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Abstract
Imaging of cardiac morphology and functions in high spatiotemporal resolution using MRI is a
challenging problem due to limited imaging speed and the inherent tradeoff between spatial
resolution, temporal resolution, and signal-to-noise ratio (SNR). The partially separable function
(PSF) model has been shown to achieve high spatiotemporal resolution but can lead to noisy
reconstructions. This paper proposes a method to improve the SNR and reduce artifacts in PSF-
based reconstructions through the use of anatomical constraints. These anatomical constraints are
obtained from a high-SNR image of composite (k, t)-space data (summed along the time axis) and
used to regularize the PSF reconstruction. The method has been evaluated on experimental data of
rat hearts to achieve 390 µm in-plane resolution and 15 ms temporal resolution.

I. INTRODUCTION
Cardiac Magnetic Resonance (CMR) enables dynamic visualization of the beating heart and
allows for the qualitative and quantitative analysis of cardiac anatomy, function, first pass
myocardial perfusion, myocardial viability, ejection fraction, cardiac output, blood flow
velocity, and various other diagnostic tests [1]. A major challenge of developing CMR
imaging methods which produce accurate and reproducible representations of cardiac
motion at high spatiotemporal resolution arises due to the limited imaging speed of MRI and
its inherent tradeoffs between spatial resolution, temporal resolution, and signal-to-noise
ratio (SNR). A large number of methods have been proposed to address this problem (see
[2] and the references therein), including fast-scanning methods, parallel imaging methods,
and model-based imaging methods. Model-based imaging methods have recently received
significant attention because they are complementary to fast-scanning and parallel imaging
methods. When used together, they can significantly accelerate MR acquisition. Some well-
known model-based imaging methods are UNFOLD [3], PARADIGM [4], k-t BLAST [5],
and k-t FOCUSS [6]. This paper is focused on improving the partially separable function
(PSF) model-based imaging method [7].

The PSF method has been previously used to reconstruct “real-time” image sequences of
beating rat hearts at high spatiotemporal resolution despite the significant challenges
associated with the high heart rates (~300 bpm), respiratory motion (1 Hz), and high spatial
resolution requirements (<500 µm) [8]. One practical problem with the PSF method is due
to the ill-conditionedness of the underlying model fitting problem for highly sparse (k, t)-
space data. This problem has been addressed using weighted spatial-spectral regularization
[9] and spatial-spectral sparsity constraints [10], [11]. This paper describes a new method of
data acquisition and image reconstruction involving the construction of a spatially-weighted

NIH Public Access
Author Manuscript
Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2011 June 15.

Published in final edited form as:
Conf Proc IEEE Eng Med Biol Soc. 2010 ; 2010: 871–874. doi:10.1109/IEMBS.2010.5627889.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



smoothness constraint. The method has been evaluated on experimental data of rat hearts to
achieve 390 µm in-plane resolution and 15 ms temporal resolution.

II. THEORY
With Fourier encoding, the measured data s(k, t) in a dynamic MR experiment is described
by

(1)

where ρ(r, t) is the desired spatiotemporal image function [12]. The nature of MR data
acquisition prevents dense sampling of (k, t)-space, leading to a direct tradeoff between the
achievable spatial and temporal resolutions. The PSF model approach addresses this
challenge by assuming partial separability of the spatial and temporal dimensions in the
image function, thereby providing a new avenue for sparse sampling of (k, t)-space.

The Lth-order spatiotemporal PSF model [7] represents ρ(r, t) as

(2)

where φℓ(t) and cℓ(r) are the ℓth temporal and spatial basis functions, respectively. There are
various ways to collect sufficient data to determine {φℓ(t)} and {cℓ(r)} while still satisfying
MR data acquisition constraints. One basic strategy is to collect a set of “training” data with
high temporal resolution (satisfying the Nyquist criterion) to determine {φℓ(t)} and to collect
regular imaging data with large k-space coverage (achieving high spatial resolution) to
determine {cℓ(r)}. In this paper, we assume that such a data acquisition strategy is used, and
thus that {φℓ(t)} is known (or more precisely, pre-determined) [7]. Our goal is to determine
{cℓ(r)} from the measured data, which is assumed to be highly sparse in (k, t)-space.

Let {s(km, tn)} denote the measured data and be represented in vector form by d. Assuming
the PSF model is correct, we have

(3)

where c is the vector representation of {cℓ(r)}, Φ is a matrix constructed from {φℓ(t)} that
transforms c into ρ(r, t), ℱ is the Fourier operator which transforms ρ(r, t) into s(k, t), 
performs undersampling in (k, t)-space according to the data acquisition scheme, and ξ
represents measurement noise.

In principle, c can be determined from (3) by solving a simple least-squares problem
(assuming ξ is Gaussian noise). In practice, the undersampling operator often causes the
forward matrix Φ to be ill-conditioned. The resulting noise amplification and potential for
image artifacts make the direct least-square solution undesirable. We next discuss a
regularization strategy to deal with this problem.

III. REGULARIZED RECONSTRUCTION
The proposed regularized solution of c is given by
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(4)

where the first term penalizes inconsistencies between the PSF model and the measured
data, and the second term is a regularization penalty dependent on the regularization
constant λ and the weighting matrix B. Equation (4) has a closed-form solution as

(5)

Clearly both λ and B play a key role in selecting a stable PSF solution. The solution using B
= I is referred to as the standard PSF solution in this paper. In the remainder of the paper, we
will focus on defining B. We specifically propose formulating B to perform controlled
smoothing of the image in order to recover SNR and penalize the formation of motion
artifacts without blurring the edges of the object [13]. This controlled smoothing occurs
according to a reference image, which we denote as ρref (r).

Practically speaking, ρref (r) is not always available in the form of a priori information.
However, it is both simple and effective to generate ρref (r) from a composite of the
measured data {s(km, tn)}. Ideally, ρref (r) should be spatially unaliased and should exhibit
high SNR. There are many methods for reconstructing such images from composite (k, t)-
space data, even when the measured data violates the Nyquist condition [14]. In this paper,
we reconstruct ρref (r) from s ̄(km), a weighted sum of {s(km, tn)} over the time axis:

(6)

where (km, tn) is set to 1 for the (k, t)-space locations where s(km, tn) is measured;
otherwise, (km, tn) takes the value of 0. The expression Σn km, tn) gives the total number
of samples which are collected at km, and (6) is therefore equivalent to averaging the
measured data independently at each km. We obtain ρref (r) from s ̄(km) by Fourier
reconstruction. This method for creating ρref (r) requires that the measured k-space locations
{km} collectively satisfy the spatial Nyquist condition. This condition is met by the imaging
data in our acquisition scheme. It is useful to collect the imaging data so that the
measurements at any given km are uniformly distributed over time; this helps prevent ρref (r)
from exhibiting certain motion artifacts.

We formulate B to penalize the weighted spatial smoothness of the PSF reconstruction,
discouraging the formation of sharp image features in ρ(r, t) which are not represented in
ρref (r). This helps suppress both noise and motion artifacts in the reconstruction while
protecting image edges from being smoothed. B operates on c in three steps. First, it applies
{φℓ(t)} to reconstruct ρ(r, t). Second, it convolves ρ(r, t) with multiple directional gradient
kernels {gn(r)} to localize image features and characterize the orientation of edges. Third, it
multiplies the previous output by weighting functions {wn(r)} that are generated from ρref
(r) as

(7)
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where wmax is the maximum allowed penalty value [13]. The overall effect is that B
penalizes the formation of image features in ρ(r, t) inversely proportional to their
prominence in ρref (r), excluding when wn(r) = wmax. The use of wmax softens the penalties
corresponding to very smooth areas of ρref (r) and prevents these areas from overinfluencing
the final solution. When (4) is viewed in a quasi-Bayesian context, the formulation of B to
include weighting as defined in (7) may be interpreted as incorporating ρref (r) into the
model as a statistical prior [13]. For the purposes of this paper, we use two gradient kernels
which compute vertical and horizontal finite differences.

B is specifically expressed as

(8)

(9)

where Φ maps c to ρ(r, t), GΦc is equivalent to the convolution of ρ(r, t) with {gn(r)}, W is
a diagonal matrix which applies the weighting functions {wn(r)}, and N is the number of
directional gradients. When {φℓ(t)} is orthonormal, we replace B with an alternative
operator Balt = WG that applies gn(r) and wn(r) directly to each cℓ(r) instead of to each
timepoint of ρ(r, t). The operator Balt preserves the property  but is more
computationally efficient than B by a factor of T/L, where T is the number of timepoints
represented in {φℓ(t)}.

For computational efficiency, we solve (5) using the conjugate gradient (CG) method [15].
The CG formulation of (5) is

(10)

For the purpose of comparing different regularization methods in this paper, we have
selected all values of λ so the resulting solutions have a common data consistency error

(11)

where σ̂2 is the estimated noise variance of d and N  is the number of (k, t)-space samples
retained by  The effect of (11) is closely related to Morozov’s discrepancy principle, and
the resulting reconstructions have data discrepancies of the same order as noise with

variance .

IV. RESULTS
All experimental data in this paper were collected using a Bruker (Billerica, MA) Avance
DRX 4.7 T, 40 cm equipped with a 12 cm, 40 G/cm shielded gradient set. A 5.5 cm custom
built surface coil was used for the collections. A customized FLASH pulse sequence with a
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TR of 7.5 ms and a TE of 2.4 ms was used to acquire data at 102 × 128 resolution over a 4
cm × 5 cm Field of View (FOV) (an in-plane resolution of 390 µm) with a 1.5 mm slice
thickness. Data were collected continuously with neither gating nor breath holding over 5
minutes, with interleaved acquisition of training and imaging data. All PSF reconstructions
were performed at model order L = 16.

The animals used in the study were Dark-Agouti and Brown Norway rats as in [16]. All
animals received humane care in compliance with the Guide for the Care and Use of
Laboratory Animals, published by the National Institutes of Health, and the animal protocol
was approved by the Carnegie Mellon University Institutional Animal Care and Use
Committee.

Fig. 1 shows results from multiple reconstruction methods applied to the same experimental
data. The noise present in the PSF reconstructions varies with time; the two images
displayed for each method represent the high and low extremes of this noise. The
reconstruction methods shown are the sliding window reconstruction (direct Fourier
reconstruction of the imaging data with zero-order temporal interpolation), the unregularized
solution to the PSF model (B = 0), the standard PSF solution (B = I), and the proposed
anatomically-constrained PSF solution. The proposed solution exhibits a significant
reduction in noise and motion artifacts when compared to the other reconstruction methods.
This improvement in image quality occurs without blurring edges or reducing temporal
resolution.

Fig. 2 shows the reference image ρref (r) and penalty weightings {wn(r)} used in the
proposed reconstruction scheme.

V. DISCUSSION
The sliding window reconstructions shown in Fig. 1 represent Fourier reconstructions of the
imaging data when no attempt is made to model the time-evolution of the object beyond
nearest-neighbor interpolation. It should be noted that the interleaved acquisition of training
and imaging data used in this experiment is not optimal for sliding window reconstruction:
the sliding window reconstruction shown here has a temporal resolution of 1.53 s, whereas a
non-interleaved acquisition of imaging data alone would yield a sliding window
reconstruction with a temporal resolution of 765 ms. Nevertheless, neither temporal
resolution is sufficient to resolve even respiratory motion in rats, let alone cardiac motion.
The PSF reconstructions have a temporal resolution of 15 ms, with a spectral bandwidth of
33.3 Hz that covers six harmonics of cardiac motion. PSF theory does not exclude the use of
parallel imaging or faster pulse sequences, so any performance gains from these techniques
are equally applicable to both sliding window and PSF imaging [9].

The SNR improvement resulting from the proposed regularization method has farther-
reaching implications than just those pertaining to image quality, as the PSF method features
trade-offs between SNR and various other parameters such as experiment time and model
order. The implications of the proposed method on experiment time will be examined here.

Although experiment times in PSF imaging are not as long as those required for gated
imaging techniques, PSF experiment times are still generally longer than those required by
other model-based imaging techniques, some of which require short experiment times
within a single breath hold to function properly. Although the ability to reconstruct data over
longer periods of time is one advantage of the PSF method, the sensitivity of SNR to
experiment time is also a weakness. The SNR gained by the proposed regularization method
can thus be interpreted as a time-saving technique when longer experiment times are
inconvenient or impossible. Whereas the usual approach to improving the SNR of the
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unregularized or standard PSF solutions would be to acquire more data, the proposed
regularization scheme has achieved this goal without resorting to an increase in experiment
time.

It is possible that in some situations, such as when an object shifts in the scanner, a static
reference image will be insufficient to reliably identify image features. In this case, it may
be useful to define a time-variant reference image ρref (r, t), perhaps generated from the
measured data using a large temporal sliding window. The basic formulations of (7) and (9)
will still apply, even for a dynamic reference image, although the computationally efficient
operator Balt will no longer be a valid alternative to B.

This work is complementary to other constrained PSF reconstruction techniques such as the
weighted spatial-spectral regularization in [9] and spatial-spectral sparsity constraints in
[10], [11]. In theory, the proposed penalty on the spatial smoothness should not conflict with
such spatial-spectral penalties, and both can perhaps be used simultaneously. Weighted
spatial smoothness regularization may also be useful in reconstructing radially-
undersampled projection acquisitions or radial projection datasets which otherwise exhibit
significant motion artifacts, assuming that an unaliased reference image is attainable. The
control over edge orientation which results from using multiple spatial gradients seems
particularly suited to the dampening of radial aliasing artifacts, which manifest as linear
streaks in the image domain.

VI. CONCLUSION
An extension to PSF model-based dynamic imaging has been proposed and successfully
used to perform real-time CMR imaging in breathing rats at 390 µm spatial resolution and
15 ms temporal resolution. Our results show that the quality of PSF image reconstruction
regarding SNR and motion artifacts can be greatly improved by introducing a statistical
prior to the model in the form of a spatially-weighted smoothness constraint. The proposed
method would improve the practical utility of the PSF-based imaging method.
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Fig. 1.
Images corresponding to two timepoints from the sliding window reconstruction and from
PSF reconstructions with different weighted regularization schemes. The bottom row shows
images from the proposed anatomically-constrained regularization scheme.
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Fig. 2.
The reference image ρref (r) (top) and the resulting penalty weighting functions {wn(r)}
(bottom). Note that weighting is defined separately for the vertical (left) and horizontal
(right) gradients.
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