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Abstract

Plant-pollinator mutualistic networks are asymmetric in their interactions: specialist plants are pollinated by generalist
animals, while generalist plants are pollinated by a broad range involving specialists and generalists. It has been suggested
that this asymmetric –or disassortative– assemblage could play an important role in determining the observed equal
susceptibility of specialist and generalist plants under habitat destruction. At the core of the analysis of the phenomenon
lies the observation that specialist plants, otherwise candidates to extinction, could cope with the disruption thanks to their
interaction with a few generalist pollinators. We present a theoretical framework that supports this thesis. We analyze a
dynamical model of a system of mutualistic plants and pollinators, subject to the destruction of their habitat. We analyze
and compare two families of interaction topologies, ranging from highly assortative to highly disassortative ones, as well as
real pollination networks. We found that several features observed in natural systems are predicted by the mathematical
model. First, there is a tendency to increase the asymmetry of the network as a result of the extinctions. Second, an entropy
measure of the differential susceptibility to extinction of specialist and generalist species show that they tend to balance
when the network is disassortative. Finally, the disappearance of links in the network, as a result of extinctions, shows that
specialist plants preserve more connections than the corresponding plants in an assortative system, enabling them to resist
the disruption.
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Introduction

Habitat destruction is the major cause of species extinctions and

a main driving force behind current biodiversity loss [1–3]. In the

context of habitat fragmentation, one of the most actively studied

processes is animal-mediated pollination, which is crucial for the

sexual reproduction of flowering plants. The strength of the effect

of fragmentation on pollination and on plant reproductive success

shows a highly significant correlation, suggesting that one of the

most important causes of reproductive impairment in fragmented

habitats may be pollination limitation [4].

In the mutualistic interaction between plants and pollinators,

plant species are typically considered generalists when pollinated

by several or many animal species of different taxa, and specialists

if pollinated by one or a few taxonomically related pollinators [5–

8]. Most plant-pollinator mutualistic networks have shown to

be highly asymmetrical in their topologies, with specialist plants

being pollinated mostly by generalist pollinators, whereas

generalists are pollinated by both specialists and generalists

pollinators [9,10].

Some ecological consequences of the asymmetry of the plant-

pollinator mutualistic network have been studied. Using

mathematical models it has been shown that the asymmetry of

plant-pollinator networks differs from random networks in their

response to habitat destruction. Networks with topologies

present in real communities start to decay sooner than random

communities, but persist for higher destruction levels. When

the destruction level is above a given threshold the whole

community collapses [11].

Besides, theoretical studies have suggested that habitat destruc-

tion would affect preferentially specialised plants, because they

would not be able to counterbalance the loss of their few specific

mutualist partners with other alternative pollinators [5,7,12].

Generalist plants, instead, should be more adaptable to the

changes imposed by fragmentation on their pollinator assemblages

because the absence of one or some of their pollinators could be

compensated by other pollinators from their wide assemblages

[13]. Contrary to these theoretical expectations, no significant

difference was found in the mean effect on specialist and generalist

plant species, both being equally negatively affected by habitat

fragmentation [14,15]. One explanation for the equal susceptibil-

ity of specialist and generalist plants to habitat destruction lies

precisely on the asymmetric interaction. Because specialist plants

interact mainly with generalist pollinators, they would be able to

keep their few pollinators in fragmented habitats, and thus their

reproduction would not be so severely impaired as previously

thought. Generalist plants, which interact with both generalist

and specialist pollinators, would tend to loose their specialist

pollinator fraction from their assemblages and retain their

generalist pollinators. Thus, a decrease in the remaining generalist
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pollinators population would therefore have equal effects on the

two groups of plants [16].

Mathematical models differ from verbal theories in giving a

precise connection between assumptions and conclusions. They are

a key tool needed to illuminate how the network architecture

influences species extinction or persistence [17]. In this work we

constructed assortative and disassortative networks and analyzed the

effect of habitat destruction in each case, focusing on the relative

effect on specialist and generalist species. We found that the way in

which species are interconnected determines in a great deal who gets

extinct, and in which way the perturbation affects the balance of

specialization. In accordance with the theory proposed by Ashworth

et al. [16], we observed that in asymmetric (disassortative) networks,

generalist plants loose their connections with specialist pollinators,

but specialist plants loose by far much less connections than specialist

ones in the symmetric (assortative) networks. Our results support the

idea that network asymmetry explains the equal susceptibility of

generalist and specialist plants to habitat disturbance.

Analysis

Interaction networks
The interaction network of mutualistic, as well as many other

ecological systems, is characterized by a highly heterogeneous

connectivity. There are species –the generalists– that interact with

many partner species, others that interact with few –the

specialists– and all the intermediate cases. Moreover, the partners

of specialist species are usually generalists and not other specialists.

In the terminology of network theory this behavior is called

assortativity by degree –rather, disassortativity, in this case. The degree of

a node is the number of its connections. Assortativity refers to the

fact that similar nodes connect between themselves. The similarity

can be any individual characteristic of the nodes, and the

assortative behavior of the network can be defined with respect

to it. The degree, being a quantitative property of the nodes,

allows a precise quantitative characterization of the assortative

behavior, and it is also the property of interest in the specialist vs.

generalist characterization of ecological networks.

If the average degree of the neighbors is plotted against the

degree of the corresponding nodes, assortative networks display a

growing relation –low degree connecting to low degree, middle to

middle, high to high degree–. If, on the contrary, the relation is

decreasing, low degree nodes have high degree neighbors: such is

the hallmark of a disassortative network. Typically these relations

are power laws, and the exponent can be used as a measure of the

assortativity. Positive exponents describe assortativity by degree,

and negative ones correspond to disassortativity. Mathematically,

the assortativity is precisely measured as a correlation coefficient

defined by (see for example [18], or [19] chapter 7):

r~
1

s2
P

X
j,k

j k(Ejk{PjPk), ð1Þ

which runs from {1 for completely disassortative behavior to 1

for completely assortative. Here Pj is the normalized distribution

of the remaining degree of node j –the number of links leaving a node

other than the one we arrived along–, s2
P is its variance, and Ejk is

the joint probability distribution of the remaining degrees of the

two vertices at either end of a link.

As mentioned in the Introduction, it has been observed that

mutualistic networks are asymmetrical in their connectivity, a fact

that corresponds to the topological phenomenon of disassortativity

in the theory of networks. Newman [18], indeed, has already

observed that while social networks are generally assortative,

biological and technological networks are disassortative. In what

respects our present interest, the disassortativity of mutualistic

networks has been proposed as the underlying reason for the equal

susceptibility to the destruction of habitat of generalist and

specialist plants [14–16]. In order to test the theoretical validity of

this hypothesis we propose to analyse the dynamics of mutualistic

systems based on several different models of interaction. We can

manipulate these models in ways that cannot be done in natural

systems, a fact that provides a good testbed for the construction of

theoretical hypotheses and predictions.

Observe that the network of interactions that describes a

mutualistic system is bipartite, i.e. there are links connecting only

plants to animals and viceversa, but not plants to plants or animals

to animals. Then, the relevant description of the interaction is

given by a biadjacency matrix, defined as follows. Consider a matrix

qij[f0,1g|f0,1g, with N plants arranged as rows and M animals

as columns. Matrix elements qij indicate the existence (1) or

absence (0) of interaction between plant i and animal j. Figure 1

shows two extreme situations according to their assortativity,

which we have termed the rhomboid and the triangle models. In

Fig. 1(a) (a rhomboid) we see plants and animals connected in an

assortative way: generalists to generalists, specialist to specialists. In

contrast, Fig. 1(b) (a triangle) shows a system where plants and

animals are connected disassortatively. The assortativity coeffi-

cients are r~0:59 and r~{0:5 respectively. Regarding their

assortative property, natural mutualistic systems are more similar

to Fig. 1(b) than to 1(a). Natural mutualistic systems, also, have

many less connections –we will come to this matter below. Let us

first complete the formal definition of the models shown in Fig. 1,

Figure 1. Assortative and disassortative interaction networks of bipartite systems. 50 plants (rows), 100 animals (columns). A black dot
represents an interaction between the corresponding plant and animal. a) Assortative system (rhomboid model) with r~0:59; tends to connect
generalist to generalist and specialist to specialist. b) The disassortative system (triangle model), r~{0:5, instead, tends to connect specialist to
generalist. This last is the case sometimes called ‘‘asymmetric.’’
doi:10.1371/journal.pone.0021028.g001

Asymmetry and Habitat Loss in Mutualistic Networks
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which will be used throughout this work. The biadjacency matrix q, of

the (bipartite) system in the rhomboid model is defined according

to:

qr
ij~

1 if jƒM=2zM=(2N) i

andj§{Mz(2M=N) i,

0 otherwise,

8><
>: ð2Þ

which is a deltoid figure with its narrow angle pointing towards the

specialists-specialists zone, shown in Fig. 1(a). The triangle model,

in turn, is:

qt
ij~

1 if jƒMz1{(M=N) i,

0 otherwise,

�
ð3Þ

as shown in Fig. 1(b) . Both models, as defined, have densities of

links much higher than what is usually observed in nature. They

can be easily diluted, by turning a fraction of 1’s into 0’s, to

achieve any prescribed density. These networks will be kept

constant during the course of our analysis, at variance with other

analysis where the rewiring of links is allowed [20].

Figure 2 shows three examples of natural networks, taken from

[21,22]. We have ordered the species, plants as well as animals,

according to their degree, from generalist to specialist. They

display a feature that is common to many mutualistic systems:

small systems tend to have a higher density links than larger ones.

They also resemble the triangle model of Fig. 1(b), showing their

disassortative topology. Lower density systems are less obvious

under visual inspection, but the assortativity parameter, neverthe-

less, clearly characterizes them as disassortative (rv0). Figure 3

shows the relation between the assortativity r and the density of

links r (defined as the number of links divided by the number of

possible links) for all the pollination systems found in [21,22]

(circles). Along with these we show, also, families of varying

dilution based on the models of Fig. 1. A random model (with links

connecting pairs at random with uniform probability) is also

shown for comparison: its assortativity is almost zero at all

densities. (Actually, a random network is very slightly disassorta-

tive, as seen; this is a well known phenomenon of random graphs.)

It is clear that neither the triangle nor the rhomboid model

represent exactly the complex architecture of a natural mutualistic

system, not even in the behavior of collective parameters as those

shown in Fig. 3. Indeed, it can be seen that the natural systems of

medium and high density of links are less disassortative (greater r)

than the corresponding triangles of the same density. On the other

hand, Fig. 3 also shows that the real systems of very low density are

even more disassortative than the corresponding triangles. Both

features, certainly, are due to the fact that natural networks are not

built at random, but arise instead as the result of dynamics and

evolution. We will address some of these questions later on.

One could, of course, define a linear combination of two models,

a triangle and a rhomboid of a particular density, adequately

weighted to give any intermediate value of the assortativity

parameter. In such a way one could mimic the density and

assortativity of any natural model in the intermediate and high

density region. Networks with low density and very disassortative,

however, cannot be represented by such a linear superposition.

Other modelling choices are possible, though. For example, by

starting from a random network of the right density of links, a

Monte Carlo algorithm that interchanges the links of two pairs of

nodes provides an easy way to modify the assortativity and achieve

any desired value of r, even very disassortative ones. We want to

emphasize, though, that this is not what we pretend to do in this

work. That is, we are not interested in modelling any particular real

system with an artificial network. Instead, we are interested in the

artificial networks as proxies for mutualistic systems of different

assortativities. As already mentioned, by analyzing their dynamical

behavior we pretend to test the hypothesis put forward by Ashworth

et al. [16]: is the ‘‘asymmetry’’ of the network –characterized by its

disassortativity– responsible for the similar susceptibility of gener-

alists and specialists to habitat disturbance? Moreover, for each

topological instance (say, for given r and r) we can perform our

analysis over a statistical ensemble of networks, and derive

conclusions about their general behavior. The real networks, on

the other hand, are singular. The triangle and rhomboid models are

a good choice for this kind of analysis because their topological

properties are simple and well separated from one another. Our

Gedankenexperiment and our analysis will be based on their properties,

and the analysis of the natural systems will be contrasted to theirs.

Dynamical model of the mutualistic system
We study the population dynamics of the mutualistic system by

means of a model based on the Levins model for metapopulations

Figure 2. Interaction networks of mutualistic systems. Plants
(rows) and animals (columns) are sorted from generalist to specialists
(top to bottom and left to right respectively, as in Fig. 1). a) Flores Island
(Azores archipelago), 10|12, r~0:25, r~{0:19. b) Zackenberg station
(Greenland), 31|75, r~0:18, r~{0:1. c) Abisko (northern Sweden),
24|118, r~0:09, r~{0:20. All three from [22].
doi:10.1371/journal.pone.0021028.g002
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[23,24]. The destruction of the habitat is modeled as in [25], with

a single parameter d. Let us say that there are N plants and M
animals in the system, and let us call pi and aj the population

densities of plants and animals respectively. The evolution of these

densities obeys the following dynamic equations (similarly to those

proposed in [11]):

_ppi~pi

XM
j~1

qijw
a
j aj(1{d{pi){m

p
i pi,i~1 . . . N, ð4Þ

_aaj~aj

XN

i~1

qijw
p
i pi(1{aj){ma

j aj ,j~1 . . . M, ð5Þ

where wp and wa are interaction intensities for plants and animals

respectively, while mp and ma are death rates also for plants and

animals. Let us discuss the interaction terms briefly, since there are

several simplifications that we have preferred here, instead of more

involved ones, in order to keep the number of parameters

reasonably small. These simplifications allow us to concentrate on

the effect of the network topology. Observe that both equations

(4)–(5) are quadratic in the densities, of logistic type, without

satiation factors. That is, plants can reproduce up to their carrying

capacity as fast as it is allowed by the parameters of the model, as

long as pollinators are present, without interference between the

animals. Similarly, animals can reproduce proportionally to the

plants density, disregarding any saturation at high plant density or

any delay in the succession of generations. Observe also that the

reproduction is obligatorily interspecific. The connectivity matrix

qij ensures that plant i interacts with those animals j for which

qij~1 (remember that qij equals either 0 or 1, Eqs. (2) or (3)). The

intensity of this interaction is proportional to the population of

pollinator j, weighted by the parameter w
p
j (which represents, for

example, the rate of visits of pollinator j to plant i). Each pollinator

species contributes linearly to the whole reproduction rate. In a

similar way, the reproduction of animal species j depends linearly,

obligatorily, and weighted by wa
i , on the density of plant species i.

With the purpose of keeping the analysis centered on the role of

topology, we have chosen to use uniform distributions for the

parameters wp, wa, mp and ma in the system. In this regard let us

mention, nevertheless, that the intensities of interaction play an

important role in the resistance to extinction. We have observed

that if very small values of wajp are allowed in the system, the

fraction of extinct species is considerably large (because their

contribution to reproduction is insufficient to allow stability). In

these cases, the number of surviving species is too little to draw any

significative statistical conclusions. To avoid these cases we have

restricted the analysis, in what follows, to parameters wajp with an

arbitrary value of 0:001 as a lower cutoff, so that both interactions

are drawn from the interval (0:001,1) with uniform distribution.

Finally, the parameter that accounts for the destruction of the

habitat is d , as mentioned, and we use it in our analysis as a

control parameter of the dynamical system. Observe that it affects

only the dynamics of the plants, reducing their carrying capacity in

Eq. (4). With this, we are supposing that the destruction affects the

available space for the sessile members of the community (through

actual destruction, fragmentation, etc.), while the mobile pollina-

tors are not directly affected by it. Of course, they feel the

destruction indirectly by its effect on the plant populations.

The preparation of the initial condition of the system requires,

beside the specification of the connectivity and the parameters, the

specification of the initial densities of plants and animals. To mimic

the conditions of a natural system one would aspire to have the

dynamical system of Eqs. (4,5) at a steady state before subjecting it to

a habitat perturbation by turning on the parameter d . In our models

we can achieve this by allowing a transient time for the system to

evolve from an initial condition before starting our measurements.

When using a random initial condition for the densities it is

inevitable that some species evolve exponentially to zero, and get

extinct during this transient, before the system reaches a stationary

state. This transient, and these extinctions, of course, do not have

any biological meaning. It is just a consequence of assembling a

system of plants and their pollinators with random populations and

random interactions between them. Natural systems are clearly not

assembled in this way, but are the result of prolonged coevolution

instead, from which a stationary state of coexistence arises. Our

transient is only a procedure to achieve a similar stationary state,

which we take as the initial condition of the system.

As a result of this random extinctions the network gets smaller,

but we check that its size and its topological properties stay within

a 10% of those initially defined. This, also, does not have any

biological implication, and serves only the purpose of preparing

the initial condition. All thse systems are taken together as replicas

to perform statistical analysis.

For this system, then, a sudden destruction of a fraction of the

habitat is simulated by setting a value of dw0. As a result of the

perturbation, additional species get extinct until a new stationary

situation is achieved. At this moment our simulation ends, and we

proceed to measure the final properties of the system. The results

reported below correspond to statistical averages over multiple

initial conditions, network connectivities and intensities, as

indicated in each case. A slightly different situation corresponds

to the analysis of real networks, where the averages run only on

initial conditions and parameters (but not on the network itself

which is, naturally, singular).

Extinctions in the perturbed system
Let us briefly explore the general behavior after the per-

turbation, before proceeding to the matter of extinctions by

Figure 3. Assortativity as a function of density of links. The lines
show the behavior of three models (50|100 triangle, rhomboid and
random, averaged of 100 realizations), while the points correspond to
the real networks reported in [22]. The upper half of the plot
correspond to assortative networks, while the lower half contains the
disassortative ones (including all the natural systems). The density of
links r represents the number of links present in the system divided the
total possible links (N|M). The networks represented in Fig. 2 are
marked, as well as four other networks used below.
doi:10.1371/journal.pone.0021028.g003

Asymmetry and Habitat Loss in Mutualistic Networks
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specialization degree. Figure 4 shows the fraction of extinct species

of plants as a function of the destruction parameter d . It is seen

that a picture similar to the critical behavior explored in [26]

arises: the extinction climbs steeply when a critical value of d is

approached. Since the size of the analyzed systems is finite the

behavior is smooth, rather than abrupt as in a critical transition.

Figure 4 shows a comparison between three networks of similar

density: Zackenberg station, a triangle and a rhomboid. Observe

how the real network is slightly more vulnerable than the artificial

ones.

Besides the direct effect of erasing a fraction of plant and animal

species, the disturbance has also an effect on the network. Indeed,

when the system settles in its new equilibrium, the network of

interaction and its topological properties have changed. Figure 5

quantifies this effect on the relevant parameters –assortativity and

density of links–. Until d gets very high (above 0:7, which implies a

drastic modification of the system, as seen in Fig. 4), the density of

links changes very little in both the disassortative and the

assortative systems. The assortativity changes gradually when d

increases. It can be seen that the main modifications are suffered

by the rhomboid network, which evolves towards a state of lower

assortativity, until it turns disassortative at high d. In other words,

the dynamics of extinction drives the assortative network (the

symmetric one) towards a disassortative state, a state of

asymmetric interaction. The relevance of this fact on the origin of

the observed asymmetric assemblage of natural mutualistic systems

is without doubt an interesting one to be explored further, within a

framework of evolving systems that lies beyond the present

analysis.

Differential extinction by specialization degree
In Fig. 4 we have seen that systems with very different topologies

react in a similar way, regarding their loss of diversity (i.e., the

fraction of extinct species), to the perturbation modeled as a

destruction of habitat. In this section we show that, despite this

global similarity, the way in which species are interconnected

determines in a great deal who gets extinct, and how the

perturbation affects the balance of specialization.

Following expectations, the degree of extinct species is always

biased towards the specialists. The general situation is like the one

shown in Fig. 6(a). This distribution corresponds to a triangle

model network with density of links r~0:1, but in all regards it is

representative of the general case. Beyond this general bias toward

specialist species we want to quantify the differential effect of the

extinction on generalist and specialist species. For this purpose we

divide the totality of species (either plants or animals) in thirds

according to their degree. We have three groups, then, and we call

those most connected the generalists, those less connected the

specialists, and the ones in the middle just so. The choice of just

three groups is arbitrary, and has been preferred to having two

groups in order to separate more clearly generalists and specialists.

More than three groups are of course possible but, for our

purposes, not much is gained in increasing the resolution in

specialization degree.

Now, the question is how to measure the differential effect

between generalists and specialists. Namely, how to distinguish

between situations in which the extinct species belong more or less

equally to the three classes (little advantage in being a generalist)

from situations in which the extincts belong substantially to the

specialist class? A reasonable measure of this effect is provided by

an entropy, defined as follows. Suppose that n species get extinct at

the end of the simulation, and that n1 of them are specialists, n2

are in the middle, and n3 are generalists (so that n~n1zn2zn3).

Define:

S~{
X3

i~1

pi log10 pi, ð6Þ

where pi~ni=n. This differential entropy S can range from 0 to

log10 3&1:1. This highest value corresponds to a uniform

distribution of extinctions in the three specialization classes. Lower

values correspond to non-uniform distributions. Figure 6(b) shows

a few distributions and the corresponding values of entropy, as an

example. Note that the entropy defined by Eq. (6) is insensitive to

which of the pi are greater and which smaller; it just measures

their unbalance, disregarding if it is towards one class or another.

This fact does not affect the analysis in the present case, since the

Figure 4. Fraction of extinct plants as a function of the
destruction parameter, in two network models and a natural
network. Links density is r~0:18, average of 1000 realizations.
doi:10.1371/journal.pone.0021028.g004

Figure 5. Final network properties as a function of the
destruction parameter. Average of 1000 realizations for triangle
and rhomboid models and for Zackenberg network. All with initial
density of links 0:18. (Note that the density of links after the disruption
is the number of existing links divided by the total number of possible
links between the extant species.).
doi:10.1371/journal.pone.0021028.g005

Asymmetry and Habitat Loss in Mutualistic Networks
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distribution of extincts is always biased towards the specialists.

Given this fact, the entropy provides a single parameter to quantify

this bias, and one that can serve this purpose disregarding in how

many specialization groups we divide the population.

Figure 7 shows the entropy as a function of habitat destruction

for several system topologies. Each point in the plot corresponds to

the average of 1000 realizations. First, observe that the entropy

grows with d. This means that greater habitat disruptions produce

more uniform extinctions. Observe also that (for each symbol type,

representing different network densities) the triangle model

(disassortative) displays higher entropy than the rhomboid one

(assortative). The three densities used also show that this effect is

more pronounced in high density systems. This suggests a possible

observation to be made in field studies: that in highly connected

systems, asymmetric networks should display a balance (high

entropy) in the resistance to extinction between generalists and

specialists, while less asymmetric ones should show a preferential

extinction of specialists (lower entropy).

On the other hand, it is seen that systems with low density

appear close together and close to the null model (corresponding

to a random elimination of species, without dynamical evolution,

and which gives perfectly uniform distributions, S~log 3 for all d).

How do the natural networks compare with the behavior of the

artificial models? Figure 8 shows a similar analysis performed on a

set of real pollination networks from [22]. The Zackenberg station

system stands out with a very flat dependence of the entropy S on

the destruction d compared to the others. This network is the only

one far from the low density cluster (see Fig. 3, dots marked a, b, c,

d and Abisko, all of them close to the triangle model). In this

regard its peculiar behavior is not surprising. Indeed, also a flatter

dependence on d corresponds to the higher density models shown

in Fig. 7. Nonetheless, the Zackenberg network has a higher

entropy than the triangle with r~0:2 of Fig. 7. This is, naturally,

consistent with the fact that the natural system is not randomly

assembled. Its connectivity network is the result of its natural

evolution (as its interaction parameters, discussed in the context of

the initial conditions). As a consequence it shows a significant

balance between generalists and specialists (along the lines of the

field observations of [14,15]). The other natural networks display a

steeper dependence of the entropy on the destruction, also like the

middle and low density models of Fig. 7. Bear in mind, however,

that the dynamics mounted on the natural networks is simulated,

and need not represent the dynamics of the real pollination

systems; it is a dynamical property of their network that comes into

view in the present analysis.

To summarize, the entropy of the specialization degree of

extinct species shows that, even if specialists are more susceptible

to extinction, the distribution of extinct degrees is flatter in the

triangle model (asymmetric, disassortative, closer to natural) than

in the rhomboid model (symmetric, assortative, far from natural).

In other words: generalist and specialist are more equally

susceptible to extinction in disassortative networks. Recall the

hypothesis of protection of specialists in disassortative networks,

represented here as a diagram in Fig. 9 (Fig. 1 in [16]). The

underlying idea is that the degree of the partners plays a crucial

role: in asymmetric interactions, specialists are protected because

they are connected to generalists. The degree of the neighbors is

precisely what defines the assortativity of a network, so the behavior

observed in our models supports that hypothesis.

Figure 6. Entropy illustration. a) Distribution of the degree of the extinct species in a typical situation (1000 realizations). b) Typical distributions
and the entropies that measure their degree of uniformity.
doi:10.1371/journal.pone.0021028.g006

Figure 7. Entropies of the distribution of extincts, as a function
of habitat destruction. Red: triangle model; black: rhomboid model.
Three network densities are shown: low (m), middle (.) and high (&).
The dashed line near the top represents the maximum entropy,
corresponding to a uniform distribution.
doi:10.1371/journal.pone.0021028.g007
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We can further test that assertion in the following way. Observe

again Fig. 9 and consider not the extinct species but the links that

disappear in the system when a species goes extinct. Now, in

Fig. 10 the top two density plots show the probability distribution

of the existence of links between a plant and an animal. This plots

are related to the representations shown in Fig. 1 and 2, that

correspond to single instances of the corresponding systems. The

probability density is obtained from numerous realizations of

systems with the same network parameters. The lighter colors

show greater probability of connection between the corresponding

plants an animal. Also in Fig. 10, the two bottom density plots

show the corresponding probability of extinction of links when

both models are subjected to a destruction d~0:5. In these, the

redder colors correspond to a higher probability that the

corresponding link becomes extinct (also normalized to the whole

network).

Observe, in Fig. 10, that in the rhomboid model the links with

highest probability of disappearing are those connecting specialists

to specialists. This region concentrates the majority of the broken

links (21% in one ninth of the matrix corresponding to the

specialist-specialist thirds). The situation corresponds to the one

shown in Fig. 9 (top), where the specialist marked in red is left

unconnected, and is a sure candidate for the next extinction. On

the other hand, the assortative triangle model (bottom left in

Fig. 10) shows that the probability of extinction of links is more

evenly distributed. The links with highest probability of disap-

pearance are certainly those belonging to specialists (each

specialist-generalist ninth of the matrix harbors a 14% of the

missing links). But, in this case, they are connected to generalists

and do not further affect the system as much as in the assortative

model. On the other hand, observe that the lack of the deeper

shades of red (the highest values in the scale) show that the

disappearing links are more evenly distributed. Their absence will

affect the system evenly, with many specialists remaining protected

by their connection to generalists, as shown in green in Fig. 9. This

is precisely the phenomenon expected by the hypothesis put

forward by Ashworth et al. [16].

Discussion

Mathematical models of plant-pollinator interaction networks

have given many insights into the effect of habitat fragmentation

on ecological communities [11,17]. One of the main character-

istics of the topology of plant-pollinator interaction networks is

their asymmetry: specialist plants are mainly pollinated by

generalist pollinators whereas generalist plants are pollinated by

both specialist and generalist pollinators [9,10]. Such asymmetric

interaction could be the reason why specialist and generalist plant

species show similar response to habitat fragmentation, as argued

in [16]. The main aim of this work has been to test this hypothesis

while giving it a theoretical framework. To this goal, we have

constructed symmetric and asymmetric networks of plant-

pollinator interactions (Fig. 2). We have calculated the degree of

asymmetry of such networks, as well as real ones, expressed by the

measurements of their assortativity (Fig. 3). We then analyzed the

extinction pattern of these networks as a function of the

disturbance (Fig. 4). We have also analyzed the assortativity and

density of the networks resulting from different degrees of habitat

destruction (Fig. 5). We have introduced entropy as a measure of

the differential effect of habitat fragmentation on generalist and

specialist species (Fig. 6). Most importantly we have found that

both the connectivity and the degree of habitat fragmentation are

factors that increase the pattern of equal susceptibility of generalist

and specialist plant species to habitat destruction (Fig. 7 and 8). A

deeper analysis of the pattern of species extinction in symmetric

and asymmetric networks shows that, in asymmetric (disassorta-

tive) networks, generalist plants loose their connections with

specialist pollinators, but specialist plant loose by far much less

connections than specialist plants in the symmetric (assortative)

networks (Fig. 10). Therefore, and in accordance with Ashworth

[16], our results suggest that network asymmetry explains the

equal susceptibility of generalist and specialist plants to habitat

disturbance.

Our approach is similar than the one from Fortuna [11] in that

it does not include obligatory interactions on plants nor

pollinators. We have assumed a community of facultative species

in which the absence of their interacting partner does not implies

species extinction. Obligatory interaction such as the one present

Figure 8. Entropies of the distribution of extincts vs. habitat
destruction in natural networks. Several networks reported in [22]
are shown, together with the values of their characteristic parameters
after the transient (as explained in the section Dynamical model of the
mutualistic system). Besides those already mentioned there are those
marked with letters in Fig. 3: a) Hocking (arctic), b) Primack-Craigie
(temperate), c) Kato & Miura 1996 (temperate), d) Primack-Cass
(temperate). The dashed line near the top represents the maximum
entropy, corresponding to a uniform distribution.
doi:10.1371/journal.pone.0021028.g008

Figure 9. Protection of the links. Schematic representation of the
protection against habitat destruction that generalist provide to
specialist in disassortative (asymmetric) networks. (Adapted from
Ashworth et al. [16]). In assortative networks the partners of specialists
are other specialists. After the extinction of the most susceptible
specialists their partners lose many or all their links, and remain
extremely vulnerable (red). In disassortative networks, even when some
species get extinct, the survivors retain some connection to the more
robust generalists, therefore being protected (green).
doi:10.1371/journal.pone.0021028.g009
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in self-incompatible plants, may have a role on the pattern of

species extinctions [4]. We did not include other complex features

in our model such as temporal variation in the association plant-

pollinator [27] or spatial effects [28]. These processes can have a

role in the response to habitat destruction and deserve further

investigation. Our aim was to capture, with the simplest model, the

effect of asymmetry on the pattern of extinction in response to

habitat destruction.
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