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Abstract

A Brønsted acid-catalyzed Prins-type cyclization sequence to construct spirooxindole pyrans in
high yields and excellent diastereoselectivity has been developed. The combination of a β-hydroxy
dioxinone fragment and isatin dimethyl acetal generate oxa-spirooxindoles efficiently. These
compounds are diversifiable scaffolds that tap into the rich chemistry of dioxinones.

The spirooxindole alkaloids are a class of natural products containing a privileged bicyclic
architecture.1 Given their broad and interesting biological activities, convergent and
stereoselective strategies to access this highly substituted system continue to fuel ongoing
investigations of their therapeutic potential.2 Toward this goal, a variety of synthetic
strategies have been developed for the pyrrolidine-indole and spirooxindole core, including
Mannich reactions, oxidative rearrangements, MgI2-promoted ring expansions 1,3-dipolar
cycloadditions, radical cyclizations, and intramolecular Heck reactions.3,4

A potentially promising subset of these natural products are the oxa-spirooxindoles which
are an intriguing fusion of two priviledged motifs, the tetrahydropyranone and pyrrolidinyl
spirooxindole substructures (Scheme 1). They are characterized by a spiro ring fusion at the
3-position of the oxindole core with varied substitution about the pyran and/or oxindole
ring.5 General approaches to this target are considerably more limited6 and include a
stereoselective vinylogous aldol reaction of vinyl malononitrile to isatin derivatives under
mild conditions.7 In 2009, Porco disclosed Prins cyclizations with isatin ketals.8 Most
recently, Shintani and Hiyashi have reported a palladium- catalyzed decarboxylative
cyclization of γ-methylidene-δ-valerolactones with isatins.9 We envisioned that a catalytic
approach that a) was modular with respect to the indole and pyran unit, and b) delivered
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oxa-spirooxindoles with high levels of selectivity (including control over absolute
stereochemistry) would permit rapid construction of this bioactive motif.

In 2005, we reported the Lewis acid-catalyzed condensation of β-hydroxy-dioxinones with
aldehydes to produce 2,6-cis-disubstituted tetrahydropyran-4-ones.10 The β-hydroxy-
dioxinones are useful building blocks and straightforward to prepare from aldehydes and
dioxinone by known catalytic enantioselective vinylogous aldol reactions.11 In addition to
the established reactions with dioxinones such as acylations,12 photochemistry13 and
alkylations,14 this moiety possesses a deactivated enoltype alkene and provides a versatile
synthetic handle in the form of a protected β-ketoester. The use of β-hydroxy dioxinone
fragments in Prins-type chemistry is a component of our larger platform aimed at developing
new methods toward the construction of oxygen-containing heterocycles2 and their
subsequent application in total synthesis/chemical biology activities.15

During investigations to engage additional electrophiles beyond aldehydes for our
tetrahydropyranone method, we uncovered that a β-hydroxy dioxinone underwent addition
to acetone in the presence of a strong Lewis acid (BF3•OEt2) in a Prins-type process. Based
on this observation, we initiated an examination of of isatins as potential electrophiles16

which could in turn provide facile access to oxa-spirooxindole structures.

At the onset, our overall strategy focused on a sequential (not tandem) combination of a
general aldehyde, a three-carbon acetoacetate fragment (dioxinone) through a vinylous aldol
followed by a Prins reaction with the resulting β-hydroxy dioxinone and isatin (2, Scheme
1). The three separate inputs in this reaction design would make it amenable to diversity-
oriented synthesis.17 We first explored the reactivity of N-methylated isatin 3a with β-
hydroxy-dioxinone 1a under catalytic scandium(III) triflate conditions, which resulted in no
reaction (entry 1, Table 1).18 When utilizing a more robust Lewis acid such as BF3•OEt2,
even stirring at 23°C for 12 hours only afforded a 4% yield of the desired tricyclic product
(entry 2). We then decided to increase the reactivity of the N-methyl isatin substrate by
converting it into the N-methyl isatin dimethyl ketal 3b, which would presumably generate a
reactive oxocarbenium ion in situ under the acidic conditions. Unfortunately, the reaction
with this new isatin derivative was still not promoted by scandium(III) triflate (entry 3), but
BF3•OEt2 did afford the desired product 4a in 26% yield with excellent diastereoselectivity
(entry 4). With this encouraging result, we performed a thorough Lewis acid screen19 and
identified Sn(IV) or silyl triflates as good promoters of this reaction, but reducing the
amounts below one equivalent for this reaction provided significantly reduced yields of the
desired products.

We then turned our attention to employing catalytic amounts of Brønsted acids to facilitate
this process. The reaction was not promoted by H3PO4, p-TSA•H2O, TFA or Tf2NH;20

however, 50 mol % of TfOH, H2SO4 and MeSO3H all catalyzed the reaction (data not
shown). Our best result was achieved with 20 mol % of TfOH, 1 equivalent of isatin diketal
3b and 1.5 equivalents of dioxinone 1a, affording desired product 4a in a 93% yield with
excellent levels of diastereoselectivity favoring the 2,6-cis isomer (entry 8). It is worth
noting that addition of flame dried 5 Å molecular sieves to the reaction mixture was crucial
to achieve the high yields for this process.

With these catalytic Brønsted conditions, we surveyed isatin ketal substrate scope and found
that both electron-donating and withdrawing substituents are tolerated at either the 5 or 6
position when the nitrogen of the isatin was methyl or benzyl group-protected (Table 2,
entries 1-7). The relative stereochemistry of these tricyclic products was determined by X-
ray crystallographic analysis.21 In addition, the unprotected isatin substrate was compatible
with the reaction conditions (entry 7), but no reaction was observed with more sterically
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demanding substrates, such as 4-bromo-isatin (data not shown). We then explored the
substrate scope of the dioxinones and found that with alkyl (linear and branched) or
aromatic substitution gave moderate to high yields (51-88%) with no adverse impact on
diastereoselectivity of the resulting spiro-tricyclic product 4 (entries 8-15).

To shed light on the reaction mechanism of this diastereoselective process, we isolated the
minor diastereomer of 4g from the reaction under TMSOTf conditions and submitted this
diastereomer to the optimized catalytic acid conditions in Table 2. No conversion to major
diastereomer 4g was observed, which supports that this Prins cyclization is a kinetically
controlled process. The current rationale for the high diastereoselectivity observed in this
reaction is shown in Scheme 2. The combination of the isatin ketal and β-hydroxy dioxinone
leads to initial formation of the oxocarbenium ion intermediate. The aryl substituent of the
oxindole moiety adopts a pseudo-equatorial position, syn to the R substituent of the
dioxinone. There may also exist additional stabilization resulting from O (lone pair)–π
interaction between the carbonyl of the dioxinone and the aryl ring of the isatin.22 The
intervention of a 2-oxonia Cope [3,3]-sigmatropic process during Prins reaction could
potentially epimerize the stereochemistry of the dioxinone under the reaction conditions.23

However, complete transfer of enantiomeric excess was observed (60% ee 1a with isatin 3b
provides 4a in 60% ee).

By tapping into the embedded β-keto ester functional group of the new tricyclic dioxinone
oxa-spirooxindoles, a variety of different structures can be accessed quickly. A thermally-
initiated retro [4+2] cycloaddition allows access to a reactive acyl ketene intermediate
(Scheme 3). When the tricyclic dioxinone 4h is heated in wet DMSO, a standard
decarboxylation of the in situ generated β-keto acid affords tetrahydropyranone 5. Under
similar thermal parameters, the dioxinone functional group of 4h can be exchanged for a
thiouracil 6 by heating with thiourea (42%).24 Lastly, a simple acylation with methanol
produces the β- keto ester (7). When methyl hyrdrazine is added after this esterification, the
tricyclic pyrrolidinone (8) can be isolated in excellent yield for the two steps (81%).

We have also explored different ketal structures beyond isatins (Scheme 4). For example,
the combination of a β-hydroxy dioxinone and the dimethyl ketal of methyl benzyl formate
under the Brønsted acid conditions produced trisubstituted tetrahydropyran 10a. In addition,
we were able to obtain the pentacyclic product 10b by adding to the dimethyl ketal of 1,2-
naphthylenedione. However, ketal substrates such as the dimethyl ketal of phenyl acetone or
benzophenone are not suitable substrates. This lack of reactivity may be due to stabilization
of the corresponding oxocarbenium intermediate generated with the adjacent phenyl (or
bisphenyl) groups. The lack of an adjacent, destabilizing electron withdrawing group as with
the isatins may impede C–C bond formation to close the THP ring. Further exploration of
the α-keto substrate scope is currently underway and will provide more insight into the
expanded potential of this method.

In summary, we have developed a modular and highly stereoselective approach to construct
spirooxindole pyrans in high yield with catalytic Brønsted acid. The overall combination of
an aldehyde, an acetoacetate fragment (dioxinone) and isatin provides an efficient and
diastereoselective route for diversified products with complete transfer of stereochemistry
from the β-hydroxy intermediate to the products. The high levels of 2,6-cis selectivity
observed for this catalytic process is attributed to the equatorial preference of the oxindole
moiety. This study sets the stage for the generation of focused libraries for screening efforts
geared toward leveraging small compound synthesis for advances in biomedical research.
Efforts to realize this potential and advance dioxinone-driven Prins methods in new
directions are ongoing in our laboratory.
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Supplementary Material
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Scheme 1.
A modular strategy to the spirooxindole-pyrans
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Scheme 2.
Proposed cyclization mechanism
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Scheme 3.
Diversification of tricyclic spirooxindole.
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Scheme 4.
Additional substrates.
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Table 1

Acid Optimization

entry 3 conditions[a] dr (%)[b] yield (%)[c]

1 3a 20 mol % Sc(OTf)3/CaSO4, 0 °C, 4 h; 20 °C, 12 h – 0

2 3a BF3•OEt2, 0 °C, 4 h; 23 °C, 12 h 20:1 4

3 3b 20 mol % Sc(OTf)3/CaSO4, 0 °C, 4 h; 20 °C, 12 h – 0

4 3b BF3•OEt2, 0 °C, 4 h; 23 °C, 12 h 20:1 26

5 3b 5 mol % TfOH 20:1 32

6 3b 20 mol % TfOH 20:1 52

7 3b 20 mol % TfOH, 5 Å MS 20:1 70

8 3b 20 mol % TfOH, 5 Å MS[d] 20:1 93

a
Reaction conditions (entries 1-6): 1a (1.0 equiv), 3a or 3b (1.0 equiv), CH2Cl2 (0.05 M), temperature and time as indicated; (entries 7-16): 1a

(1.0 equiv), 3b (1.0 equiv), 0.05 M in CH2Cl2, 0 °C, 30 min; warm to 20 °C, 1 h;

b
Diastereoselectivity was determined from 1HNMR spectra of unpurified material.

c
Yield of isolated tricyclic product.

d
1.5 equivalents of dioxinone 1a.
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