝ,

where . Choosing x = 1 yields (4.3).

To prove (4.4), we make use of the following, a generalization of Mills’ ratio to the
generalized Gaussian family,

(4.5)

This follows from l’Hôpital’s rule:

Now,
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by using the definition of bn. We have thus shown that (4.2) holds. Then, for y → 0, by (4.5)
and (4.2),

Plugging in the definition of φr, we find that

Note that limy→0 κ̃r(cy)/κ̃r(y) = 1. Therefore,

Thus (1.5) holds with γ = 1.

By the theory of regular variation (see e.g., Bingham, Goldie and Teugels (1989, p. 21)),
Fμ,r(y) = yℓ(y) where ℓ is slowly varying at 0. It then follows easily that (1.5) holds for F0 =
Gε,μ,r with exponent 1. Thus the theory of Section 1 applies with an of Theorem 1.1 taken to
be an = Gε,μ,γ(1/n); i.e.

where the last approximation is valid for r > 1, but not for r = 1. When r = 1, the first
equality can be solved explicitly, and we find
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(4.6)

We conclude that Theorem 1.1 holds for an as in the last display, where f̂n is the Grenander
estimator of gε,μ,r based on Y1, …, Yn.

Another interesting mixture family is as follows: suppose that Φ1, Φ2 are two fixed
distribution functions, then

Using Yi ≡ 1 − Φ1(Xi) ~ G, then, for 0 ≤ y ≤ 1, we find that under H1 the distribution of the
Yi’s is given by

For Φ2 given in terms of Φ1 by the (Lehmann alternative) distribution function Φ2(y) = 1 −
(1 − Φ1(y))γ, this becomes

When 0 < γ < 1 this family fits into the framework of our condition G2 with α = 1 − γ and
C2 = εγ.

4.2. Estimation of the contaminating density
Suppose that Gε,F (y) = (1 − ε)y + εF (y) where F is a concave distribution on [0, 1] with
monotone decreasing density f. Thus the density gε,F of Gε,F is given by gε,F (y) = (1 − ε) +
εf(y). Note that gε,F is also monotone decreasing, and gε,F (y) ≥ 1 − ε + εf(1) = 1 − ε = gε,F
(1) if f(1) = 0. For ε > 0 we can write

If Y1, …, Yn are i.i.d. gε,F, then we can estimate gε,F by the Grenander estimator ĝn, and we
can estimate ε by ε ̂n = 1 − ĝn(1). This results in an estimator of the contaminating density f,
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which is quite similar in spirit to a setting studied by Swanepoel (1999). Here, however, we
propose using the shape constraint of monotonicity, and hence the Grenander estimator, to
estimate both ε and f. We will study this estimator elsewhere.
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Appendix A: Proofs for Section 1
For the proof of Theorem 1.1 we need two lemmas. Together, they show that argmax R and
argmax L are continuous. We assume that (1.5) holds and that nF0(an) ~ 1. Thus both (1.3)
and (1.7) also hold.

Lemma A.1
i. When γ = 1 and x > 1, .

ii. When γ ∈ (0, 1) and x > 0, .

Proof
It suffices to show that lim supn→∞ P(supv≥K{n n(anv) − xv} ≥ 0) → 0, as K → ∞ under
the conditions specified. Let h(x) = x(log x − 1) + 1 and recall the inequality

for t ≥ 1, where Bin(n, p) denotes a Binomial(n, p) random variable; see e.g. Shorack and
Wellner (1986, p.415). It follows that

(A.1)

Next, since F0 is concave,
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for j ≥ K and nF0(an(K + 1)) → (K + 1)γ and n → ∞. Therefore, for all j ≥ K and
sufficiently large n, we have

for any fixed δ < 1. We need to handle the two cases γ = 1 and γ < 1 separately. Note that if γ
< 1, then the above display shows that K, n can be chosen sufficiently large so that (xj)/
nF0(an(j + 1)) is uniformly large. On the other hand if γ = 1 and x > 1, then we can pick δ, K,
n large enough so that (xj)/nF0(an(j + 1)) is strictly greater than 1 + ε for some ε > 0, again
uniformly in j.

Suppose first that γ < 1. Then for K, n large, since h(x) ~ x log x as x → ∞, there exists a
constant 0 < C < 1 such that for all j ≥ K

for some other constant Cx > 0. This shows that the sum in (A.1) converges to zero as K →
∞, as required.

Suppose next that γ = 1. Note that the function h(x) > 0 for x > 1. Therefore, combining our
arguments above, we find that for all j ≥ K

again for some Cx,δ > 0. This again implies that the sum in (A.1) converges to zero as K →
∞, and completes the proof.

Lemma A.2
Suppose that γ ∈ (0, 1]. Then

Proof

Suppose that . Then it follows that  or, equivalently,
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Now , so the left side here takes values in the
set {1, 2, …} while the right side takes values in x·{r1/γ−s1/γ: r, s ∈ J(ℕ), r > s}. But it is
well-known that all the (joint) distributions of the points in J(ℕ) are absolutely continuous
with respect to Lebesgue measure, and hence the equality in the last display holds only for
sets with probability 0.

Proof of Theorem 1.1
We first prove convergence of the one-dimensional distributions of nan f̂n(ant). Fix K > 0,
and let x > 1{γ=1} and t ∈ (0, K]. By the switching relation (2.3),

where the convergence follows from (1.7), and the argmax continuous mapping theorem for
D[0, ∞) applied to the processes {v ↦ n n(van) − xv: v ≥ 0}; see e.g. Ferger (2004, Thm.
3 and Corollary 1). Note that Lemma A.1 yields the Op(1) hypothesis of Ferger’s Corollary
1, while Lemma A.2 shows that equality holds in the limit.

Convergence of the finite-dimensional distributions of ĥn(t) ≡ nan f̂n(ant) follows in the
same way by using the process convergence in (1.7) for finitely many values (t1, x1), …, (tm,
xm), where each tj ∈ ℝ+ and xj > 1{γ=1}.

To verify tightness of ĥn in D[0, ∞), we use Billingsley (1999, Thm. 16.8). Thus, it is
sufficient to show that for any K > 0, and any ε > 0,

(A.2)

(A.3)

Here wδ,K(h) is the modulus of continuity in the Skorohod topology,
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where {ti}r is a partition of [0, K] such that 0 = t0 < t1 < …< tr = K and ti − ti−1 > δ. Suppose
then that h is a piecewise constant function with discontinuities occurring at the (ordered)
points {τi}i≥0. Then if δ ≤ infi |τi − τi−1| we necessarily have that wδ,K(h) = 0.

First, note that since ĥn is non-increasing,

and hence (A.2) follows from the finite-dimensional convergence proved above.

Next, fix ε > 0. Let 0 = τn,0 < τn,1 < ··· < τn,Kn < K denote the (ordered) jump points of ĥn,
and let 0 = Tn,0 < Tn,1 < ··· < Tn,Jn < K denote the (again, ordered) jump points of n n(ant).
Because {τn,1, …, τn,Kn} ⊂ {Tn,1, …, Tn,Jn}, it follows that inf{τi,n − τi−1,n} ≥ inf{Ti,n −
Ti−1,n}, and hence

Now, by (1.7) and continuity of the inverse map (see e.g., Whitt (2002, Thm. 13.6.3))

where T1, …, TJ denote the successive arrival times on [0, K] of a standard Poisson process.
Thus

and therefore (A.3) holds. This completes the proof of (i).

To prove (ii), fix 0 < c < ∞. Write

(A.4)

Suppose we could show that the ratio process nan f̂n(ant)/nanf0(ant) converges to the process
t1−γ ĥγ(t)/γ in D[0, ∞). Then the conclusion follows by noting that the functional h ↦
sup0<t≤c |h| is continuous in the Skorohod topology as long as c is not a point of
discontinuity of h (Jacod and Shiryaev (2003, Prop. VI 2.4)). Since ℕ(tγ) is stochastically
continuous (i.e. P(ℕ(tγ) − ℕ(tγ−) > 0) = 0 for each fixed t > 0), t1−γ ĥγ(t)/γ is almost surely
continuous at c.
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It remains to prove convergence of the ratio. Fix K > c, and again we may assume that K is a
continuity point. Consider the term in the denominator, nanf0(ant): it follows from (1.4) that
gn(t) ≡ (nanf0(ant))−1 → g(t) ≡ γ−1t1−γ, where g is monotone increasing and uniformly
continuous on [0, K]. Thus gn → g in C[0, K]. Since the term in the numerator satisfies hn(t)
≡ nan f̂n(ant) ⇒ ĥγ(t) ≡ h(t) in D[0, K], it follows that gnhn ⇒ gh in D[0, K], as required.
Here, we have again used the continuity of the supremum. This completes the proof of (ii).

Lemma A.3
Suppose that an = p(1/n) for some function with p(0) = 0 satisfying limx→0+ p′(x)f0(p(x)) =
1. Then nF0(an) → 1.

Proof
This follows easily from l’Hôpital’s rule, since

Proof of Corollary 1.2
Under the assumption G0 we see that F0(x) ~ f0(0+)x as x → 0, so (1.5) holds with γ = 1.
The claim that an = 1/(nf0(0+)) satisfies nF0(an) → 1 follows from Lemma A.3 with p(x) =
x/f0(0+). For (i) note that ĥ1(0) = ĥ1(0+) = supt>0(ℕ(t)/t), and the indicated equality in
distribution follows from Pyke (1959); see Proposition 1.5 and its proof. (ii) follows directly
from (i) of Theorem 1.1. To prove (iii), note that from (ii) of Theorem 1.1 that it suffices to
show that

(A.5)

for each c > 0, where ĥ1(t) is the right derivative of the LCM of ℕ(t). The equality in (A.5)
holds if ĥ1(c) > 1, since ĥ1 is decreasing by definition. By the switching relation (2.3), we
have the equivalence {ĥ1(c) > 1} = {ŝL(1) > c}. The equality in (A.5) thus follows if ŝL(1) =
∞. That is, if ℕ(t)−t < supy≥0{ℕ(y)−y} for all finite t. Let W = supy≥0{ℕ(y) − y}. Pyke
(1959, pp. 570–571) showed that P(W ≤ x) = 0 for x ≥ 0, i.e. P(W = ∞) = 1.

Proof of Corollary 1.3
Under the assumption G1 we see that F0(x) ~ C1x(log(1/x))β as x → 0, so (1.5) holds with γ
= 1. The claim that an = 1/(C1n(log n)β) satisfies nF0(an) → 1 follows from Lemma A.3
with p(x) = x/(C1 log(1/x))β. For (i), note that ĥ1(0) = ĥ1(0+) = supt>0(ℕ(t)/t), as in the proof
of Corollary 1.2. (ii) again follows directly from (i) of Theorem 1.1, and the proof of (iii) is
the same as the proof of Corollary 1.2.

Proof of Corollary 1.4
Under the assumption G2 we see that F0(x) ~ C2x1−α/(1 − α) as x → 0, so (1.5) holds with γ
= 1 − α. The claim that an = {(1−α)/(nC2)}1/(1−α) satisfies nF0(an) → 1 follows from
Lemma A.3 with p(x) = ((1 − α)x/C2)1/(1−α). For (i), note that
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much as in the proof of Corollary 1.2. (ii) and (iii) follow directly from (i) and (ii) of
Theorem 1.1.

Proof of Proposition 1.5
The part of the proposition with γ = 1 follows from Pyke (1959, pp. 570–571); this is closely
related to a classical result of Daniels (1945) for the empirical distribution function, see e.g.
Shorack and Wellner (1986, Thm. 9.1.2).

The proof for the case γ < 1 proceeds along the lines of Mason (1983, pp. 103–105). Fix x >
0 and γ < 1. We aim to establish an expression for the distribution function of Yγ ≡
sups>0(ℕ(s)/s1/γ) at x > 0. First, observe that

(A.6)

where the function U(t) = xt1/γ. For j ∈ ℕ, let tj: = (j/x)γ and note that t1 < t2 < … and U(tj) =
j.

Let B ≡ [ℕ(tk) ≠ k; for all k ≥ 1] and C ≡ [ℕ(s) > U(s); for some s > 0]. Then P(B ∩ C) = 0
as a consequence of the following argument. Suppose that there exists some t > 0 and k ∈ ℕ
such that k = ℕ(t) > U(t) and ℕ(ti) ≠ i, for all i ≥ 1. It then follows that tk > t, for otherwise k
= U(tk) ≤ U(t), as U(·) is increasing, which is a contradiction. Therefore, tk > t implies that
ℕ(tk) > ℕ(t) = k, as ℕ(·) is non–decreasing and ℕ(tk) = k is disallowed by hypothesis.
Hence ℕ(ti) > i holds for all i ≥ k, for otherwise there would exist some j ≥ k such that ℕ(tj)
= j, since ℕ(·) is a counting process. Therefore, for each i ≥ k we have that ℕ(s) ≥ i + 1 for
all ti ≤ s ≤ ti+1 and, consequently, that ℕ(s) ≥ U(s) for all s ≥ tk. This implies that B ∩ C⊆
[lim infs→∞{ℕ(s)/s1/γ} ≥ x] and therefore P(B∩C) = 0, since the SLLN implies that ℕ(s)/
s1/γ → 0 holds almost surely, for fixed γ < 1. Thus P(B ∩ C) = 0.

Now P(C) = P(C ∩ Bc). Furthermore, since U is a strictly increasing function and since ℕ
has jumps at the points {tk} with probability zero, we also find that P(C ∩ Bc) = P(Bc).
Finally, write  for the disjoint sets Ak ≡ [ℕ(tk) = k, ℕ(tj) ≠ j for all 1 ≤ j < k], k ≥
1. Combining the arguments above,

where P(A1) = P(ℕ(t1) = 1) = p(t1; 1) and, for k ≥ 2, P(Ak) may be written as
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The result follows.

Appendix B: Definitions from Convex Analysis
The epigraph (hypograph) of a function f from a subset S of ℝd to [−∞, +∞] is the subset
epi(f) (hypo(f)) of ℝd+1 defined by

The function f is convex if epi(f) is a convex set. The effective domain of a convex function f
on S is

The t-sublevel set of a convex function f is the set Ct = {x ∈ dom(f): f(x) ≤ t}, and the t-
superlevel set of a concave function g is the set St = {x ∈ dom(g): g(x) ≥ t}. The sets Ct, St
are convex. The convex hull of a set S ⊂ ℝd, denoted by conv(S), is the intersection of all
the convex sets containing S.

A convex function f is said to be proper if its epigraph is non-empty and contains no vertical
lines, i.e., if f(x) < +∞ for at least one x and f(x) > −∞ for every x. Similarly, a concave
function g is proper if the convex function −g is proper. The closure of a concave function
g, denoted by cl(g), is the pointwise infimum of all affine functions h ≥ g. If g is proper,
then cl(g)(x) = lim supy→x g(y). For every proper convex function f there exists closed
proper convex function cl(f) such that epi(cl(f)) ≡ cl(epi(f)). The conjugate function g* of a
concave function g is defined by g*(y) = inf{〈x, y〉 − g(x): x ∈ ℝd}, and the conjugate
function f* of a convex function f is defined by f*(y) = sup{〈x, y〉 − f(x): x ∈ ℝd}. If g is
concave, then f = −g is convex and f has conjugate f*(y) = −g*(−y).

A complete non-decreasing curve is a subset of ℝ2 of the form

for some non-decreasing function ϕ from ℝ to [−∞, +∞] that is not everywhere infinite.
Here ϕ+ and ϕ− denote the right and left continuous versions of ϕ, respectively. A vector y ∈
ℝd is said to be a subgradient of a convex function f at a point x if f(z) ≥ f(x) + 〈y, z − z〉 for
all z ∈ ℝd. The set of all subgradients of f at x is called the subdifferential of f at x, and is
denoted by ∂f(x).
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A face of a convex set C is a convex subset B of C such that every closed line segment in C
with a relative interior point in B has both endpoints in B. If B is the set of points where a
linear function h achieves its maximum over C, then B is a face of C. If the maximum is
achieved on the relative interior of a line segment L ⊂ C, then h must be constant on L and L
⊂ B. A face B of this type is called an exposed face.
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Figure 1.
The distribution functions of Yγ, γ ∈ {0.2, 0.4, 0.6, 0.8, 1.0}.
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Figure 2.
Empirical distributions of the re-scaled MLE at zero when sampling from the Beta
distribution (left) and the Gamma distribution (right): from top to bottom we have α = 0.2,
0.5, 0.8.
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Figure 3.
Empirical distributions of the supremum measure: the cutoff values shown are c = 5 (top
left), c = 25 (top right), c = 100 (bottom left), c =1,000 (bottom right).
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Figure 4.
Empirical distributions of the location where the supremum occurs: from left to right we
have γ = 0.25, 0.50, 0.75. Recall that for γ = 1, the (non-unique) location of the supremum is
always zero by Corollary 1.2. The data were re-scaled to lie within the interval [0, 1].
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Figure 5.
Generalized Gaussian (or Subbotin) mixture densities with ε = .1, μ = 1, r ∈ {1.0, 1.2, …,
2.0} (black to light grey, respectively) as given by (4.1).
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