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Abstract
Accelerated molecular dynamics (aMD) is an enhanced-sampling method that improves the
conformational space sampling by reducing energy barriers separating different states of a system.
Here we present the implementation of aMD in the parallel simulation program NAMD. We show
that aMD simulations performed with NAMD have only a small overhead compared with classical
MD simulations. Through example applications to the alanine dipeptide, we discuss the choice of
acceleration parameters, the interpretation of aMD results, as well as the advantages and
limitations of the aMD method.

Introduction
Molecular dynamics (MD) is a widely used technique in the field of computational biology.
Through integration of the Newtonian equations of motion, trajectories of individual atoms
are calculated in a MD simulation, from which thermodynamic properties can be obtained
using the principles of statistical mechanics. While MD has been successfully applied to
study a wide range of biological and chemical problems (1–5), there remains a substantial
gap between the timescale of current MD simulations, often on the order of tens to hundreds
of nanoseconds, and the timescale of typical biological processes, usually many
microseconds, milliseconds, or longer. In order to bridge this gap, various enhanced
sampling techniques have been proposed to expedite the sampling of an MD simulation,
which often involve modifying the energy landscape of a system to speed up its transitions
between different states. Such methods include, for example, conformational flooding (6, 7),
hyperdynamics (8, 9), metadynamics (10, 11), and the adaptive biasing force method (12–
14). Accelerated molecular dynamics (aMD) (15), inspired by earlier work of Voter (8, 9),
also belongs to the class of enhanced sampling methods.

In its original form (15), the aMD method modifies the potential energy landscape by raising
energy wells that are below a certain threshold level, while leaving those above this level
unaffected. As a result, barriers separating adjacent energy basins are reduced, allowing the
system to sample conformational space that cannot be easily accessed in a classical MD
(cMD) simulation. aMD was first implemented in the program AMBER (15) and has been
applied in the study of several peptide and protein systems (16–22). Here, we describe the
implementation of aMD in the parallel MD program NAMD (23), which can be freely
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downloaded from the official NAMD website (www.ks.uiuc.edu/Research/namd/). We also
provide example applications to a model peptide, N-acetyl-N'-methyl-alaninamide, often
referred to as alanine dipeptide. Through simulations of this model system in both the gas
phase and the fully solvated state, we discuss the choice of aMD parameters and comment
on the advantages and limitations of the method. Our results should provide the basis for
future aMD development and application studies using the NAMD program.

Methods
Theory

In the original form of aMD (15), when the system’s potential energy falls below a threshold
energy, E, a bias potential is added, such that the modified potential, V*(r), is related to the
original potential, V (r), via

(1)

where ΔV (r) is the boost potential,

(2)

In the above equation, E is the threshold energy specified by the user, which controls the
portion of the potential surface affected by the bias. The acceleration factor α determines the
shape of the modified potential: the smaller α, the more flattened the energy surface
becomes. As α increases, the modified potential asymptotically approaches the original
potential; as α decreases, the energy surface below E begins to resemble a constant potential.
Note that α cannot be set to zero, as in this case the derivative of the modified potential
becomes discontinuous (15).

From an aMD simulation, the ensemble average, 〈A〉, of an observable, A(r), can be
calculated using the following reweighting procedure:

(3)

(4)

(5)
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(6)

in which β=1=kBT, where kB is the Boltzmann constant, T is the temperature, and 〈…〉 and
〈…〉* represent the ensemble average in the original (unbiased) and the aMD (biased)
ensembles, respectively.

In this work, we used the above reweighting equation to obtain the free energy profiles of
alanine dipeptide Φ-Ψ dihedrals. A 2D histogram was constructed with a bin width of 15°
using the program VMD (24). An indicator function, δkij, denotes whether the Φ-Ψ dihedrals
of the peptide fall in the bin (Φi, Ψj) at snapshot k,

(7)

The reweighted histogram at bin (Φi, Ψj) is then given by

(8)

where K is the total number of snapshots, and ΔVk is the boost potential at snapshot k. The
histogram of cMD simulations can be obtained using the same equation by setting the boost
potential to zero. The Φ-Ψ free energy profile is then determined by

(9)

where W0 is an arbitrary constant. In this work, W0 was chosen such that the minimum of
the free energy profiles was set to zero.

Implementation
Since protein conformational changes tend to be governed by changes in the torsional
degrees of freedom, the aMD method was first applied to boost the dihedral potential (15).
Later studies extended the method to boost the total potential (25) or both the dihedral and
total potential (26). In this work, we implemented two modes of aMD: boosting the dihedral
potential (aMDd) or boosting the total potential (aMDT). The aMD implementation, which
is based on the upcoming 2.8 release of the NAMD program (23), involves two major
modifications of the source code: 1) adding a new reduction class, and 2) adding a new force
class for the aMDd mode. The new reduction class, which enables the aMD module to
access the system's potential energy right after the force evaluation, separates the aMD
routine from that of regular MD, where energy reduction is performed at the end of each
timestep. This implementation allows minimal interference between the aMD module and
the rest of the program, and guarantees that no performance loss is seen when the aMD
option is turned off. The additional force array for the aMDd mode may slightly increase the
memory cost, but otherwise has a small impact on the efficiency of the program.

Benchmark simulations on a system of ~60,000 atoms indicate that aMD simulations give
performance similar to cMD simulations, although the scaling performance drops more
rapidly in aMD as the number of processors increases (Fig 1). A complete list of aMD
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parameters and more benchmark information are included in the supplementary material. On
average, aMDd simulations have a 7% slowdown in comparison to cMD simulations, while
a 12% loss in performance is observed in aMDT simulations. This additional performance
loss is partly caused by the more frequent long-range interaction energy calculations in the
aMDT mode: in both cMD and aMDd simulations, the long-range interaction energy is only
calculated when a user-specified number of steps, controlled by the parameter
“outputEnergies”, is reached. Such an optimization strategy has to be abandoned in aMDT
simulations, which require the system’s total potential energy at every timestep.

Alanine dipeptide simulation protocols
We performed cMD and aMD simulations for both gas-phase and solvated alanine dipeptide
(Fig 2 a) using the CHARMM force field with CMAP correction (27, 28). A timestep of 1 fs
and a large cutoff distance (30Å) were employed for the gas-phase system, the latter of
which ensures that all electrostatic interactions were calculated using direct Coulombic
summation. The fully solvated alanine dipeptide system, consisting of 475 TIP3P water
molecules in a 24×24×24Å3 box, was simulated using a timestep of 2 fs, with bonds
involving hydrogens in the peptide constrained using RATTLE (29) and water geometries
maintained using SETTLE (30). The multiple-time-stepping algorithm was used, with short-
range forces calculated every step and long-range electrostatics calculated every 2 steps
using the Particle Mesh Ewald (PME) method (31). The cutoff for short-range non-bonded
interactions was set to 12Å, with a switching distance of 10Å. The temperature of both gas-
phase and solvated alanine dipeptide system was maintained at 300K using Langevin
dynamics. The solvated alanine dipeptide was first simulated under constant pressure (1
atm) for 1 ns, the end structure of which was then used in subsequent cMD and aMD
simulations performed in the NVT ensemble.

After completion of the cMD simulation of solvated alanine dipeptide, we used the average
dihedral energy (~3 kcal/mol) of the system to determine the acceleration level for aMD
simulations. Altogether twelve aMDd simulations and one cMD simulation (100 ns each)
were performed for the solvated alanine dipeptide. Twelve aMDd simulations at the same
acceleration levels and one cMD simulation (250 ns each) were performed for the gas-phase
alanine dipeptide. A sample NAMD configuration file for an aMD simulation of the
solvated alanine dipeptide is included in the supplementary material.

Results and Discussion
As a canonical representation of protein backbone conformations, the Φ-Ψ dihedrals of
alanine dipeptide (Fig 2) have been studied using multiple simulation approaches ((14) and
references therein). Despite the simplicity of the system, sampling of the entire Φ-Ψ space is
non-trivial for a cMD simulation. To achieve sufficient sampling and ensure convergence,
we performed a 100-ns cMD simulation of the solvated alanine dipeptide at 300 K. Twelve
100-ns aMDd simulations were carried out under the same conditions with the acceleration
threshold energy E set to 〈V〉 + cN. Here, 〈V〉 represents the average dihedral energy of the
system during a cMD simulation, N = 22 is the number of peptide atoms, and c is a constant
set to 0.2 kcal/mol, 0.5 kcal/mol, 1.0 kcal/mol, and 2.0 kcal/mol, respectively (see Fig 3).
The acceleration factor α was set to 0.2 (E − 〈V〉), 0.5(E − 〈V〉), and E − 〈V〉, respectively.
These values were chosen to examine the empirical formula proposed by previous aMD
studies using the AMBER force field (32), where E and α were determined using similar
equations (15, 17–19, 33). Compared with the solvated alanine dipeptide, sampling of Φ-Ψ
space is more challenging in the gas phase, due to stronger intramolecular hydrogen bond
interactions (14). Therefore, we performed a 250-ns cMD simulation for the peptide in
vacuum, along with twelve 250-ns aMDd simulations using the same acceleration levels
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mentioned above (Fig 4). All the simulations were performed using the CHARMM force
field with CMAP correction (27, 28).

Comparison of aMD and cMD simulations
As shown in Fig 2, the Φ-Ψ free energy maps of alanine dipeptide exhibit distinct features in
the solvated state and the gas phase: the presence of water weakens the intramolecular
electrostatic interactions, allowing the peptide to sample more torsional space in the solvated
state. In the gas-phase cMD simulation, only 39% of the Φ-Ψ space was sampled; while in
the solvated state, the peptide sampled 75% of the Φ-Ψ space. Comparison of the aMD and
cMD results shows that most aMD simulations reproduced well the free energy maps in the
Φ-Ψ regions sampled by cMD simulations (Fig 3 and Fig 4). In addition, enhanced sampling
was achieved in all aMD simulations, with the “amount” of extra sampling depending on the
acceleration parameters: aMD sampled 80–90% of the Φ-Ψ space in the solvated system,and
44–84% in the gas-phase alanine dipeptide.

For the gas-phase alanine dipeptide, in addition to the main basin around (−160°, 160°)
sampled in the cMD simulation, most aMD simulations were able to sample a second energy
basin at (80°,−60°). These two energy basins correspond to the C7eq and C7ax conformations
of the alanine dipeptide, respectively (28). As the cMD simulation only sampled the C7eq
conformation, to obtain a better reference for comparison with aMD results, we performed a
100-ns metadynamics (10, 11) calculation using the collective variable module recently
implemented in NAMD (14). Details of the metadynamics simulation is given in the
supplementary material. The resulting free energy map (Fig 5 a), which agrees well with
cMD and aMD simulations in regions near the main energy basin, also confirms the second
energy basin observed in aMD simulations. To quantify this comparison, we calculated the
root-mean-square deviation (RMSD) of aMD free energy profiles with reference to the
metadynamics result. Regions in the metadynamics Φ-Ψ map with a free energy value below
5 kcal/mol were used as the reference for RMSD calculations. As shown in Fig 5 b, the
overall agreement between the aMD and metadynamics results is reflected by the relatively
small RMSD values (0.13 to 0.46 kcal/mol).

Compared with the gas phase, the enhanced sampling of aMD is less evident in the solvated
alanine dipeptide, since the cMD simulation has already produced decent sampling of the Φ-
Ψ space (Fig 2 b). Nevertheless, more barrier-crossing events were recorded in the aMD
simulations than the cMD simulation: as shown in Fig 6 a, four major energy basins can be
identified in the solvated state, located near (−65°, 145°), (−65°,−45°), (60°, 50°), and (50°,
−160°), respectively. Quantitatively, these regions are defined as energy basins in the cMD
Φ- Ψ free energy map with a value less than 3kcal/mol. A barrier-crossing event is recorded
when the peptide switches from one energy basin to another during a simulation. As listed in
Fig 6 b, aMD simulations produced up to 19 times more barrier-crossing events than the
cMD simulation, suggesting that the conformational space sampling was expedited in aMD.
In addition, aMD simulations with higher acceleration levels, i.e., larger E and smallerα,
produced more barrier-crossing events, consistent with the results of earlier studies (16, 17).

Choosing aMD parameters
In both solvated and gas-phase alanine dipeptide, higher acceleration levels, e.g., larger E
and smallerα, tend to result in higher “amount” of sampling, while lower acceleration levels
can reduce the aMD sampling performance. This relation between aMD parameters and
sampling performance, which can be expected from the aMD formula, has been
demonstrated by previous aMD studies (15, 18). However, it is worth noting that the
behavior of an individual aMD simulation may not always follow this general relation. For
instance, with c = 0.5 kcal/mol and α = 0.5(E − 〈V〉), the aMD simulation of the gas-phase
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alanine dipeptide did not sample the second energy basin at (80°,−60°) (Fig 4). This result
reflects the stochastic nature of aMD simulations, i.e., although the probability of achieving
enhanced sampling increases with higher acceleration levels, the behavior of individual
aMD simulations may occasionally deviate from this relation. Indeed, repeating the above
aMD simulation, we observed the sampling of the second energy basin in this replica
simulation (Fig S1).

In both solvated and gas-phase alanine dipeptide, while the sampling of Φ-Ψ space is
enhanced with higher acceleration levels, the statistical uncertainty of the results tends to
increase as well. As discussed in previous aMD studies (34), the statistical noise is mainly
caused by the exponential terms of ΔV involved in the reweighting process (Eq 6), which
significantly amplifies the uncertainty in the boost potential. As a result, the free energy
profiles from aMD simulations become more noisy with larger E and smaller α, which can
be observed in both solvated and gas-phase aMD simulations (Fig 3 and Fig 4). Comparison
with the metadynamics result shows that higher acceleration levels tend to produce larger
RMSD values (Fig 5 b). In all aMD simulations, α = 0.2(E −〈V〉) gives the largest RMSD
values, and α = E − 〈V〉 gives on average the smallest RMSD.

Overall, the optimal combination of E and α represents a tradeoff between the statistical
uncertainty and the sampling performance of an aMD simulation. In the alanine dipeptide
simulations, the parameter set c = 0.5 kcal/mol and α = E − 〈V〉 provides enhanced sampling
in both gas-phase and solvated-state simulations, with relatively low statistical uncertainty.
It is noteworthy that when α is the largest, i.e., α = E − 〈V〉, the increase in E introduces the
smallest additional statistical noise: changing c from 0.2 to 0.5 kcal/mol in E = 〈V〉 + cN for
the gas-phase simulation allowed the sampling of the second energy basin, while the RMSD
compared with the metadynamics result is roughly the same in both aMD simulations
(RMSD=~0.13kcal/mol). This result suggests that a useful strategy to find optimal aMD
parameters is to screen the threshold energy values while keeping the acceleration factor α
constant at a relatively high level.

Advantages and limitations of aMD
As discussed earlier, the exponential averages involved in the reweighting process (Eq. 6)
tend to introduce large statistical uncertainties in the aMD results. This issue may be
particularly problematic for large proteins, where high acceleration levels may be required to
facilitate the system’s escape from the initial state. Several methods have been proposed to
resolve this issue, including cumulant expansion (34) and replica exchange aMD (35, 36).
Another direction that is being actively pursued is to apply the boost potential to a selective
part of the system, which can lower the acceleration level required to achieve enhanced
sampling in an aMD simulation (37).

As indicated by the different areas of Φ-Ψ space sampled in the gas-phase aMD (Fig 4) and
metadynamics (Fig 5) simulations, while aMD provides enhanced sampling compared to
cMD, it’s clearly less efficient in generating the Φ-Ψ free energy map compared with
metadynamics. An important difference between the two methods is the usage of a
predefined reaction coordinate, which, in this work, is the Φ-Ψ dihedrals of the alanine
dipeptide. In aMD, the free energy profile is calculated through post-processing aMD
trajectories and collecting statistics along a “post-defined” reaction coordinate. Compared
with metadynamics, where a reaction coordinate is always specified prior to the calculation,
the sampling effort in aMD tends to be less focused along a specific reaction coordinate. In
addition, metadynamics can further benefit from dividing the entire reaction coordinate into
separate windows and performing calculations in each window, a commonly-used strategy
in enhanced sampling methods (38). As a result, aMD may be generally expected to have a
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lower efficiency than metadynamics in producing free energy profiles along a chosen
reaction coordinate.

However, the lack of predefined reaction coordinates is an advantage of aMD in certain
cases: without the need to define a reaction coordinate, the method requires very minimal
knowledge of the system being studied. As a result, aMD can be used to explore a system
with little prior knowledge of its conformational space and transition states. In fact, previous
applications of aMD have used it as a tool to study protein systems with no obvious choice
of reaction coordinates (20, 33, 39). Future studies may therefore explore the combination of
aMD and other enhanced sampling methods, where the former can be used to probe the
system and suggest a possible reaction coordinate, while the latter can be used to obtain the
free energy profile along the identified reaction coordinate.

Conclusions
Achieving sufficient sampling of conformational space represents a challenge for most
biologically relevant systems studied using MD simulations. The aMD method tackles this
problem by modifying the system’s potential energy landscape and reducing barriers
separating different states. In this work, we presented the implementation of aMD in the
molecular dynamics program NAMD and its application to the model system alanine
dipeptide. We showed that aMD simulations performed with NAMD have a small overhead
compared with cMD simulations. Through application to the alanine-dipeptide system, we
explored the empirical equations used for choosing aMD parameters, and discussed the
advantages and limitations of the aMD method. We hope that our NAMD implementation of
aMD will provide the basis for future aMD development and application studies.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Performance of aMD simulations on a ~60,000-atom system. The simulations were
performed on the supercomputer Ranger at the Texas Advanced Computing Center using 2,
4, 5, 6, and 8 nodes, respectively. Each node on Ranger consists of four quad-core AMD
opteron processors (16 CPUs).
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Figure 2.
Alanine dipeptide and the Φ-Ψ free energy maps. (a) The Φ-Ψ dihedrals of an alanine
dipeptide. (b) Φ-Ψ free energy map of the solvated alanine dipeptide from a 100-ns cMD
simulation. (c) Φ-Ψ free energy map of the gas-phase alanine dipeptide from a 250-ns cMD
simulation. Contour lines are drawn every 0.5 kcal/mol for energy values between 0 and 5
kcal/mol, and every 2 kcal/mol for values between 5 and 21 kcal/mol.
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Figure 3.
Φ-Ψ free energy maps of the solvated alanine dipeptide calculated from aMDd simulations.
The average dihedral energy of alanine dipeptide in a cMD simulation (〈V〉 =~3 kcal/mol)
was used to guide the selection of acceleration levels: the acceleration threshold energy E
was set to 〈V〉 + cN, where N = 22 is the number of peptide atoms, and c is set to 0.2 kcal/
mol, 0.5 kcal/mol, 1.0 kcal/mol, and 2.0 kcal/mol, respectively. The acceleration factor α
was set to 0:2(E − 〈V〉), 0.5(E − 〈V〉), and E − 〈V〉, respectively. Contour line spacing as in
Fig 2.
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Figure 4.
Φ-Ψ free energy maps of the gas-phase alanine dipeptide calculated from aMDd
simulations. The same acceleration levels were used as for the solvated alanine dipeptide
simulations (in Fig 3). Contour line spacing as in Fig 2. The energy basins C7eq and C7ax
correspond to the regions around (−160°; 160°) and (80°;−60°), respectively.
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Figure 5.
Metadynamics simulation for gas-phase alanine dipeptide. (a) The metadynamics Φ-Ψ free
energy map with a resolution of 15°. (b) The RMSD values of aMD simulations with
reference to the metadynamics result (see text). The four acceleration threshold energy
levels with c = 0.2 kcal/mol, c = 0.5 kcal/mol, c = 1.0 kcal/mol, and c = 2.0 kcal/mol are
indicated by thick solid lines, thin solid lines, thick dashed lines and thin dashed lines,
respectively.
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Figure 6.
Barrier crossing events in cMD and aMD simulations of the solvated alanine dipeptide. (a)
The four regions in alanine dipeptide Φ-Ψ free energy map used to define barrier-crossing
events: region 1 (−65°, 145°), region 2 (−65°, −45°), region 3 (60°, 50°), and region 4 (50°,
−160°). Region 4 includes Ψ angles across the 180°/−180° boundary. (b) Numbers of
barrier-crossing events in cMD and aMD simulations. The aMD simulation parameters c and
α are in the units of kcal/mol and (E − 〈V〉), respectively.
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