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Mutational screening of six genes in Chinese patients with
congenital cataract and microcornea

Wenmin Sun, Xueshan Xiao, Shiqiang Li, Xiangming Guo, Qingjiong Zhang

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China

Purpose: To identify mutations in 6 genes of 9 Chinese families with congenital cataract and microcornea.

Methods: Nine unrelated families with congenital cataract and microcornea were collected. Cycle sequencing was used
to detect variants in the coding and adjacent regions of the crystallin alpha A (CRYAA), crystallin beta Bl (CRYBBI),
crystallin beta A4 (CRYBA4), crystallin gamma C (CRYGC), crystallin gamma D (CRYGD), and gap junction protein
alpha 8 (GJAS8) genes.

Results: Upon complete analysis of the 6 genes, three mutations in 2 genes were detected in 3 families, respectively.
These mutations were not present in 96 normal controls. Of the three mutations, two novel heterozygous mutations in
GJAS, ¢.136G>A (p.Gly46Arg) and ¢.116C>G (p.Thr39Arg), were found in two families with congenital cataract and
microcornea. The rest one, a heterozygous ¢.34C>T (p.Argl2Cys) mutation in CRYAA, was identified in three patients
from a family with nuclear cataract, microcornea with axial elongation. No mutation in the 6 genes was detected in the
remaining 6 families.

Conclusions: Mutations in GJA8 and CRYAA were identified in three families with cataract and microcornea. Elongation
of axial length accompanied with myopia was a novel phenotype in the family with the ¢.34C>T mutation in CRYAA. Our
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results expand the spectrum of GJA8 mutations as well as their associated phenotypes.

Congenital cataract is a leading cause of childhood
blindness accounting for about 10%~38% of blindness in
children [1], with a prevalence around 0.006%~0.06% in live
births [2,3]. It may occur alone or associated with other ocular
or systemic abnormalities. Microcornea, one of the most
frequent abnormalities associated with congenital cataract,
results from the secondary damage of the lens
maldevelopment or from mutations in some growth or
transcription factors [4]. To date, around 200 genes and loci
have been associated with cataracts [4,5]. Of these genes,
mutations in at least 9 genes were reported to be responsible
for congenital cataract associated with microcornea, including
genes encoding crystallins (crystallin alpha-A [CRYAA],
OMIM 123580; crystallin beta-A4 [CRYBA4], OMIM
123631; crystallin beta-B1 [CRYBBI], OMIM 600929;
crystallin beta-B2 [CRYBB2], OMIM 123620; crystallin
gamma-C [CRYGC], OMIM 123680; and crystallin gamma-
D [CRYGD], OMIM 123690) [6-14], gap junction protein
alpha 8 (GJAS, OMIM 600897) [6,15], v-maf avian
musculoaponeurotic fibrosarcoma oncogene homolog (MAF,
OMIM 177075) [16,17], and solute carrier family 16 member
12 (SLC16A412, OMIM 611910) [18]. Analyses of individual
gene in patients with cataract and microcornea have been
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frequently reported [8-16,18-21] but comprehensive analysis
of all these genes in the same set of families is rare [6].

In this study, we performed mutational screening of 6
genes (CRYAA, CRYBBI1, CRYBA4, CRYGC, CRYGD, and
GJA8) in 9 Chinese families with congenital cataract and
microcornea. Three mutations in GJA8 and CRYAA were
identified in 3 families.

METHODS

Patients: Nine families with congenital cataract and
microcornea were collected at the Pediatric and Genetic Eye
Clinic of the Zhongshan Ophthalmic Center, Guangzhou,
China. Written informed consent conforming to the tenets of
the Declaration of Helsinki and following the Guidance of
Sample Collection of Human Genetic Diseases (863-plan) by
the Ministry of Public Health of China were obtained from the
participating individuals or their guardians before the study.
Congenital cataract represents cataract presented at birth or
noticed in the first few months after birth. Microcornea
represents a cornea with horizontal diameter of less than
10 mm. Genomic DNA was prepared from leukocytes of
peripheral venous blood using the standard phenol/
chloroform method [22].

Mutation detection: Genomic bioinformation of the 6 genes
was obtained from the National Center for Biotechnology
Information (NCBI): CRYAA (NCBI human genome build
37.2,NC_000021.8 for gDNA,NM_000394.2 for mRNA and
NP 000385.1 for protein), CRYBB1 (NCBI human genome
build 37.2, NC 000022.10 for gDNA, NM 001887.3 for
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TABLE 1. PRIMERS USED TO AMPLIFY THE CODING AND ADJACENT REGIONS OF THE 6 GENES.

Gene Primer Primer sequence (5'—3")
name
CRYAA 1F GCTGGGGGCGGGCACTTG
IR TGGGGACACAGGCTCTCG
2F GGTGACCGAAGCATCTCTGT
2R CGTGACCCCCTTGTCCTC
3F ACCCGGCCCCTGTGAGAG
3R AAAGGGAAGCAAAGGAAGACA
CRYGC 1-2F CCAAATAAAAGCAACACAGAGC
1-2R AAACCTCCCTCCCTGTAACC
3F CGCAGCAACCACAGTAATCT
3R CCCACCCCATTCACTTCTTA
CRYGD 1-2F GGGCCCCTTTTGTGCGGTTCT
1-2R GTGGGGAGCAAACTCTATTGA
3F TGCTCGGTAATGAGGAGTTT
3R AAATCAGTGCCAGGAACACA
GJAS8 laF CAGATATTGACTCAGGGTTGC
1aR CCGCTGCTCTTCTTGACG
1bF ATTCGCCTCTGGGTGCTG
1bR CCTTGGCTTTCTGGATGG
IcF GCAGCAAAGGCACTAAGAA
1cR CACCTGAGCGTAGGAAGG
1dF ATCGTTTCCCACTATTTCC
1dR GATCATGTTGGCACCTTTT
CRYBBI 1F GGTAATGGAGGGTGGAAC
1R GAGAATAGGGACAGAGGATAAG
2F GGAGGACAGGATCATTTCA
2R ATAATGTATGTGCCAGGAGTA
3F CCTTTGGACTTTCCTACTG
3R GCTTTTGTGCTTATCATTT
4F TAGACAGCAGTGGTCCCT
4R TTGATTACTCCTTCAACCC
SF TAGCCAGGACAGAAGTGAGA
5R ATTGAACATGAAGAAGGGTT
CRYBA4 1F CCCTAGCCCAGTCACTCCT
1R TGAGCCTTGATTGCACCTCT
2F GGCACCTGTGCTGTCTAGTG
2R GCCTAGGGAGAGGGGACCTA
3F CTCCCCTAGTCGTGACAACC
3R TTTCAACTCTGGAACCTTTGA
4F TTATTGCCCTTCCAAAAGGTT
4R TGTTCTCCTCTGGAATGTGG
5F AAAAGAAAGGCTGGGATGGT
5R AAAACCGGTTCTTTGAAAAGATTA

Product length Annealing temperature (°C)

(bp)

552 68
295 68
438 59
671 63.8
579 59.2
643 65
506 63
475 60
571 58
578 60
559 56
672 62
387 62
483 58
571 60
362 60
289 60
396 62
394 62
397 62
584 62

mRNA and NP 001878.1 for protein), CRYBA4 (NCBI
human genome build 37.2, NC 000022.10 for gDNA,
NM _001886.2 for mRNA and NP 001877.1 for protein),
CRYGC (NCBI human genome build 37.2, NC_000002.11
for gDNA, NM 020989.3 for mRNA and NP _066269.1 for
protein), CRYGD (NCBI human genome build 37.2,
NC 000002.11 for gDNA, NM_006891.3 for mRNA and
NP_008822.2 for protein), and GJA8 (NCBI human genome
build 37.2, NC 000001.10 for gDNA, NM 005267.4 for
mRNA and NP _005258.2 for protein). Primers used to
amplify the coding exons and adjacent intronic regions of the
6 genes were referred to a previous publication [23] with
modification for a few primers (Table 1). Individual exon was

amplified by polymerase chain reaction (PCR). The sequence
of the amplicons was determined with the ABI BigDye
Terminator cycle sequencing kit v3.1 on a genetic analyzer
(ABI Applied Biosystems, Foster City, CA). Sequencing
results from patients were aligned with consensus sequences
to identify variations by using the SeqManlI program of the
Lasergene package (DNAStar Inc., Madison, WI). A variant
detected in patient was further evaluated in controls by
sequencing 96 normal individuals.

Variations analysis through online tools: The effects of
alterations were evaluated by Polymorphism Phenotyping
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Figure 1. Mutations identified in 3
unrelated families with congenital
cataract and microcornea. Pedigrees are
shown in the left column. Sequence
chromatography with mutation in each
family is shown in the middle and the
sequences from normal controls are
aligned on the right column. Mutations
in the 3 families were described under
each sequence followed the
nomenclature recommended by Human
Genome Variation Society (HGVS).

Homo sapiens

Pan troglodytes
Pongo abelii
Macaca mulatta
Callithrix jacchus

Canis lupus familiaris

Bos taurus
Ovis aries
Mus musculus

pT39R  p.G46R

IFRILILGTAAEFVWGDEQSDFEV
IFRILILGTAAEFVWGDEQSDEV
IFRILILGTAAEFVWGDEQSDFV
IFRILILGTAAEFVWGDEQSDFV
IFRILILGTAAEFVWGDEQSDFEV
IFRILILGTAAEFVWGDEQSDFEV
IFRILILGTAAEFVWGDEQSDFV
IFRILILGTAADFVWGDEQSDFV
IFRILILGTAAEFVWGDEQSDEV

Figure 2. Protein sequence alignment of
eleven GJA8 orthologs. The regions
with the novel p.T39R and p.G46R
mutations are highly conserved in the
eleven species.

Rattus norvegicus IFRILILGTAAEFVWGDEQSDEV
Gallus gallus IFRILILGTAAELVWGDEQSDFV
TABLE 2. LISTED BELOW IS THE CLINICAL INFORMATION OF THE PATIENTS WITH MUTATIONS.
Cornea
size Axial length
Age (years) at Visual acuity  Cataract (right;left; (mm)
1D Mutation Gender exam onset Inheritance (right;left) types mm) (right;left)
QT597I:1 ¢.34C>T; CRYAA male 47 at birth AD 0.04; 0.04 nuclear 10; 10 27.82;26.35
QT59711:1 ¢.34C>T; CRYAA male 24 at birth AD 0.04; 0.08 nuclear 10; 10 24.47;24.16
QT5971I:1 ¢.34C>T; CRYAA male 4 at birth AD N/A nuclear 9.5;9.5 N/A
QT2041:2 c.136G>A; GJAS female 34 at birth AD NLP; 0.03 total 9;9 N/A
QT204I1:1 c.136G>A; GJAS female 5 at birth AD 0.2;0.25 total 7,7 N/A
QT895 c.116C>G; GJAS8 male 7 at birth Sporadic 0.05; 0.1 total 6,6 N/A

(PolyPhen-2) [24,25] and Sorting Intolerant From Tolerant
(SIFT) [26] at the protein level.

RESULTS

Upon complete analysis of the 6 genes, three heterozygous
mutations in 2 genes were detected in 3 families (Figure 1),
including ¢.34C>T (p.Arg12Cys) mutation in CRYAA, and c.
116C>G  (p.Thr39Arg) and c.136G>A (p.Gly46Arg)
mutations in GJAS8, where the last two mutations are novel.
Both of the c.116C>G and c.136G>A mutations in GJA8 are
predicted to be “probably damaging” by PolyPhen-2 and

“intolerant” by SIFT. The p.Thr39Arg would change the
Blosum62 score from 4 to —1 whereas the p.Gly46Arg would
change the Blosum62 score from 6 to —2. The p.Thr39Arg and
p-Gly46Arg variants involved residues that are conserved
across different species (Figure 2).

The heterozygous ¢.34C>T mutation in CRYAA was
identified in all three patients in a three-generation family
(QT597), where all patients had congenital nuclear cataract
and microcornea (Figure 3, Table 2). Myopic fundus change
in both eyes were observed in the affected father (II:1) and
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affected grandfather (I:1; Figure 4). Ocular ultrasound
recorded axial lengths of 24.47 mm for the right eye and
24.61 mm for the left eye of II:1 and that of 27.82 mm for the
right eye and 26.35 mm for the left eye of I:1. The proband
had —3.00D for both eyes at the age of 4 years old.

The c.136G>A mutation in GJAS was identified in a two-
generation family (QT204) with complete opacity of the lens
and microcornea (Table 2). Horizontal cornea diameter was
9 mm for both eyes of the affected mother and 7 mm for both
eyes of the affected daughter at the age of 5 years old.

The ¢.116C>G mutation in GJA48 was identified in a
sporadic patient (QT895) of 7 years old with microcornea,
complete opacity of lenses, and iris hypoplasia (Figure 5,
Table 2). Horizontal corneal diameter was about 6 mm for
both eyes.

right eye

left eye

1:1

1:1

Figure 3. Photos shows the microcornea and nuclear cataracts of the
three affected patients with a ¢.34C>T mutation in CRYAA in Family
QT597. 1:1, II:1, and III: 1 on the left is the individual identification
numbers that are the same as in the pedigree for QT597 in Figure 1.
The top three photos demonstrated bilateral microcornea and
bilateral nuclear cataracts in the three patients. The bottom two rows
show the nuclear cataracts with suture opacity in I:1 and shell-like
opacity in II:1.
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DISCUSSION

In this study, we screened 6 genes for mutations in 9 Chinese
families with congenital cataract and microcornea. Three
mutations were identified in 3 of the 9 (30%) families,
including a ¢.34C>T (p.Argl2Cys) in CRYAA, and a c.
136G>A (p.Gly46Arg) and a c.116C>G (p.Thr39Arg) in
GJAS, respectively.

CRYAA 1is located in 21q22.3 and encodes the a-A-
crystallin in lens epithelial cells and fiber cells. a-A-crystallin
is a member of small heat shock proteins with the chaperone
activity which contributes to keeping lens transparent [6,10,
27]. Up to now, there were eight mutations of CRYAA found
in sixteen families most of which involved substitutions from
or to arginine [5]. And the corresponding phenotypes of the
mutations were related with congenital cataract with or
without microcornea, microphthalmia, or iris coloboma.

We found a known ¢.34C>T (p.Argl2Cys) mutation in
CRYAA of three patients from a family with congenital nuclear
cataract and microcornea. Previously, this mutation has been
identified in four families with nuclear or lamellar cataracts,
and some patients accompanied with microcornea or
microphthalmia [6,10,28,29]. Elongation of axial length or
myopia has not been observed in previous studies.

GJAS is located in chromosome 1q21.1 and encodes the
gap junction proteins, connexin50. GJAS is one of the most
common genes causing congenital cataract with or without
other ocular abnormalities. Previous studies showed that
GJA8-knockout mice developed nuclear cataract and
microphthalmia, from which it is considered that GJAS8 plays
arole not only in keeping lens transparent but in ocular growth
[30,31]. Up to now, about twenty mutations in GJA8 have
been associated with congenital cataracts in at least 21

right eye left eye

1:1

Figure 4. Fundus photos demonstrate obvious crescent choroidal
defects in the temporal region of the optic disc. Tigroid retinal
changes are present in posterior fundus.
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families. Of these mutations, five were identified in five
families with microcornea and two families accompanied with
microphthamia [32,33].

In this study, we found two novel missense mutations c.
136G>A and c.116C>G in GJA8 in two families with
congenital cataract and microcornea. The ¢.136G>A mutation
led to a substitution from glycine to arginine at the amino acid
position 46, and the ¢.116C>G mutation led to a substitution
from threonine to arginine at the amino acid position 39. Both
the 46 and 39 positions are located in the first transmembrane
domain. In a previous study, Minogue et al. [32] identified a
¢.137G>T (p.Gly46Val) mutation in GJAS of a proband with
early-onset total cataract accompanied with small eyes and
pupils. Therefore, the three mutations may result in phenotype
by the similar mechanism.

In summary, a known ¢.34C>T mutation in CRYAA4 and
two novel mutation in GJ48 were identified in 3 of 9 families
after comprehensive analysis of 6 genes known to cause
cataract and microcornea. Our results expand the mutation
spectrum of GJAS and phenotypic variations associated with
CRYAA mutations. Patients without mutation in the 6 genes
are potential candidate for future study of additional causative
genes for cataracts and microcornea.
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