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Abstract

Generation of epithelial cell polarity requires mechanisms to sort plasma membrane proteins to the apical and basolateral
domains. Sorting involves incorporation into specific vesicular carriers and subsequent fusion to the correct target
membranes mediated by specific SNARE proteins. In polarized epithelial cells, the SNARE protein syntaxin 4 localizes
exclusively to the basolateral plasma membrane and plays an important role in basolateral trafficking pathways. However,
the mechanism of basolateral targeting of syntaxin 4 itself has remained poorly understood. Here we show that newly
synthesized syntaxin 4 is directly targeted to the basolateral plasma membrane in polarized Madin-Darby canine kidney
(MDCK) cells. Basolateral targeting depends on a signal that is centered around residues 24–29 in the N-terminal domain of
syntaxin 4. Furthermore, basolateral targeting of syntaxin 4 is dependent on the epithelial cell-specific clathrin adaptor
AP1B. Disruption of the basolateral targeting signal of syntaxin 4 leads to non-polarized delivery to both the apical and
basolateral surface, as well as partial intercellular retention in the trans-Golgi network. Importantly, disruption of the
basolateral targeting signal of syntaxin 4 leads to the inability of MDCK cells to establish a polarized morphology which
suggests that restriction of syntaxin 4 to the basolateral domain is required for epithelial cell polarity.
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Introduction

Epithelial cells constitute a large proportion of cells in most

major body organs such as skin, liver, kidney and gut [1,2]. The

function of epithelial cells is dependent on the polarized

distribution of plasma membrane proteins into apical and

basolateral domains [3]. Establishment and maintenance of cell

polarity depend upon the precise targeting of apical and

basolateral cargo to the respective membranes [3,4]. A large

number of proteins have been identified which mediate and

regulate polarized membrane traffic including SNARE proteins

[5] which catalyze membrane fusion. Membrane fusion is

mediated by the formation a specific complexes between cognate

SNAREs on the vesicles and target membranes, which contributes

to the specificity of trafficking in all eukaryotes [6]. These proteins

have been implicated in the determination of rate and specificity of

several fusion steps in polarized pathways [3,7].

Epithelial cells contain at least two different plasma membrane

t-SNAREs, syntaxin 3 and syntaxin 4, exclusively localized to the

apical and basolateral membrane, respectively, in a wide variety of

epithelial cell types investigated to date [8,9]. Even before the

establishment of proper cell polarity syntaxin 3 and syntaxin 4

localize to sub-micron size separate clusters on the plasma

membrane [10]. Studying apical sorting of syntaxin 3, we have

previously shown that the correct polarized localization of syntaxin

3 at the apical membrane is essential for the overall maintenance

of epithelial polarity [11]. The high degree of conservation of the

basolateral polarity of syntaxin 4 suggests that syntaxin 4 function

and proper localization may play an equally important role in

epithelial polarization.

Basolateral sorting signals are commonly located in cytoplas-

mically exposed regions and include tyrosine motifs, dileucine and

monoleucine motifs and some other non-canonical motifs [12].

Some of these motifs can be recognized by clathrin adaptors which

are involved in the identification of cargo and in the formation of

clathrin coated vesicles [4,13]. To date, four major heterotreta-

meric clathrin adaptor complexes have been identified in

mammals, AP1-4, two of which have been implicated in

basolateral sorting, the AP1 variant AP-1B and AP4 [14]. AP1

is composed by four subunits; c1, b1, m1, s1 and the two closely

related AP-1 complexes, AP1A and AP1B, differ only in the

incorporation of the respective sorting-signal binding subunits m1A

and m1B [15]. AP1B is mainly expressed in polarized epithelial

cells such as Madin-Darby canine kidney (MDCK) cells [15],

where it participates in recycling as well as in the biosynthetic

route to the basolateral plasma membrane from recycling

endosomes [16,17].

Fusion of AP-1B vesicles at the basolateral membrane depends

on the SNARE protein cellubrevin, which is incorporated into AP-

1B vesicles and on syntaxin 4 at the target membrane [18]. These
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data indicate that syntaxin 4 plays a critical role at the basolateral

membrane, yet how syntaxin 4 is selectively incorporated into the

basolateral membrane has remained unknown. In this study, we

demonstrate that the N-terminal domain of syntaxin 4 is critical

for its basolateral localization, and that targeting depends on

AP1B. Mutation of this targeting signal leads to non-polarized

plasma membrane location and partial intracellular retention of

syntaxin 4 in the trans-Golgi network. Furthermore, expression of

mis-targeted syntaxin 4 inhibits the ability of epithelial cells to

correctly polarize suggesting that the restriction of syntaxin 4 to

the basolateral plasma membrane domain is a requirement for the

establishment of epithelial polarity.

Results

Newly synthesized syntaxin 4 is directly targeted to the
basolateral surface

At steady-state, syntaxins 3 and 4 are localized almost

exclusively to the apical and basolateral surface, respectively, of

MDCK cells and several other epithelial cells [8]. We have

previously shown that a significant fraction of newly synthesized

syntaxin 3 is initially targeted to the ‘‘incorrect’’ basolateral plasma

membrane domain [11] and must consequently be sorted at a later

point by an unknown mechanism. To test whether newly

synthesized syntaxin 4 is delivered exclusively to the basolateral

membrane or directed to both membranes, apical and basolateral,

we used a pulse-chase assay combined with surface immunopre-

cipitation similar to the method previously used to investigate

syntaxin 3 [11]. Because syntaxin 4 lacks an extracytoplasmic

domain, we used MDCK cells stably expressing syntaxin 4

containing two C-terminal myc epitope tags. These epitope tags

are accessible to anti-myc antibody added to the culture medium

of intact cells and do not interfere with the correct targeting of

syntaxin 4 as shown previously [10,19]. Polarized MDCK cells

were labeled with [35S] methionine and chased for up to two

hours. Subsequently, the fraction of syntaxin 4 delivered to the

apical or basolateral surface, respectively, was captured by surface

immunoprecipitation. As shown in Fig. 1, the vast majority of

newly synthesized syntaxin 4 is captured only from the basolateral

surface at all time points. This result indicates that syntaxin 4 – in

contrast to syntaxin 3 – reaches its final basolateral plasma

membrane destination without prior delivery to the apical

membrane.

A necessary basolateral targeting signal is centered
around residues 24–29 of syntaxin 4

To further investigate the mechanism of basolateral targeting of

syntaxin 4 we set out to identify the region or motif of syntaxin 4

that is required for basolateral targeting. Several known

basolateral targeting motifs contain critical tyrosine residues

[17]. The sequence of human syntaxin 4 contains three tyrosine

residues, Y115, Y148 and Y251, which are conserved among

mammals. To test whether syntaxin 4 contains a necessary

tyrosine-based basolateral sorting signal we generated single and

combined mutations of these tyrosines to alanines and/or

phenylalanines (Fig. 2A). As shown in Fig. 2B, none of these

tyrosine mutants alter the basolateral-specific location of syntaxin

4 in MDCK cells suggesting that syntaxin 4 does not contain a

tyrosine-based basolateral sorting signal.

To identify the regions of syntaxin 4 that are necessary for

basolateral targeting, we generated mutants with successively

deleted domains (Fig. 3A). These deletion mutants were

transfected into MDCK cells and their surface localization was

analyzed by confocal microscopy. Deletion in the first 29

N-terminal amino acids, and any further deletion, resulted in a

non-polarized surface localization of syntaxin 4 (Fig. 3B). To locate

a more specific signal, we generated additional deletion mutants.

Deletion of the first 10 or 24 amino acids did not result in the

mislocalization of syntaxin 4 compared to wild-type protein

(Fig. 3C), indicating that the region between residues 24–29

(ALVVHP) is critical for the basolateral sorting of syntaxin 4.

AP1B adaptor complex is required for basolateral sorting
of syntaxin 4

The epithelial cell specific adaptor complex AP1B is involved in

basolateral trafficking of several membrane proteins [18]. To

investigate if AP1B is required for the basolateral sorting of

syntaxin 4, we took advantage of the renal epithelial LLC-PK1 cell

line, which has previously been shown to lack expression of the

m1B subunit and consequently mis-sorts several basolateral

proteins, including the transferrin receptor and LDL receptor

[20]. We used previously described LLC-PK1 cell lines that were

stably transfected to express either the m1A or m1B subunits [20].

Transfection with m1B – but not m1A - has previously been shown

to restore the basolateral sorting defect in these cells [20]. These

two cell lines were stably transfected with either myc-tagged

syntaxin 4 or syntaxin 3 expression vectors. Surface immunoflu-

orescence showed that syntaxin 4 is localized in a non-polarized

manner to both apical and basolateral membranes in the cells

expressing m1A (lacking m1B) but localizes correctly to the

basolateral membrane in the cells that express m1B (Fig. 4). The

apical localization of syntaxin 3 remains unaffected by the

presence or absence of m1B (Fig. 4). These results indicate that

the AP1B adaptor is required for basolateral sorting of syntaxin 4

Figure 1. Syntaxin 4 is directly transported to the basolateral
surface in MDCK cells. Polarized MDCK cells stably expressing myc-
tagged syntaxin 4 were metabolically labeled for 15 min with [35S]
methionine, followed by a chase for the indicated periods of time. Anti-
myc antibody was present throughout the chase in the apical or
basolateral media compartment. After cell lysis, surface-delivered,
antibody-captured syntaxin 4 was recovered by precipitation with
Protein A, and the remaining intracellular syntaxin 4 was captured by
immunoprecipitation. Quantification was done by SDS-PAGE and radio-
analysis, and the surface-delivered syntaxin 4 was calculated as a
percentage of total radiolabeled syntaxin 4.
doi:10.1371/journal.pone.0021181.g001

Basolateral Sorting of Syntaxin 4
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in polarized cells either during biosynthetic delivery, endocytic

recycling or both.

Syntaxin 4-D29 is partially intracellularly retained and
loses its ability to bind to Munc18c

Sorting of many newly synthesized plasma membrane proteins

typically occurs in the trans-Golgi network (TGN), where apical and

basolateral proteins are selectively packaged into specific transport

vesicles for apical or basolateral delivery [21]. Alternatively, cargo

may move from the TGN into recycling endosomes where AP-1B

can bind its cargo for basolateral delivery [17]. We sought to test

whether syntaxin 4 sorting may involve the TGN or post-TGN

compartments. To this end, we investigated the intracellular fate of

the minimal deletion mutant that caused loss of basolateral-specific

surface targeting (syntaxin 4-D29, Fig. 3). We generated stably

transfected MDCK cell lines expressing myc-tagged syntaxin 4-D29

under the control of a doxycycline (DOX)-inducible promoter. In

control cells, the majority of wild-type syntaxin 4 is localized to the

Figure 2. Tyrosine residues are not involved in basolateral targeting of syntaxin 4. (A) Schematic representation of mutant syntaxin 4
constructs used. Two myc epitope tags (white circles) and one His6 tag (black circles) were added to the COOH termini. Mutants (M1–M3) containing
exchanges of Y to A or F are indicated. (B) Syntaxin 4 tyrosine mutant proteins transiently expressed in polarized MDCK cells were detected by
surface-immunostaining and confocal microscopy. Syntaxin 4, green; nuclei, blue. Representative XY optical sections of the apical region of the cells
(left), or the middle of the cells (middle) are shown together with XZ optical section (right). Bar is 5 mm.
doi:10.1371/journal.pone.0021181.g002
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plasma membrane at steady-state (Fig. 5A). In contrast, a large

fraction of syntaxin 4-D29 accumulates in large perinuclear

structures (Fig. 5A). To characterize this intracellular compart-

ment we performed double immuno-staining with markers of

Golgi-associated compartments. Significant co-localization was

evident between syntaxin 4-D29 and furin, a protein that is

primarily localized in the trans-Golgi network [22,23] (Fig. 5B).

These results suggest that the export of syntaxin 4 lacking the

Figure 3. The N-terminal 29-residue domain of syntaxin 4 is necessary for basolateral targeting. (A) Schematics of syntaxin 4 deletion
mutant constructs. Two myc epitope tags (white circles) and one His6 tag (black circles) were added to the COOH termini. (B) Syntaxin-4 deletion
mutant proteins transiently expressed in polarized MDCK cells were detected by surface-immunostaining and confocal microscopy. Syntaxin 4, green;
tight junction protein ZO1, red. Representative XY optical sections of the apical region of the cells (left), or the middle of the cells (middle) are shown
together with XZ optical section (right). Bars are 5 mm.
doi:10.1371/journal.pone.0021181.g003

Basolateral Sorting of Syntaxin 4

PLoS ONE | www.plosone.org 4 June 2011 | Volume 6 | Issue 6 | e21181



N-terminal basolateral targeting signal may be stalled in the

TGN.

We next tested whether syntaxin 4-D29 can still interact with its

known binding partners SNAP-23 and Munc18c. Syntaxin 4 binds

to the SNARE protein SNAP-23 to form a functional t-SNARE

complex [24] and interacts with the SM (Sec1/Munc18-like)

protein Munc18c, a regulator of SNARE function [25,26]. As

shown in Figure 5C, deletion of the basolateral sorting signal of

syntaxin 4 does not disrupt binding to SNAP-23, but does disrupt

binding to Munc18c. The loss of interaction with Munc18c is

consistent with previous results [26,27]. These results suggest that

the interaction between syntaxin 4 and Munc18c may be involved

in the exit of syntaxin 4 from the TGN and subsequent basolateral

targeting.

Mislocalization of syntaxin 4 inhibits epithelial cell
polarity

We have previously shown that the inability to restrict syntaxin

3 localization to the apical plasma membrane domain perturbs the

ability of MDCK cells to establish tight junctions and can result in

the over-all loss of epithelial polarity [11]. We next tested whether

expression of the mis-targeted mutant syntaxin 4-D29 may have

similar consequences on the ability of cells to polarize. To

investigate the kinetics of the formation of the tight junctions,

MDCK cells stably expressing syntaxin 4-D29 were cultured on

permeable filters for four days in the absence of DOX to allow the

cells to establish a polarized monolayer. Syntaxin 4-D29

expression was induced with DOX for 8 h and cells were

subjected to calcium-deficient medium for 15 h, which results in

the complete disassembly of tight junctions and consequent loss of

trans-epithelial electrical resistance (TEER) [11]. Re-addition of

normal calcium leads to the re-establishment of tight junctions and

a characteristic peak in the TEER. As shown in Fig. 6, expression

of syntaxin 4-D29 results in a kinetic delay in the TEER peak by

approximately three hours suggesting perturbation of the forma-

tion of new tight junctions.

The ability of MDCK cells to establish a polarized phenotype is

known to be more sensitive to disruptions of polarity proteins

when cells are cultured in 3-dimentional collagen gels as compared

to 2-dimentional cultures [1,28]. We asked whether expression of

mis-targeted syntaxin 4-D29 may interfere with the development

of polarized cells in cysts in 3D culture. Stably transfected syntaxin

4-D29 MDCK cells were cultured in collagen gels for 7–9 days in

the absence or presence of DOX. Uninduced control cells

developed mainly lumen-containing cysts consisting of well-

polarized cells. In contrast, syntaxin 4-D29 expressing cells largely

failed to form cysts but formed disorganized, tumor-like, solid

structures lacking lumens and consisting of non-polarized cells

(Fig. 7A and 7B). This result suggests that basolateral-specific

targeting of syntaxin 4 is required for the establishment of

epithelial polarity.

Discussion

Syntaxin 4 is a widely – if not ubiquitously - expressed SNARE

protein that is restricted to the basolateral domain of most

epithelial cells studied to date [8]. We have investigated the

mechanism of basolateral sorting of syntaxin 4 and have identified

a cytoplasmic basolateral sorting signal that is contained in the first

N-terminal 29 amino acid residues of syntaxin 4. In addition, we

describe a novel role for the AP1B adaptor in syntaxin 4

basolateral sorting. Finally, we show that exclusive basolateral

localization of syntaxin 4 is essential for proper epithelial

polarization.

Our results indicate that newly synthesized syntaxin 4 is

exclusively delivered to the basolateral membrane. This is in

contrast to syntaxin 3 which is initially randomly targeted and later

sorted to the apical domain [11]. This specific polarized sorting of

syntaxin 4 suggests that only one primary route exists for the

surface delivery of syntaxin 4 in polarized MDCK cells.

Known basolateral sorting signals include tyrosine-based,

di-leucine-, leucine-based and others [12], and these signals are

thought to be recognized by specific cytosolic sorting adaptors

which mediate protein sorting at specific organelles. We found that

basolateral sorting of syntaxin 4 is not dependent on tyrosine

motifs. Instead, basolateral sorting depends on the first 29 N-

terminal amino acids of syntaxin 4, specifically residues 24–29

(ALVVHP). These results are consistent with a recent study

published while this manuscript was in preparation [29]. By

mutational analysis these authors identified residues L25 and V26

as essential for basolateral localization of syntaxin 4. Together,

both studies clearly identify this region of syntaxin 4 as a necessary

basolateral sorting signal.

Torres et al. suggested that the L25/V26 residues resemble a

dileucine motif such as those that are required for endocytosis or

basolateral targeting in other proteins [29]. Dileucine motifs are

known to bind to AP1 adapters [30] which would be consistent

with our finding that AP1B is required for basolateral targeting of

syntaxin 4.

The N-terminal regions of syntaxins have been described to

bind to SM (Sec1/Munc18) proteins [31], which are SNARE

regulators involved in vesicle fusion [32]. SM/SNARE complexes

can have different binding modes. Originally SM proteins were

assumed to bind to closed conformations of syntaxins in which

SNARE complex assembly is prevented. However, more recent

studies have shown that Munc18a also binds to SNARE

complexes [33] as well as monomeric syntaxin 1A [34] and that

in these cases formation of SNARE complexes is allowed. SM and

SNARE protein interactions are specific, such that Munc18a and

Munc18b only bind to syntaxins 1 and 3 whereas Munc18c only

binds to syntaxins 2 and 4 [35]. The N-terminal 29 residues of

syntaxin 4 have been shown to be required for binding to

Munc18c and the three-dimensional structure of the complex has

been elucidated [26,36,37]. Since we found that efficient surface

Figure 4. AP1B is required for basolateral sorting of syntaxin 4. (A) LLC-PK1:m1A or LLC-PK1:m1B cells stably expressing myc-tagged Syn3/
Syn4 were grown until confluent and processed for immunofluorescence. Fluorescence staining of syntaxin proteins was performed using anti-myc
antibody (1:400) and DAPI for nuclei staining and analyzed by confocal microscopy.
doi:10.1371/journal.pone.0021181.g004
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delivery and basolateral sorting of syntaxin 4 depend on its

N-terminal region, and our results confirm that syntaxin 4-D29 is

not able to bind to Munc18c, this may suggest that formation of

the syntaxin 4/Munc18c complex is necessary for surface delivery

and/or basolateral sorting of syntaxin 4.

Interestingly, our results show that deletion of the N-terminal

domain of syntaxin 4 not only results in non-polarized surface

delivery but also that a large fraction of the mutant protein

accumulates intracellularly, presumably in the TGN. This suggests

that sorting of newly synthesized syntaxin 4 into basolateral

transport carriers occurs in the TGN and that syntaxin 4 lacking

its N-terminal domain is unable to be diverted into this pathway.

Consequently, mutant syntaxin 4 would be expected to accumu-

late in the TGN and – possibly by an overflow mechanism – reach

the surface in a non-polarized fashion using non-specific trafficking

pathways. Since the intracellular co-localization between furin and

syntaxin 4-D29 is not complete we cannot exclude the possibility

that the retaining compartment is, at least in part, the recycling

compartment.

This view is consistent with the recent findings by Torres et al.

[29]. These investigators also found that several syntaxin 4

mutants that lack binding ability to munc18c are significantly

retained intracellularly. However, they also found that the ability

to interact with Munc18c does not strictly correlate with the

correct basolateral sorting of syntaxin 4 mutants. Altogether, these

results suggest a model in which the binding to Munc18c is

required for sorting of syntaxin 4 into basolateral transport carriers

in the TGN or post-TGN compartments during the initial

targeting of newly synthesized syntaxin 4. Lack of Munc18c

binding will prevent the efficient exit from this compartment

leading to intracellular accumulation. However, Munc18c-binding

is not required for subsequent basolateral sorting of syntaxin 4

mutants that have escaped the TGN block. Such sorting may

occur in endocytic and recycling pathways.

This model is further supported by the previous finding that

expression of syntaxin 1A in cells that lack its normal Munc18a

binding partner results in intracellular retention of syntaxin 1A in

the TGN [38]. In contrast, we have previously shown that apical

targeting of syntaxin 3 is independent of binding to Munc18b [11].

It is therefore likely that syntaxin/SM interactions are required for

intracellular trafficking of some but not all syntaxin/SM pairs.

LLC-PK cells lack expression of the m1B subunit of AP1B and

mistarget AP1B-dependent basolateral proteins [20]. AP1B is

involved in biosynthetic and post-endocytic sorting of basolaterally

targeted proteins [12,39] with tyrosine motifs (low-density

lipoprotein receptor (LDLR)) and non-tyrosine motifs (transferrin

receptor (TfR). We found that the localization of syntaxin 4 is

nonpolarized in LLC-PK cells and that basolateral-specific sorting

can be restored by re-expression of m1B. This indicates that

basolateral sorting of syntaxin 4 is AP1B-dependent. We

investigated the possibility of a protein-protein interaction between

AP1B and syntaxin 4 but, under the conditions chosen, failed to

reproducibly detect a stable complex (data not shown, unpublished

data). Even though we cannot exclude a direct interaction between

syntaxin 4 and AP1B, it is possible that this interaction is indirect.

Disruption of basolateral-specific targeting of syntaxin 4 (using

the syntaxin 4-D29 deletion mutant) led to the inability of MDCK

cells to form a polarized morphology in 3D cyst culture, and to a

delay in tight-junction formation in 2D culture. This suggests that

the restriction of syntaxin 4 to the basolateral domain is a

requirement for the establishment of epithelial polarity. Recent

results by Torres et al. are consistent with this interpretation as

these investigators found that knock-down of syntaxin 4 leads to

aberrant, intracellular localization of the tight junction proteins

occluding and claudin 2 [29]. This suggests that targeting of these

tight junction proteins is dependent on syntaxin 4, and that the

ability to polarize is perturbed if syntaxin 4 expression or polarity

is disrupted. Previously, we reported similar disruptions of

epithelial polarity when the apical SNARE syntaxin 3 is

Figure 5. Intracellular localization of syntaxin 4-D29 in MDCK
cells. MDCK cells stably expressing myc-tagged Syn4-WT or Syn4-D29
were cultured to confluence confluent (3–4 days), followed by
induction with DOX for 10 hrs. (A) Confocal microscopy analysis of
immunostained Syn4 after cell permeabilization, green; nuclei (DAPI),
blue. (B) To further analyze the intracellular location of Syn4-WT or
Syn4-D29, polarized cultures of MDCK cell lines stably expressing the
indicated syntaxin proteins were induced with DOX for 10 hr and
visualized by co-staining with monoclonal anti-myc antibody (1:400)
and polyclonal anti-Furin antibody (1:200). (C) Interaction of Syn4-WT
and Syn4-D29 proteins with SNAP-23 and Munc18c. MDCK stable cells
were induced for syntaxin 4 protein expression and immunoprecipitat-
ed using anti-myc antibody. Binding of endogenous SNAP-23 or
Munc18c was detected by immunoblotting using polyclonal anti-SNAP-
23 (1:3000) and anti-Munc18c (1:1000).
doi:10.1371/journal.pone.0021181.g005
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mis-targeted [11]. Altogether, this suggests that syntaxins 3 and 4

are a pair of polarity proteins whose proper intracellular trafficking

is intimately involved with the formation of a polarized epithelial

phenotype.

When mutant syntaxin 4-D29 is expressed in non-polarized or

early polarized MDCK cells (1–2 days after plating), the cells fail

to polarize (data observed, unpublished data). However, when

Syntaxin 4-D29 is expressed at a later time point, after polarity is

well established (4 days after plating), the cells will maintain their

morphology (Fig. 5, 6). This suggests that basolateral-specific

targeting of syntaxin 4 is particularly important during early stages

in the establishment of epithelial polarity.

Altogether, the results presented here elucidate the mechanism

of basolateral targeting of syntaxin 4, its dependence on AP1B and

direct trafficking to the basolateral membrane in the biosynthetic

pathway which likely involves sorting in the TGN.

Materials and Methods

Reagents and antibodies
9E10 anti-myc monoclonal antibody (for immunoprecipitations

and western-blotting), R40.76 anti-ZO1 rat antibody and the

3P21D8 anti-gp135 monoclonal antibody were obtained from the

American Type Culture Collection (Manassas, VA). Monoclonal

antibody anti-Myc tag, clone 4A6 from Millipore was used for

immunofluorescence. Affinity-purified polyclonal antibody against

a C-terminal peptide of human SNAP-23 has been described

previously [40]. The polyclonal anti-Furin Convertase antibody was

purchased from Thermo Scientific, IL. Polyclonal antibody against

Munc18-3 (Munc18c) was a kind gift from Dr. Ulrich Blank

(INSERM U699, Faculté de Médecine Paris 7). Secondary

antibodies conjugated to DyLight 488 or 594 and peroxidase

were from Thermo Scientific and Jackson ImmunoResearch

Laboratories, respectively. Collagenase type VII, protease inhibi-

tors, doxycycline and nitrocellulose membranes were obtained from

Sigma-Aldrich.

MDCK and LLC-PK cell culture and transfection
MDCK clone #11 cells were cultured in minimal essential

medium (MEM) (Cellgro, Mediatech, Inc., Manassas, VA)

containing 5% fetal bovine serum (FBS) (Omega Scientific Inc.,

Tarzana, CA), penicillin and streptomycin (Cellgro, Mediatech) at

37uC and 5% CO2. Doxycycline-inducible stable cell lines for

syntaxin 4-WT and syntaxin 4-D29 were made as described

previously [11]. For transient transfections, cells were seeded on

Transwell filters (12 mm diameter, 0.4 mM pore size; Costar

Corning) and immediately mixed with the transfection agent

Exgen500 (Fermentas, Hanover, MD) and plasmid DNA in 500 ml

of media containing 15% FBS. Fresh media with or without

doxycycline was added after six hours of transfection. The cells

were cultured for a total of 30 hrs until they were polarized. All

transient transfection experiments were repeated at least three

times.

LLC-PK1 cells stably expressing either m1A or m1B have

previously been described [20]. These cells were further stably

transfected for the expression of epitope-tagged syntaxin 3 and

syntaxin 4 (more information about these plasmids in Low et al.

[10]). Cells were maintained in MEM containing 5% FBS,

penicillin and streptomycin at 37uC and 5% CO2. For localization

studies of these SNARE proteins, cells were grown on Transwell

filters, fixed, permeabilized and immunostained as indicated in the

immunofluorescence microscopy section.

Mutagenesis
All expression constructs are based on human syntaxin 4

(U07158, mRNA) using a pcDNA4-TO expression vector

Figure 6. Expression of mistargeted syntaxin 4 causes kinetic delay in tight junction formation. MDCK stable transfected cells for Syn4-
D29 were cultured on Transwell filters for 72 h, followed by induction with DOX for 8 h. Cultures were switched to low-calcium media for 15 h,
resulting in the loss of tight junctions. Cultures were then switched back to normal calcium and the reestablishment of tight junctions was monitored
by measuring the TEER (Ohms). Data represent mean values from at least three independent experiments. Error bars indicate SEM.
doi:10.1371/journal.pone.0021181.g006
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(Invitrogen) that was modified for the addition of two C-terminal

myc epitope tags and one hexa-histidine tag. Deletion mutants

were made by PCR as per standard procedures. Briefly, primers

were designed with complementary sequences and restriction

enzyme sites at ends. PCR reactions were performed using Pfu

polymerase (Stratagene, La Jolla, CA) for 20–25 cycles. Product

and vector plasmid were digested using desired restriction enzymes

and then ligated with T4 DNA ligase. All constructs were

confirmed by sequencing.

Surface delivery assay
An assay to quantify the kinetics of surface delivery of newly

synthesized syntaxin 4 was established by modification of a

protocol for measuring surface delivery of the polymeric

immunoglobulin receptor in MDCK cells [40]. Briefly, MDCK

cells stably expressing myc-tagged syntaxin 4 were cultured on

Transwell filters for 72 hours. After 12 hours of induction with

doxycycline for the expression of syntaxin 4, cells were starved for

30 min in methionine-deficient media (DMEM Gibco/Invitrogen

Corporation N.Y.). After starvation, cells were metabolically

labeled for 15 minutes with [35S]-methionine (Amersham Biosci-

ences) followed by a chase with unlabeled methionine for different

time intervals. 9E10 anti-myc antibody was present throughout the

chase in either the apical or basolateral media compartment.

Antibody binding was allowed to proceed for 60 minutes on ice

and then excess antibody was washed away. Cells were lysed in a

buffer containing Triton X-100 with the addition of MDCK cell

lysates containing an excess of unlabeled myc-tagged syntaxin.

Antibody-tagged syntaxin molecules that had been exposed to the

surface were precipitated with Protein A-Sepharose. The remain-

ing syntaxin molecules that had not reached the surface were

subsequently immunoprecipitated with fresh antibody and Protein

G-Sepharose. Immunoprecipitates were separated by SDS-PAGE,

gels were dried and radioactive bands were imaged using a

Figure 7. Expression of mistargeted syntaxin 4 prevents cyst-formation in 3D MDCK culture. (A) MDCK cells stably expressing Syn4-D29
were cultured in 3D collagen. Syntaxin expression was induced with DOX two days after seeding, and culture was continued for an additional 6 days. Cells
were fixed and immunostained for GP135 protein, an apical marker, Syn4-D29 (myc) and nuclei. Two different panels are shown for cells that express
Syn4-D29 after induction to represent the variety of defective cysts found in the cultures. (B) Quantitation of cyst formation. Cysts consisting of polarized
cells or disorganized ‘‘non-cysts’’ consisting of nonpolarized cells (as shown in A) were counted and are expressed as percentage of total structures.
doi:10.1371/journal.pone.0021181.g007
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Molecular Imager FX (Bio-Rad Laboratories). Images were

quantitatively analyzed using Quantity One analyzing software

(Bio-Rad Laboratories).

Immunofluorescence microscopy
For surface staining, MDCK cells on Transwell filters were

incubated on ice for 1 hr with the anti-myc epitope antibody 9E10

diluted in MEM containing 20 mM Hepes and 0.6% BSA with

gentle shaking. The cells were washed with MEM four times for

10 minutes. Afterwards, the cells were fixed with 4% paraformal-

dehyde (Sigma-Aldrich) at 4uC for 25 minutes. After quenching in

PBS containing 75 mM ammonium chloride and 25 mM glycine,

cells were blocked and permeabilized with PBS containing 3%

BSA and 0.2%Triton X-100. Filters were cut out and incubated

overnight with primary antibodies in blocking solution at 4uC.

Then filters were washed with washing solution (PBS, 0.05%

Triton X-100 and 0.7% fish skin gelatin) four times during

5 minutes followed by incubation with fluorescent-labeled second-

ary antibodies plus DAPI 0.2 mg/ml at 37uC for 1 h. After

washing, membranes were post-fixed 5 minutes with 4% parafor-

maldehyde and mounted in coverslips using ProLong Gold

antifade reagent (Molecular Probes). For intracellular staining,

stable cell lines were culture on coverslips for at least 4 days and

then expression of the protein was induced for 8 hours with

doxycycline. After induction, cells were fixed and labeled as

described above.

Images were acquired either with a Lecia-TCS-SP2 confocal

microscope (Leica Microsystems Heidelberg GmbH) or an

Olympus IX81, equipped with Disk Spinning Unit (Olympus,

USA) microscope at room temperature. Projection images were

constructed using either Leica confocal software or IPLab software

(BD Biosciences, MD, USA). Using Adobe Photoshop software,

histograms were linearly adjusted for optimal representation of the

8 bit signals. Individual channels were overlaid in RGB images,

and composites of panels were made for final figures.

Immunoprecipitation
For immunoprecipitation assays polarized stable cell lines were

lysed for 30 min under rotation at 4uC in lysis buffer containing

50 mM Hepes-KOH pH 7.4, 50 mM potassium acetate, 1%

Triton X-100. This buffer was supplemented with a protease

inhibitor cocktail and PMSF. The lysate was centrifuged for

10 minutes at 10,000 g and the supernatant was pre-cleared by a

20 min incubation with CL-2B beads (GE Healthcare). Then, the

lysate was incubated overnight at 4uC with anti-myc antibody

cross-linked to protein A-Sepharose beads (GE Healthcare).

Subsequently, the beads were washed three times with lysis buffer

containing Triton X-100 and one last time with lysis buffer

without Triton X-100. Immunoprecipitated complexes were

analyzed by SDS-PAGE and western blotting for myc, SNAP-23

and Munc18c proteins.

Transepithelial electrical resistance (TEER) measurements
Cells were grown on Transwell filters (12 mm diameter,

0.4 mM pore size) for at least 72 hrs, followed by induction with

doxycycline for 8 hrs. Cultures were switched to S-MEM low-

calcium medium (Cellgro, Mediatech) for 15 hrs, resulting in the

loss of tight junctions. After this incubation cultures were switched

back to normal calcium and the reestablishment of tight junctions

was monitored. TEER was measured in V, at 37uC, using an

EVOM epithelial voltohmmeter (World Precision Instruments,

Inc).

Cyst culture
For culture in 3D-collagen gels, MDCK cells were seeded at

0.56104 to 16104 cells/ml in 80% collagen Type I:PureCol

(Inamed) and 20% MEM containing 0.02 M HEPES (pH 7.4) and

0.02 M NaHCO3 on 48 well plates (Costar, Corning Incorporat-

ed, NY). The cultures were kept at 37uC for 30 minutes to solidify

the collagen, and then media containing MEM (with 5% FBS and

penicillin and streptomycin) was added. Two days after seeding,

gene expression was induced by adding doxycycline and the

cultures were continued for a total of 7–10 days. For immuno-

staining of MDCK cells in 3D-collagen cultures, the collagen was

digested with 10 U/ml of collagenase type VII (Sigma-Aldrich,

USA) for 10 minutes. After digestion, gels were fixed with 4%

paraformaldehyde (Sigma) for 30 min. Immunostaining was done

with extended primary and secondary antibody incubation times

and washing (24 hr incubation for antibodies and 46washing for

30 min). Gels were mounted using ProLong Gold antifade reagent

(Molecular Probes).
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