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Abstract

Rhabdomyolysis-induced renal failure represents up to 15% of all cases of acute renal failure.
Many studies over the past four decades have demonstrated that accumulation of myoglobin in the
kidney is central in the mechanism leading to kidney injury. However, some discussion exists
regarding the mechanism mediating this oxidant injury. Although free iron-catalyzed fenton
reaction has been proposed to explain the tissue injury, more recent evidence strongly suggests
that the main cause of oxidant injury is myoglobin redox cycling and generation of oxidized lipids.
These molecules can propagate tissue injury and cause renal vasoconstriction, two of the three
main conditions associated with acute renal failure. This review presents the evidence supporting
the two mechanisms of oxidative injury, describes the central role of myoglobin redox cycling in
the pathology of renal failure associated with rhabdomyolysis, and discuss the value of therapeutic
interventions aiming at inhibiting myoglobin redox cycling for the treatment of rhabdomyolysis-
induced renal failure.

Introduction

Rhabdomyolysis affects about 1 in 10,000 persons in the USA and accounts for an estimated
8 to 15 % of all cases of acute renal failure (www.rhabdomyolysis.org). About 5% of
rhabdomyolysis cases result in death (about 1,500 for the USA). Some data suggests that the
number of patients with rhabdomyolysis following trauma may be underestimated and that
the current treatments may not improve the outcome in a large proportion of patients with
renal failure following rhabdomyolysis [1]. In this review we will describe the current
treatments and discuss possible new therapeutic venues derived from recent new advances in
the understanding of the pathophysiology of rhabdomyolysis—induced renal failure.

Rhabdomyolysis

Rhabdomyolysis, the breakdown of striated muscle, results in the release of potentially toxic
compounds in the circulation that may affect kidney function. The syndrome has been

recognized for a few thousands years (Old Testament, Book of Numbers, Ch. 11, verses 31—
35). However, the link between renal failure and rhabdomyolysis was clearly established for
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the first time by the classic description of the crush syndrome following London
bombardment during the Second World War [2]. The authors later determined the presence
of abnormal levels of myoglobin (Mb) in the urine of these patients [3].

The causes of rhabdomyolysis are diverse ranging from crush injury to genetic disorders or
drug induced (Table 1). These disorders can by due to mechanical or electrical trauma [4-8],
muscle injury following intense exercise, heatstroke, malignant hyperthermia, seizure or
long term immobilization [8-16]. Lysis of myocytes can also occur following ischemia [17-
20] or be caused by metabolic disorders leading to hypokalemia, hypernatremia or
hypophosphatemia [21-26]. Many drugs administered in overdose but also in chronic
normal dose administration have been shown to cause rhabdomyolysis [27-45]. Finally,
genetic disorders leading to deregulations of enzymes involved in metabolic pathways have
also been linked to rhabdomyolysis [46-50].

Pathophysiology

Renal failure

Although the causes are numerous, the etiology of the disease results from the lysis of the
myocytes and the release of their content in the circulation (Table 1, for review see [51,52]).
Following lysis of myocytes, large amounts of salts, enzymes (aldolase, Creatine kinase
(CK), lactate dehydrogenase) and Mb, an 18,800 Da oxygen carrier [53-55] are released in
the circulation. Circulating Mb then becomes deposited in the kidney causing renal tubular
obstruction and necrosis, which is accompanied by intense renal vasoconstriction [51,56—
59].

Although it is well accepted that renal failure is caused by Mb deposition in the kidney, the
mechanism by which it occurs is still debated. Over time, number of mechanisms have been
proposed to explain the pathophysiology of rhabdomyolysis-induced renal failure, including
decreased delivery of blood to the glomerulus [56,60], reduced glomerular filtration rate
[61], leakage of filtrate across a damaged tubular epithelium [62] or tubular obstruction by
Mb casts [62]. The current consensus is that renal failure is due to the combined effects of
hypovolemia, aciduria, and direct cytotoxicity due to accumulation of renal tubular Mb (for
review, see [63,64]).

Oxidant injury and rhabdomyolysis-induced renal failure

There is accumulating evidence for a causative role of Mb-mediated oxidative injury to the
kidney in the development of rhabdomyolysis-induced renal failure. Two hypotheses have
been proposed to explain the mechanism by which Mb can cause oxidative injury to the
kidney: 1) release of free iron from the Mb, catalyzing Fenton reactions, and 2) Mb redox
cycling induced lipid peroxidation. In this section we will analyze the merit of both theories.

Free iron-mediated Fenton reaction

Most data suggested that free iron released from Mb degradation in the kidney is involved in
the generation of oxidative species through catalysis of Fenton reaction. The strongest
evidence for this mechanism came from data showing that desferioxamine, an iron chelator,
decreased rhabdomyolysis-induced renal injury in the rat [59] and prevented cell toxicity
induced by direct exposure to Mb [65,66]. Although the role of free iron in renal injury can
not be totally excluded, there are reasons to think that this is unlikely to be a major
contributor. First, several mechanisms are in place in the body to bind free iron and prevent
its toxic effect in vivo. Experiments designed to measure formation of hydroxy! radical
("OH), the reactive oxygen species produced by the Fenton reaction, in proximal tubular
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segments of the rat model of glycerol-induced rhabdomyolysis demonstrated that levels of
OH-" are decreased after glycerol injection compared with control animals [67]. Using
cultured kidney cells subjected to Mb, Zager et al. demonstrated that compounds that
scavenge *OH were unable to protect the cells from the Mb-induced injury [66].

Cytochrome P-450s present in the kidney were proposed as an other source for free iron
[68,69]. This hypothesis was based on observations that kidney content of P-450 was
decreased following rhabdomyolysis in rats and that P-450 specific inhibitors decreased
tissue injury [68]. Although several lines of evidence suggest that P-450s are a source of free
iron in chronic kidney disease such as minimal change nephrotic syndrome [70-73], their
roles in rhabdomyolysis-induced renal failure is more controversial [68,69,74].

The effects of deferoxamine observed both in vivo and in cells in culture [59,65,66] can be
explained in view of the evidence that deferoxamine is known to be a reductant of ferryl Mb
[75,76], the species responsible for the pseudo-peroxidase activity of Mb which mediates
lipid peroxidation (see section below). Finally, degradation of hemoproteins by induction of
heme oxygenase is known to prevent renal failure following induction of rhabdomyolysis in
the rat [77,78] and following injection of hemoglobin in mouse [79], processes that release
the heme from the proteins. Not only does this evidence support a role for Mb in
rhabdomyolysis-induced renal failure, it also argues against the role of free iron in the
oxidative damage, as degradation of the heme by heme oxygenase generates free iron [80].

Myoglobin redox cycling and lipid peroxidation

The normal function of Mb is to transport oxygen in muscles. It does so because of its
ability, in its ferrous form (Fe'!), to bind reversibly molecular oxygen. In pathologic
conditions in which this hemoprotein is released from the reducing environment of cells, the
ferrous heme undergoes oxidation to the ferric state (Fe'll). In the presence of peroxides,
such as hydrogen peroxide or lipid hydroperoxides, hemoproteins are oxidized to the ferryl
form (Fe!V=0), which often accompanied by the formation of a globin-based free radical
[81-84]. The ferryl form of these hemoproteins can generate lipid-based radical species
through abstraction of a lipid hydrogen atom and the globin radical can propagate to
exogenous substrates [85]. In the absence of antioxidants, these reactions can initiate a
cascade in which free and membrane-bound lipids become oxidized (Figure 1).

Several lines of evidence support the role of Mb redox cycling in the development of
rhabdomyolysis-induced renal failure. Mb by itself can catalyze peroxidation of arachidonic
acid [81]. The high levels of Mb accumulating in the kidney have been shown to cause lipid
peroxidation in that target organ as reflected by markedly increased F2-isoprostanes (Fo-
IsoPs) excretion in the urine and increased levels of Fo-1soPs in the kidney following
rhabdomolysis in the rat [74]. Moreover, the urine of humans with rhabdomyolysis contains
increased levels of Fo-1soPs and hemeprotein crosslinks of Mb [86]. These data
unambiguously demonstrate that Mb redox cycling occurs in the kidney of patients with
rhabdmyolysis, as the heme-protein crosslink only forms by the reaction of the ferryl heme
and the globin radical [87].

Supporting evidence for the role of Mb redox cycling in renal failure is also shown by the
attenuation of renal failure by alkalinization [74] a process that is known to inhibit Mb redox
cycling [74,88]. Classically the beneficial effects of alkalinization were thought to be due to
enhanced solubilization of Mb, which increased the excretion of Mb from the kidney.
Moreover, arachidonic acid oxidation catalyzed by Mb has been shown to be increased at
acidic pH [89]. Inhibitors of lipid peroxidation also has been shown to protect
rhabdomyolysis-induced injury to the kidney [90] and deferoxamine can inhibit lipid
peroxidation by reducing ferryl Mb to its ferric state [75,91,92] without chelating free iron
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[91]. All these data support the mechanism by which ferric Mb deposited in the kidney
undergoes redox cycling by reacting with peroxides present in the milieu, which in turn
induces an oxidant injury to the kidney as a result of enhanced lipid peroxidation.

Further support for this hypothesis that Mb redox cycling is responsible for renal injury
associated with rhabdomyolysis comes from the recent evidence that acetaminophen

(ApAP) inhibits lipid peroxidation and significantly improves renal function in a rat model
of rhabdomyolysis, with a reduction in the amount of structural renal damage [93]. The basis
for considering that ApAP might inhibit the pseudoperoxidase-initiated formation of
hemeprotein radicals derived from our work that addressed the cellular selectivity of
inhibition of the prostaglandin H synthases (PGHSs) by ApAP. The PGHSs are bifunctional
enzymes that contain both cyclooxygenase and peroxidase catalytic sites [94]. The catalytic
activity is initiated by reduction of a hydroperoxide in the peroxidase site leading to
formation of a protoporphyrin radical cation similar to what happens with Mb. Abundant
evidence indicates that ApAP is a reducing cosubstrate of the PGHS peroxidase [95-98].
APpAP also has been found to inhibit myeloperoxidase-induced lipid peroxidation [99]. The
analogy of the PGHS catalytic cycle and that of ferryl Mb-mediated lipid peroxidation led us
to hypothesize that ApAP may be able to reduce ferryl Mb and prevent its redox cycling,
similarly to what happens in PGHS (Figure 1). In this manuscript [93], we demonstrated that
APpAP inhibits the oxidation of free arachidonic acid catalyzed by Mb in vitro, via reduction
of ferryl Mb to its ferric state. All the in vitro experiments were done in presence of EDTA,
a free-iron chelator, ruling out the participation of free-iron in this process. We also have
shown that ApAP prevents formation of the protein radicals, which result from incubation of
Mb with hydrogen peroxide as well as the formation of heme-protein crosslinks. We then
showed that treatment of rats with ApAP before or after induction of rhabdomyolysis by
glycerol injection in skeletal muscle, led to a decrease urinary Fy-isoprostanes levels as well
as inhibition of heme-protein crosslinks in the urine of the animals when compared to
controls. Notably, heme-protein crosslinking can only occur if Mb has passed through the
ferryl state [87]. Taken together, our results clearly demonstrate that compounds that can
reduce the ferryl form of Mb can be used in vivo to protect the kidney from injury following
rhabdomyolysis, establishing a basis for new therapeutic hypotheses.

Current treatments

The standard of care of rhabdomyolysis is aggressive 1V rehydration with or without
addition of mannitol and bicarbonate. Mannitol is thought to protect the kidney by
decreasing the intratubular accumulation of Mb while bicarbonate increases the urine pH
above 6.5, which is thought to help solubilize Mb thus enhancing its excretion from the
kidney. This treatment was first described in 1984 by Ron et al. in patients suffering from
crush injury [100]. However this study did not include a control group, thus undermining its
interpretation. Since then, several studies, both prospective and retrospective, suggested that
large volume infusion of fluid with balanced salt solution is sufficient to protect the kidney
from injury and that bicarbonate seems to be unnecessary [65,101,102]. In 2004 in a
retrospective study evaluating over 2,000 cases, Brown et al. found that patients with CK
levels over 5,000 U/I do not benefit from administration of bicarbonate and mannitol. The
authors concluded that “the standard of administering bicarbonate and mannitol to patients
with post-traumatic rhabdomyolysis should be reevaluated” [1]. The conclusion of that study
stresses the necessity to explore new therapeutic venues for the prevention of
rhabdomyolysis-induced renal failure.
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New hypothetical pharmacologic interventions

The three major mechanisms by which Mb induces acute renal failure include renal
vasoconstriction, tubular obstruction by Mb casts and lipid peroxidation-mediated tubular
injury. Tubular obstruction seems to be a result of the kidney injury [65,101,102] and, as
such, may not necessitate specific interventions. On the other hand, targeting either of the
other two mechanisms or both together may have profound effects against acute renal
failure.

Inhibition of glomerular vasoconstriction

One of the other two mechanisms participating in the development of acute renal failure is
the decrease in blood flow in the glomerulus (Figure 2). The current treatment with large
volume infusion of fluid with balanced salts supports the idea that restoring glomerular
filtration and flushing the intra-tubular Mb helps protecting the kidney.

Several vasoactive factors seem to play an important role in modifying renal blood flow.
Nitric oxide (NO) production is decreased during rhabdomyolydid-induced acute renal
failure as measured by levels of urinary nitrite and kidney injury is increased by treatment of
the animals with L-NAME (an inhibitor of NO synthesis) [103]. This can potentially be
explained by scavenging of NO by Mb in the kidney. However, the kidneys are protected
from injury by treatment with L-arginine (a precursor of NO) or by molsidomine (a NO
donor) [103]. These results suggest that increasing renal production of NO may help protect
the kidney against oxidant injury following rhabdomyolysis.

Overproduction of Fy-isoprostanes in the kidney in rhabdomyolysis induced renal failure
may also be an important contributor to the renal vasoconstriction. F,-isoprostanes [104]
have been shown to be remarkably potent renal vasoconstrictors [105-107], which is
mediated by activation of vascular thromboxane receptors [108]. The notion that F,-
isoprostanes are an important of the renal vasoconstriction is supported by the findings that
they are generated in the kidney following rhabdomyolysis both in an animal model [74] and
in patients [109], and that thromboxane receptor antagonists have been shown to reduce
renal vasoconstriction following rhabdomyolysis in the rat [110]. This evidence that Mb-
induced isoprostanes can cause renal vasoconstriction, which can be prevented by
antagonists of the thromboxane receptor, provides a mechanistic basis for developing
additional therapeutic strategies to improve renal function in rhabdomyolysis induced renal
failure.

Inhibition of myoglobin redox-cycling

Because the products of lipid peroxidation can cause both oxidant injury and
vasoconstriction (figure 2), inhibiting Mb redox cycling might possibly represent the most
efficient therapeutic intervention.

Lipid soluble antioxidants, if distributed to the target lipids, would be expected to break the
chain reaction triggered by interaction of the hemoprotein with a lipid interface and could
thereby attenuate the propagation of radicals that escape inhibition by a hemoprotein
reductant. Although antioxidants would inhibit propagation of the free radical oxidation
reaction, it would not eliminate the formation of fatty acid hydroperoxides that can serve as
substrates for the pseudoperoxidase activity of Mb, sustaining the initiation phase of lipid-
based radicals that would decrease the efficiency of the antioxidant. Indeed, the importance
of hydroperoxides in the mechanism of renal failure caused by hemoproteins can be inferred
from experiments demonstrating that scavenging hydrogen peroxide protects the kidney
from injury following rhabdomyolysis induction in rats [111]. Similarly, a therapeutic
intervention that increases the level in the aqueous phase of the glutathione peroxidase co-
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substrate, glutathione, could accelerate disposition of the lipid hydroperoxides and attenuate
this additional positive feedback on radical generation. Thus, a therapy combining chain
breaking antioxidants and glutathione precursor, such as N-acetyl cysteine, or hydrogen
peroxyde scavengers may provide a synergistic effect on acute kidney failure.

Optimal therapy to inhibit lipid-peroxidation catalyzed by hemoproteins clinically may well
be based on a drug with the properties to block radical initiation, with the likelihood that
interruption of the more distal steps in the chain reaction by lipid soluble anti-oxidants could
be additive or synergistic in inhibiting the feed-forward process of hemoprotein-catalyzed
lipid peroxidation. The peroxidation of lipids by Mb is a multistep process, initiated by
oxidation of hemoproteins in an aqueous environment that is accessible poorly if at all by
highly lipid soluble antioxidants such as vitamin E. Thus, aqueous soluble inhibitors of
formation of hemoprotein radicals may be optimal for blocking the initiation of the radical
cascade.

Our findings that ApAP can inhibit oxidative injury of the kidney and protect rats from renal
failure following rhabdolyolysis provides proof of the concept that the inhibition of Mb-
induced lipid peroxidation can alter a pathophysiologic process in vivo. Importantly, this
effect was seen when ApAP was given not only before induction of rhabdomyolysis but also
when administered after rhabdomyolysis was induced [93]. Although ApAP is the only
compound presently available for human use with a potency within its range of safety, many
compounds that are peroxidase substrates [98,112] may potentially exert similar effects as
ApAP.

Conclusions

In conclusion, this review describes the central role of Mb redox cycling in the pathology of
renal failure associated with rhabdomyolysis. The standard of care for rhabdomyolysis-
induced renal failure consists in aggressive rehydration and may be sufficiently effective for
patients with a mild form of the disease. However, the evidence suggests that pharmacologic
agents that inhibit Mb redox cycling may represent the best additive therapeutic intervention
for patients with a more severe form of this disease. The report that ApAP prevents renal
failure in an animal model of rhabdomyolysis-induced renal failure at plasma concentrations
that are within the therapeutic concentrations in humans, provides the basis for future studies
aiming at evaluating the therapeutic value of ApAP in treating patients with rhabdomyolysis.
The data also supports the development of novel drugs that would be better reducing agents
and/or have less hepatotoxicity than ApAP. Finally, although this review focuses
specifically on rhabdomyolysis-induced renal failure, the approach described above could be
extended to other conditions caused by hemoprotein-mediated oxidant injury such as
myocardial infarction, subarachnoid hemorrhage, Plasmodium falciparum malaria, and
sickle cell disease.
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F»-1soPs Fo-isoprostanes
L-NAME N (G)-nitro-L- arginine methyl ester
NO Nitric oxide
OH* hydroxyl radical
PGHSs prostaglandin H synthases
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Figure 1. Mechanism for Mb-induced lipid peroxidation and its inhibition by acetaminophen
Oxidation of ferric Mb (Fe(l11)MDb) by a lipid hydroperoxide (LOOH) yields the ferryl Mb
protoporphyrin radical (Fe(1VV)=0 PPIX *). This radical can delocalize to the protein to form
a globin radical (Mb *), which can in turn catalyze lipid peroxidation by abstracting an
electron from a lipid (LH). The lipid radical (L *) can then react to molecular oxygen to form
the peroxyl radical (LOO *), which can propagate lipid peroxidation. Reducing co-substrates
such as ApAP (RH) reduce the ferryl Mb back to its ferric state, thus inhibiting Mb-
catalyzed lipid peroxidation.
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Figure 2. Pathophysiologic mechanism leading to kidney injury following rhabdomyolysis
Release of Mb following rhabdomyolysis associated with hypovolemia induces renal
vasoconstriction and Mb deposition in the kidney. Mb gets oxidized to its ferryl state
inducing lipid peroxidation. Products of lipid peroxidation play a central role in the
pathology via three different mechanisms: 1) the exacerbate lipid peroxidation by increasing
the rate of formation of ferryl Mb; 2) they contribute to the oxidative injury of the kidney;
and 3) they cause vasoconstriction preventing normal function of the kidney.
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Table 1

Causes of rhabdomyolysis

(www.nIm.nih.gov/medlineplus, for review Khan, 2009, NJM, 272).

Crush injury

Muscle injuries

Severe exertion, muscle ischemia, heat stroke, prolonged immobilization.

Drugs

Cocaine, heroin, alcohol, statins.

Electrolyte imbalance

Hyponatremia, hypokalemia and hypophosphatemia.

Genetic disorders

Deficiencies of glycolytic enzymes, abnormal lipid metabolism and other.
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