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Experimental data are analysed statistically
to allow us to draw conclusions from a
limited set of measurements. The hard
fact is that we can never be certain that
measurements from a sample will exactly
reflect the properties of the entire group of
possible candidates available to be studied
(although using a sample is often the only
practical thing to do). It’s possible that
some scientists are not even clear that the
word ‘sample’ has a special meaning in
statistics, or understand the importance
of taking an unbiased sample. Some may
consider a ‘sample’ to be something like
the first ten leeches that come out of a
jar! If we have taken care to obtain a truly
random or a representative sample from a
large number of possible individuals, we
can use this unbiased sample to judge the
possibility that our observations support
a particular hypothesis. Statistical analysis
allows the strength of this possibility to
be estimated. Since it’s not completely
certain, the converse of this likelihood shows
the uncertainty that remains. Scientists are
better at dealing with ‘uncertainty’ than the
popular press, but many are still swayed
by ‘magical’ cut-off values for P values,
such as 0.05, below which hypotheses are
considered (supposedly) proven, forgetting
that probability is measured on a continuum
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and is not dichotomous. Words can betray,
and often cannot provide sufficient nuances
to describe effects which can be indistinct or
fuzzy (Pocock & Ware, 2009). Indeed, many
of the words we use such as significance,
likelihood and probability, and conclusions
such as ‘no effect’, should be used guardedly
to avoid mistakes. There are also differences
of opinion between statisticians: some
statisticians are more theoretical and others
more pragmatic. Some of the different
approaches used for statistical inference are
hard for the novice to grasp. Although
a full mathematical understanding is not
necessary for most researchers, it is vital
to have sufficient understanding of the
basic principles behind the statistical
approaches adopted. This avoids merely
treating statistical tests as if they were a
fire appliance, to pick up when smoking
data need to be dealt with, and vaguely
hoping you have got the correct type. Better
to know how the data should be properly
analysed (as it is to know which extinguisher
works best). The wrong statistical approach
could be like using water on an electrical
fire!

Ideally, the appropriate method of analysis
should be anticipated, because it should
have been considered when the study was
set up. A properly designed study that
aims to answer specific questions will have
defined outcomes of interest at the outset,
before data collection has started. These
questions are then recast as hypotheses that
need to be tested. We use the collected
measurements on an appropriate outcome
to test how probable these observations
would have been if a particular hypothesis
of interest is correct. Assuming that the
reader followed our previous instructions
to properly display the data obtained
(Drummond & Vowler, 2011) we hope that
a review of these data displays will confirm
the planned analysis that is to be used, or
suggest alternatives.

As an example, and with no apology
for a basic approach, we shall explain the
principles of statistical inference in a simple
example involving probability, the bedrock
of statistical analysis. We hope that the
example will be sufficiently concrete to
allow insight into some of the concepts,
such as significance, effect size, and power.
More specific and practical aspects will be
addressed later in the series.

Key points

� Ensure that a sample is random
� Use observations of a sample to judge

the features of the population
� Plan the study: this includes the

appropriate analysis
� Establish a hypothesis: usually that

there is no difference
� Estimate the probability that the

observed data could have occurred by
chance

� Consider the probabilities of more
extreme data as well

� If you find ‘no difference’ this is no
DETECTABLE difference

� Absence of evidence is NOT evidence
of absence

Suppose we set up a very simple
experiment to find out if a flu virus is more
lethal in one strain of cell than another.
We have 20 A cells and 20 B cells to
study. We assume that the cells chosen are
representative of A and B cells in general.
We infect these 40 cells with the virus. We
find that 8 cells out of 40 die (Fig. 1). We
start the analysis with a hypothesis: that
the probability of death after infection is
equal for each strain. The hypothesis is of
independence (i.e. no association) between
death and strain. It also corresponds to the
null hypothesis that there is no difference
in the capacity of the virus to kill A and
B cells. This hypothesis lets us calculate
the probability of observing a number of
potential results from our study and also
predict what would be found if the virus
were equally lethal in A cells and B cells.
For instance, given that there are a total of
8 deaths, we could predict, under this null
hypothesis, that the likely splits of these 8
deaths could be 4 dead A cells and 4 dead
B cells, or maybe even 5 and 3. However,
we discover that 6 of the dead cells are
strain B. Is this finding evidence that the
mortality rates are different? Are A cells
more resistant? Or is this just chance at
work?

If we wished to observe how chance works
we could toss a fair coin eight times to
predict the strain of the dead cells (heads,
it’s an A; tails it’s a B). We would find
that eight throws could unsurprisingly yield
six heads and two tails: so maybe the way
things have happened is not that unlikely.
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But, if we tossed the coin 80 times, then we
would be less likely to get 60 heads and 20
tails: we would expect the number of times
the coin came up heads or tails would be
nearly the same. If the coin is a fair one, P
for heads is about 0.5. A coin was in fact
tossed 24,000 times by Karl Pearson and
there were 12,012 heads, so that experiment
gave an estimate close to the theoretical
value. (Indeed it would be improbable that
the number would be exactly 12,000!) So,
one way to answer our question ‘Have
six dead B cells and only two dead A
cells occurred just as a matter of chance?’
would be to carry out a bigger experiment.
With more cells in the experiment, and
more dead cells, we could be more certain
that a difference of this degree in death
rates was evidence against the hypothesis
of independence, rather than just a chance
event. However, we only had a small plate of
expensive cells, and the experiment is over.
Can we use statistical inference to predict
the probability of our result, or something
more extreme, under the assumption of
independence? If this probability is small,
the evidence would lean towards the cells
having different susceptibilities.

In this study, we observed eight deaths.
Working with the hypothesis that the
probability of death was the same for

each cell type, we would expect that the
distribution of deaths between the groups
would be similar. However, given this total
of eight deaths, there is a range of possible
results. These range from the possibility
that all the deaths occurred in one type,
through to all the deaths being in the
other type. Neither of these extremes is
consistent with our hypothesis that the cells
are equally susceptible (Fig. 1). That is, if
the actual probability of death was the same
for each cell type, it would be improbable
(in the sense of odd, strange, unlikely) that
we would find the extreme circumstances
where all the deaths were in one type of cell,
either A cells or B cells.

This is a simple version of Fisher’s exact test
(Fig. 2). There is a formula that allows us to
calculate the probability of each distribution
of deaths, given a total of eight deaths over
both cell types, using the notation shown in
the figure.

This formula calculates the probability
of this specific configuration occurring, in
relation to the assumption that deaths are
equally distributed, and is based on the
theory of permutations. In a permutation,
as each circumstance is set, the remaining
possible options are reduced. In the formula,
the reducing options are indicated in the
factorial values: a! is a factorial (e.g. 4! is

4 × 3 × 2 × 1, which gives a value of 24, and
0! is defined to be 1). For the values shown
here (Fig. 2), and if the mortality rate were
the same for each type of cell, the probability
of this specific configuration is 0.0202. Since
all the probabilities added together has to be
1, the other possible configurations apart
from the one we’ve observed will have a
total probability of (1 − 0.0202). Out of
these remaining alternative configurations,
probability 0.9798, there can be other more
extreme and unlikely configurations, For
example there could be no deaths of A
cells, and eight deaths of B cells. This
distribution would be quite unlikely if
the actual probability of being killed by
the flu virus were the same for both cell
types.

Using the formula we calculate the
probability of this configuration (no A
deaths and eight B deaths) to be 0.0016.
We can add another unlikely distribution:
the possibility of counts of one A death
and seven B deaths. These two possibilities,
together with the observed result of two
and six, give a total probability of 0.1176
that these three extreme configurations
would occur, if it were true that the actual
probability of cell death was equal in the two
cell types. What we have done is compute the
probabilities that the observation we made,

Figure 1. A hypothetical experiment, exposing two strains of cells (n = 20 of each strain) to viral
infection and assessing cell death and survival
The hypothesis of equal deaths is suggested in the upper right panel. Below, we illustrate the actual result and two
possibilities that are less likely than the observed result, if there were in fact no difference in death rates between
the groups.
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Figure 2. Basis of Fisher’s exact test

and some even more extreme observations,
could have occurred, if the mortality rate
were the same for each type of cell. Given the
original hypothesis, of no difference in the
probability of being killed by the flu virus,
are there other possible extreme or strange
distributions to consider? Yes, we should
also consider unlikely values at the other
end of the scale: the unlikely distributions
of six A deaths and two B deaths, seven A
deaths and one B, and finally eight As and
no Bs. By considering all unlikely values
(given the hypothesized equal probability)
we are carrying out a ‘two-tailed’ test. Thus
the total possibility of all the results that are
either similar to, or more extreme than, the
one we have observed now becomes 0.2351.
Put as a chance, this is about 1 out of 4.
This suggests that the probability of our
findings is substantial: a 24% chance that
what we’ve found could have occurred as a
random event, even if there were really no
difference between the cells’ likelihood to

be killed. We would be foolish to discount
the possibility that there is a difference, but
our observed events could be the workings
of chance. What we must NOT say is
‘these cells have the same susceptibility to
the virus’ because the analysis we have
done has merely made us accept that
there is not a detectable difference. This
is not the same as ‘there is no difference’.
To conclude ‘this shows that there is no
difference’ here is to make perhaps one of
the commonest errors in biology. A useful
summary phrase is ‘absence of evidence is
NOT evidence of absence’ (Altman & Bland,
1995).

Is it a bad idea to accept the hypothesis,
and conclude that there is no difference in
probability of death after infection? In this
case, perhaps yes. We could be missing an
important effect. One type of cell appears
(on the basis of these limited numbers) to be
three times less likely to die when exposed
to the virus. That could be an important

difference. Here – as very often is the case –
we should say ‘at present, there could be
an effect; the probability that there is no
difference is not very small’. If we could
afford it, we should conduct another, larger,
experiment to be clearer about what we
have found. If we used double the numbers,
and got the exact same pattern of results
(although because of random variation,
this is highly unlikely), the null hypothesis
could possibly be rejected. When the total
number is 80 and the cell death frequencies
are 4 and 12, the possibility that this or
a more extreme result could occur would
only be likely 4.8% of the time, if the null
hypothesis were correct. In most people’s
judgement, that approaches a sufficiently
small possibility to accept that the null
hypothesis could be rejected. However, even
here the judgement should be balanced:
other factors are relevant in judging
these probabilities. If a big investment
in equipment to manufacture antiviral
therapy depended on the result, responsible
financiers might want to be more than 95%
certain that a big investment was worth
it.

The important concepts of power, effect
size, and scientific relevance will receive
further attention, in more detail, in a sub-
sequent article.
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