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Abstract
In clinical trials multiple outcomes are often used to assess treatment interventions. This paper
presents an evaluation of likelihood-based methods for jointly testing treatment effects in clinical
trials with multiple continuous outcomes. Specifically, we compare the power of joint tests of
treatment effects obtained from joint models for the multiple outcomes with univariate tests based
on modelling the outcomes separately. We also consider the power and bias of tests when data are
missing, a common feature of many trials, especially in psychiatry. Our results suggest that joint
tests capitalize on the correlation of multiple outcomes and are more powerful than standard
univariate methods, especially when outcomes are missing completely at random. When outcomes
are missing at random, test procedures based on correctly specified joint models are unbiased,
while standard univariate procedures are not. Results of a simulation study are reported, and the
methods are illustrated in an example from the Clinical Antipsychotic Trials of Intervention
Effectiveness (CATIE) for schizophrenia.
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1 Analysis of multiple outcomes: review of methods and an example from
psychiatry
1.1 Approaches to analysis of multiple outcomes

An increasingly common feature of many modern clinical studies is the inclusion of multiple
outcomes that characterize the treatment effect, for example, by efficacy and safety
measures. The desire to include more than one outcome arises for several reasons. Disease
complexity may be such that a single outcome may not adequately characterize the disease,
there may be lack of consensus on the most important clinical outcome, or there may be a
desire to demonstrate clinical effectiveness on several outcomes. The most common
approach to analysis of multiple outcomes involves separate testing of the outcomes with
adjustment for multiplicity, such as Bonferroni adjustments, or combining the outcomes into
a composite measure and performing a single univariate test. A less commonly used
approach, especially in mental health research, is to jointly test the outcomes to evaluate the
treatment effect.
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Joint testing of multiple outcomes in clinical studies has been discussed in the literature for
some time. Previous work has employed the use of linear mixed models to specify the joint
distribution of multiple continuous outcomes. Sammel, Lin, and Ryan [1] propose a
multivariate linear mixed model which generalizes a latent variable approach by assuming a
flexible correlation structure among the outcomes. Lin, Ryan, Sammel, et al. [2] propose a
scaled linear mixed model to account for effect sizes that may differ across outcomes, which
they estimate by maximum likelihood and the “working parameter” method. Roy, Lin, and
Ryan [3] present scaled marginal models to test for a common effect on outcomes that are
scaled by the marginal variances of the outcomes, rather than variances conditional on the
random effects; their estimating equation approach is less efficient than maximum
likelihood, but is robust to misspecification of the correlation structure. In recent work by
Thurston, Ruppert, and Davidson, Bayesian methods have been employed to account for
domain-specific effects on multiple outcomes measured on different scales [4].

In many settings multiple outcomes are correlated in the same direction. For example, in a
study of antipsychotic medication for schizophrenics, a primary outcome is the Positive and
Negative Syndrome Scale (PANSS), and secondary outcomes characterize side effects such
as changes in weight and blood sugar levels; lower values indicate healthier patients, so we
could expect the outcomes to be positively correlated. In this paper we focus on settings in
which correlations of the multiple outcomes lie in the same direction. Joint testing of
multiple outcomes capitalizes on the correlations among the outcomes and thereby has the
advantage of yielding more powerful tests of the treatment effect. In contrast, standard
univariate procedures, such as multiple testing with Bonferroni adjustments, tend to be
overly conservative when the correlations among the outcomes are high; further limitations
are discussed in §3.1. The use of a composite outcome also has important limitations, such
as the need to rescale component outcomes, extreme sensitivity to missing data, and an
inability to assess the treatment effect on individual components [5].

Despite the availability of methods and software to adopt a joint testing approach, the
majority of practitioners continue to use a separate testing strategy. One reason for lack of
adoption may be due, in part, to the lack of practical guidance regarding how to implement
joint testing strategies. In this article we provide a practical approach to joint testing of
continuous multiple outcomes capitalizing on recent advances in joint estimation. We
compare power and type I error characteristics of the joint tests with conventional
approaches, both in the settings of complete and incomplete data. Finally, to illustrate the
use of joint tests we apply the practical approach to an example from a clinical trial in
psychiatry.

The outline of this paper is as follows. In §1.2 we briefly introduce the example of the
Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) for schizophrenia. In §2
we propose joint models for multiple outcomes which are tested by the procedures discussed
in §3. In §4 we describe our simulation study to assess the power and bias characteristics of
the univariate and joint testing procedures, with complete and missing data, and present
results from the study. In §5 we revisit the CATIE study and implement these testing
procedures to data from Phase 1 in order to assess the safety and efficacy of atypical
antipsychotics in the treatment of schizophrenia.

1.2 Example: the Clinical Antipsychotic Trials of Intervention Effectiveness for
Schizophrenia

Antipsychotic drugs are widely used in the treatment of schizophrenia. First-generation
(“conventional” or “typical”) antipsychotics are known to be highly effective against
psychotic symptoms, but have high rates of neurologic side effects; these side effects
contribute significantly to non-compliance, which leads to relapse and rehospitalization. A
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new class of second-generation (“atypical”) antipsychotic drugs were promised to have
enhanced safety with similar or better efficacy. However, the purported advantages in safety
have been countered by other adverse effects, such as weight gain and changes in glucose
and lipid metabolism. Of particular concern is that schizophrenia patients show high
prevalence of metabolic syndrome, which is associated with increased risk for diabetes
mellitus and coronary heart disease. Despite these potential risks atypical antipsychotics
have been widely adopted in the treatment of schizophrenia. The Clinical Antipsychotic
Trials of Intervention Effectiveness (CATIE) project funded by the National Institute of
Mental Health (NIMH) involved a clinical trial to study the effectiveness of atypical
antipsychotics for the treatment of schizophrenia; this trial included numerous measures of
safety and efficacy [6].

For our analysis in §5 we focus on the atypical antipsychotic quetiapine, one of the four used
in CATIE, and the conventional antipsychotic perphenazine. Patients with tardive dyskinesia
at baseline were ineligible for randomization to perphenazine; we do not consider this,
although this baseline covariate could be included in the models we present in §2. The
results from Lieberman et al. showed no difference between quetiapine and perphenazine
based on the primary outcome, time to treatment discontinuation; however, in an analysis of
the risk for metabolic syndrome in CATIE patients, Meyer, Davis, Goff et al. confirmed
differential metabolic effects among the antipsychotic medications [7]. They showed, for
example, that patients who were treated with quetiapine had the largest mean increase in
waist circumference at the 3 month follow-up visit (0.7 inches, SE=0.2), while patients
treated with perphanize had the smallest (−0.4 inches, SE=0.2). In our application in §5 we
aim to evaluate both the efficacy and safety of the two drugs and consider five relevant and
important outcomes: the Positive and Negative Syndrome Scale (PANSS), which measures
the overall severity of the disease; and four that characterize the metabolic side effects,
namely patient weight, levels of glucose, high-density lipoprotein (HDL) cholesterol, and
triglycerides. Meyer et al. included these metabolic outcomes in their analysis and reported
that clinicians should monitor these closely in treating schizophrenic patients with
antipsychotic medications.

In our analysis we use the mean changes in these outcomes over a 3-month period to
evaluate the effect of perphenazine versus quetiapine; this timeframe is similar to the 3-
month period used in Meyer et al. A summary of these mean changes for the five outcomes
is shown in Table 1. Perphenazine and quetiapine both reduced the severity of disease
through the PANSS score; however, patients who took quetiapine exhibited more weight
gain and increased glucose and triglyceride levels. The analysis in Lieberman et al. focused
primarily on time to discontinuation of treatment; the secondary outcomes, such as
metabolic changes, were also presented, but no correction for multiple testing on the
outcomes was performed [8]. Here, we propose to jointly test both treatment efficacy and
safety through the joint models and tests discussed in §2 and §3.

2 Models and estimation
2.1 Overview

We focus mainly on the characteristics of joint tests for treatment effects on the basis of
multiple outcomes; specifically, we compare the power of tests of treatment effects obtained
from joint models for the outcomes with tests based on modelling the outcomes separately.
In order to formulate joint tests for multiple outcomes, we must first specify models for the
outcomes which characterize their joint distributions. It is expected that tests based on joint
models will capitalize on the correlation among the outcomes in order to provide more
powerful tests of treatment effects; when all the outcomes are considered to be
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manifestations of a common underlying treatment effect, a combined joint analysis has the
potential to increase statistical power.

We consider multivariate models to characterize the joint distribution of K outcomes in a

clinical study of a single treatment versus comparator. Denote by  the kth outcome
measured for the ith subject, where k = 1, …, K, i = 1, …, 2n, and n represents the number of
subjects in each of the treated and comparison groups. We denote by β(k) the treatment effect
on the kth outcome;  is estimated from the observed data. In the univariate setting  is a
difference in sample means of the kth outcome between the treated and comparison groups;
in the joint setting,  can be estimated from a model for the joint distribution of the
multiple outcomes, for example, by maximum likelihood.

2.2 Linear mixed effects models for multivariate normal outcomes
We consider an example of multiple outcomes that are generated from linear mixed effects
models (LMM) with a subject-specific common random effect [9]. The random effect
induces a correlation among the outcomes of interest; for example, subjects with higher
values of the random effect will have higher values of his or her outcomes. Throughout this
section treatment assignment is assumed to be random so that it is sufficient to model the
outcomes and treatment assignment only; in an extension of these LMM models, additional
covariates may be included in order to control for possible confounding, particularly in the
non-randomized setting.

For the ith subject, with treatment assignment Xi = 1 if treated and Xi = 0 for the comparison

group, the kth outcome , is modelled as:

(1)

where  is the subject-specific random effect, and the  are
independent noise components. We place the restriction that γ(K) = 1 so that the model is

identifiable. The marginal variance of  is , and the covariance between 

and , k ≠ j, is ; thus, the correlation between them is

The scale parameters γ = (γ(1), …, γ(K))′ characterize the variance-covariance structure of the
multiple outcomes; of particular interest in our paper are positive pairwise correlations,
which we explore in the simulation study of §4. If the multiple outcomes for the ith subject

 are assumed to be conditionally independent given bi, then likelihood-based
inferences about the fixed effects (and random effects variance component) can be based on
the marginal likelihood obtained by integrating over the distribution of bi. Although, in
general, this is a non-standard LMM because of the inclusion of the scale parameters γ, the
model can be fit, with relatively minor modifications, using existing statistical software for
LMMs (for example, the `nlme' package in R or PROC NLMIXED in SAS).

Yoon et al. Page 4

Stat Med. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Finally, we note that model (1) yields a parsimonious model for the variance-covariance

among the K outcomes that is characterized by K+1 parameters instead of . This
model places restrictions on the patterns of correlations that make it more suitable for the
analysis of outcomes that are correlated in the same direction. In settings where these
restrictions might not hold, we note that a more general model for the variance-covariance
among the K outcomes can be obtained by allowing an unstructured covariance for the
errors instead of inducing correlation via the inclusion of random effects. The latter model
can be fit using standard statistical software for general linear models for correlated data
(e.g., PROC MIXED in SAS); in §5 we illustrate the applications of this model and model
(1) to the data from the CATIE trial.

3 Testing multiple outcomes
3.1 Univariate testing

On the K outcomes, we say that a treatment is clinically effective if clinically meaningful
treatment effects are observed and if statistical significance is demonstrated at a pre-
specified significance level α for one or more of the outcomes, while controlling the overall
type I error rate at, say, α = 0.05. An important consideration in testing multiple outcomes is
the degree to which the outcomes are correlated. In order to facilitate and focus the
discussion on the relationship between correlation and testing characteristics, we consider
the equi-correlated case in which all pairs of outcomes (Y(k1), Y(k2))′, k1 ≠ k2 have constant
positive correlation ρ, by setting γ(k) = 1 ∀k, in the LMM (1); this is the setting we explore
in the simulation study in §4. If the outcomes are small in number and weakly correlated (0
≤ ρ ≤ 0.1) then inference can be safely made using a univariate adjustment method, such as
the standard Bonferroni procedure which partitions α evenly among the K tests [10]. In the
standard Bonferroni procedure, each of the hypotheses H0k : β(k) = 0 is tested with

significance level ; if the treatment is shown to have a significant effect on any of the K
outcomes, then it is considered to be clinically effective. The standard Bonferroni procedure
in this setting of the LMM (1) is based on the univariate t-test for each of the mean
differences in outcomes between the treated and comparison groups, that is, when the
treatment effect β(k) on the kth outcome is estimated separately from observations of Y(k),
rather than by full specification of the likelihood for all the outcomes by the LMM (1).

Stepwise procedures have also been developed that are more powerful than the standard
Bonferroni method. The Holm “step-down” procedure sequentially tests ranked p-values as
does the Hochberg “step-up” procedure [11, 12, 13]. Table 2 shows some situations for K =
3 outcomes in which the Bonferroni procedure and the Holm and Hochberg variants reach
different conclusions. When a treatment is defined as clinically effective if at least one
outcome is improved in the treatment group, then Holm's procedure is identical to the
standard Bonferroni procedure in that one will reject the global null hypothesis if the other
rejects. Specifically, at the first step of the Holm's procedure, the smallest p-value from the

K tests is compared to level , and if the result is significant, no further tests are conducted;
the standard Bonferroni procedure follows the same algorithm under our definition of a
clinically effective treatment. The standard Bonferroni and Holm's procedures have the
advantage of not requiring any assumption of the joint distribution of the test statistics. In
general, if the Bonferroni procedure rejects a hypothesis at level α, then both the Holm and
Hochberg procedures will also reject. However, the converse is not always true for the
Hochberg adjustment, which requires additional assumptions on the distribution of the test
statistics [13]. (In the setting of our simulation study in §4, the Hochberg procedure was
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almost identical to the standard Bonferroni procedure in terms of statistical power, so we
removed these variants of the Bonferroni adjustment from our discussion.)

Sankoh et al. demonstrated that with uniform treatment effects, separate testing using
Bonferroni-based adjustments provides adequate type I error rate and yields high power
when ρ ≤ 0.1, reasonable power for 0.2 ≤ ρ ≤ 0.6, and deflated type I error rates and loss of
power when the outcomes are highly correlated, ρ > 0.6 [10]. In summary, separate testing
of the constituent outcomes, with adjustment for multiplicity of testing to control the
experimentwise error rate α, is a common and straightforward approach to the analysis of
multiple outcomes. When the outcomes are moderately correlated, Bonferroni-based
procedures tend to have adequate power, but are overly conservative when the outcomes are
highly correlated. Indeed, as our simulation results in §4 show, Bonferroni procedures tend
to perform adequately in most settings, although joint tests based on the LMM (1), for
example, are generally more powerful than univariate procedures.

Multiplicity can also affect the power of univariate, Bonferroni-based procedures in
surprising ways. Intuitively, one might expect that an increase in the number of outcomes to
be tested would lead to a less powerful test of the treatment effect, simply because the level
α would be partitioned over more univariate tests; however, this is not a conventional truth.
The results of a small simulation of 1,000 datasets are presented in Table 3, in which data
were generated according to the LMM (1). Forty treated (X = 1, n1 = 40) and forty
comparison (X = 0, n0 = 40) observations were generated, each containing K = {5, 10, 20}
outcomes (other sample size configurations were simulated with similar results). Two
settings of the treatment effect β = (β(1), …, β(K))′ were considered: (a) β = (0.6, 0, …, 0)′
defined as a “treatment effect on one outcome”; and (b) β = (0.3, …, 0.3)′ defined as a
“smaller uniform effect on all outcomes.” Separate t-tests with Bonferroni adjustments were
implemented to test for a treatment effect on any outcome. Table 3 shows that the power of
the standard Bonferroni procedure does not always decrease with increasing K for fixed
correlation, contrary to basic intuition. For example, under zero correlation and a uniform
treatment effect, the power actually increases with more outcomes. In part (a) with a
treatment effect on just one outcome, the power understandably decreases as K increases,
because the significance level α is partitioned over more tests on outcomes with no treatment
effect. In part (b), although α is more highly partitioned with increasing K, underlying each
outcome is a true treatment effect so that increasing K yields more power, specifically when
correlation is zero; on the other hand, under high correlation, increasing K yields lower
power of the Bonferroni procedure, because the multiple univariate tests become redundant.
Table 3 highlights that the conservativeness of the Bonferroni procedure with increasing
correlation among outcomes is dependent upon specification of the alternative hypothesis.
For certain alternatives, it is less sensitive to the strength of the correlation. The lesson here
is that while Bonferroni procedures are well-suited to controlling false rejections due to
multiplicity, it is not often clear in which situations they are optimal in the sense of
statistical power.

3.2 Joint testing
We are interested in two types of joint tests:

(i) a global test (K-df) to evaluate the null hypothesis H0 : β(1) = … = β(K) = 0; and

(ii) a single degree of freedom (1-df) test against the alternative ,

for pre-specified weights wk. For example, if there are K = 5 outcomes, with one primary
and the rest secondary, then the primary outcome could be given weight w1 = 0.6 and the
other four weights w2 = w3 = w4 = w5 = 0.1. In another scenario, if all the outcomes are of
primary interest, then all weights could equal wk = 1, ∀k. Test statistics are based on
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estimates from a joint model, such as the LMM (1). Once specified, from the model we can
obtain joint estimates of the β(k)'s and their variance-covariance matrix. Using these
estimates and their variance-covariance matrix, Wald statistics can be formed to test either
the global or 1-df null hypotheses outlined above. For example, the Wald statistic for the 1-

df test is given by  which has a χ2(1) distribution.

As noted earlier, joint testing of multiple outcomes is a less common approach because of
the difficulty in specifying their joint distribution. In the setting of multiple outcomes
assumed to have normal distributions, the standard comparison of two treatment groups can
be based on Hotelling's T2 statistic, which provides a measure of the distance between two
population mean outcome vectors [14]. The statistic is based on the Mahalanobis distance
between the two sample mean vectors of the treated and comparison groups; the test is
useful for evaluating an overall difference between the mean outcomes of the treated and
comparison groups.

As with Hotelling's T2 test, the 1-df test based on the LMM (1) does not generally determine
which specific outcomes may be improved by treatment; however, the weights {wk} may be
defined a priori so that some outcomes are considered more important in evaluating the
hypothesis. One limitation of the 1-df test is that it cannot detect the direction of the
treatment effect; in some cases, one may wish to transform the outcome(s) so that the
estimated effects are in the desired direction. In particular, because the 1-df test statistic is a
weighted sum of multiple statistics, opposing estimates (that is, positive and negative
effects) might cancel out so that the treatment effect is deemed insignificant when in fact
there is a true effect. As noted by Roy, Lin, and Ryan, 1-df global tests will have the most
power in the presence of a common effect size on the multiple outcomes [3].

Models for the joint distribution of the K multiple outcomes such as the LMM (1) can also
be used to construct a K-df test. LMM-based K-df tests allow for specification of the
covariance structure, in contrast to the Hotelling T2 statistic which utilizes a general
unstructured covariance matrix. As a result, the LMM-based K-df test can be more powerful
than Hotelling's T2 test when the covariance is correctly specified, for example, under
compound symmetry. Both the LMM-based K-df test and Hotelling's T2 have the advantage
of being able to detect the direction of treatment effects, as compared to the 1-df test;
however, they have less power than the 1-df test when the treatment has a common effect on
all the outcomes in the study.

4 Simulation study
We investigated the performance of the univariate and joint testing procedures with varying
treatment effects and correlations among the outcomes. A necessary emphasis here is that
our simulation study was designed for the setting of a constant positive correlation between
all pairs of outcomes by setting γ(k) = 1, ∀k in the LMM (1). Monte Carlo simulations of
10,000 repetitions were used to assess the type I error and power properties of the global K-
df and 1-df tests based on the LMM (1). Specifically, we examine global and 1-df tests based
on maximum likelihood estimation of the treatment effects (β(1), …, β(K))′, and compare
their properties against Hotelling's T2 test and a univariate test with Bonferroni adjustments
for multiplicity. The joint tests based on estimates from the LMM that specifies the (correct)
joint distribution of the multivariate outcomes should capitalize on the correlation among the
outcomes in order to yield more powerful (and unbiased) tests of treatment effects.

Yoon et al. Page 7

Stat Med. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The performance of the univariate and joint testing procedures is also evaluated under the
situation of missing data. When data are missing, the effective sample size is reduced so that
a loss of power is expected for any given test. The test procedures, however, use the
available information in different ways. The univariate Bonferroni procedure estimates the
treatment effect on an outcome with all the available data on that outcome; on the other
hand, Hotelling's T2 discards the ith subject in computing the test statistic if any of subject i's
outcomes are missing. Joint testing makes the most efficient use of the available information
by capitalizing on the association among the outcomes through a joint model. For our
simulation study, two forms of missingness are considered and described in §4.1.2 and
§4.1.3.

4.1 Design of simulation
4.1.1 Parameter configuration—Data for our simulation study were generated by the
LMM (1). We assume that the intercept terms α(k) = 0 ∀k, an assumption which does not
affect the general results presented here. We considered three specifications of the treatment
effect β = (β(1), …, β(K))′, following the LMM (1). The first specification of the treatment
effect places an effect β(1) > 0 on the first outcome, while the other effects are zero, β(k) = 0
for k ≠ 1; for example, in the simulation presented here, K = 5 and β = (0.6, 0, 0, 0, 0)′. A
second specification places a uniform treatment effect (also known as “common effect”) on
all the outcomes β(j) = β(k) > 0 ∀j ≠ k; for example, β(k) = 0.3 ∀k. The last specification
places a non-constant, positive effect on all but one of the outcomes; for example, β = (0.6,
0.45, 0.3, 0.15, 0)′ for the third specification of the treatment effect β in the simulation
study.

The covariance-variance structure for the multiple outcomes is determined by the random

effect bi and independent error terms , for which bi ~ N(0, ρ and

 To facilitate discussion here, we consider the setting in which γ(k) = 1
∀k, in order to induce a constant pairwise correlation for all pairs of outcomes (compound
symmetry); more complex correlation structures can be defined by changing the values of
the scale parameters γ(k) for k = 1, …, K − 1, with γ(K) = 1. With the γ(k)'s set to unity, V
ar(Y(k)|X, β(k)) = 1 ∀k, so that the outcomes are all measured on the same scale, and the
outcomes all have a constant pairwise correlation, ρ. The simulation parameter of most
interest is ρ, which affects the power of the univariate and joint tests in different ways.
While the assumption of compound symmetry for the correlation structure might not be
tenable in real examples; we make this assumption here in the simulation in order to
illuminate the meaningful influence of correlation on the characteristics of the univariate and
joint tests, particularly under the different specifications of the treatment effect and under
different patterns of missing data.

With the foregoing specification, 40 treated (X = 1) and 40 comparison (X = 0) subjects with
K = 5 outcomes each were generated by the LMM (1). Other settings of sample size and
number of outcomes were considered, but not shown in the results in §4.2. The relationship
between correlation and testing characteristics were similar for different settings of these
parameters. For example, an increase in sample size yielded greater power for the univariate
and joint tests, all other things held equal, but the general trends and relationships did not
change.

4.1.2 Missing completely at random—When data are missing completely at random
(MCAR), the probability that observation Yi

(k) is missing is a constant π, for all subjects i
and outcomes k, and the test procedures will generally suffer a loss of power, although to
differing degrees. For example, when data are MCAR with probability π = 0.2 in a sample of
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100 subjects, the Bonferroni procedure estimates the treatment effect on each of the K
outcomes with an expected (1−π)100 = 80 observations. On the other hand, for K = 5
outcomes, say, Hotelling's T2 statistic uses only an expected (1 − π)5100 = 33 complete
observations, that is, 33 individuals whose 5 outcomes are all observed. Joint tests based on
a joint model, such as the LMM (1) use all the available information, like the Bonferroni
procedure, but also capitalize on the correlation of the outcomes so that they recover the loss
of power when the outcomes are highly correlated.

4.1.3 Missing at random—When data are missing at random (MAR), the probability that
an observation is missing can depend on observed outcomes and treatment assignment. This
dependency can induce bias in test procedures when it is ignored. Patterns of MAR
missingness will lead to biased estimates of the treatment effect, thereby inflating type I
error if it is not properly accounted for in the estimation.

Our MAR mechanism for the simulation study is specified by the following model. Let

 be the vector of K outcomes for subject i and Xi be the treatment

assignment. Assume that the first outcome  is always observed, and the pattern of

missingness on the other outcomes , depends on . Let  be the
probability of missingness for each of these K − 1 outcomes for subject i, where

(2)

By this missingness model, the baseline probability of missingness is given by δ0; for ease
of discussion, we assume that δ1 = δ2 = 0, so that missingness depends on the interaction
between treatment and outcome Y(1) through δ12 > 0. By this construction, the outcomes in
the comparison group (X = 0) are missing completely at random, while the outcomes in the
treated group (X = 1) are missing at random with probabilities that depend on the values of
Y(1). (When δ12 = 0, then this setting reduces to the MCAR mechanism for both comparison
and treated observations.) Without a correctly specified model for the multiple outcomes,
such as the LMM (1), it is expected that tests based on data with this pattern of missingness
will be biased, namely the Bonferroni and Hotelling's T2 test procedures. In the missingness
model as defined, treated subjects with larger values of Y(1) will have more outcomes
missing when δ12 > 0. When the treatment has effect only on Y(1), this might pose little
problem for univariate tests; however, when the correlation among outcomes is large, then
the missingness will contribute to biased tests.

When the outcomes are jointly modelled, for example, by the LMM (1), then maximum
likelihood estimates of the treatment effect can be obtained. In particular, when the model is
correctly specified, then resulting estimates of the treatment effects β will be unbiased, and
test procedures based on these estimates will maintain the nominal type I error rate.

4.2 Results
The power of the joint and univariate tests, in the presence of complete and MCAR data, are
shown in Figure 1 for K = 5 outcomes. Simulation results for larger number of outcomes, for
example, K = 10, are not presented here; such a presentation would have involved results
that were not directly comparable across varying values of K, because the specifications of
the treatment effect would not have had an obvious interpretation across values of K.
However, it was noted that the results and conclusions from those simulations are similar to
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these presented here; namely, the power characteristics of the test procedures in relation to
each other were the same for K = 5 versus K = 10 outcomes.

For two of the three configurations of the treatment effect, the 5-df joint test based on the
LMM (1) outperforms the other testing procedures, especially in the presence of highly
correlated outcomes; in fact, the power of the 5-df test approaches unity when the correlation
is large, even when data are MCAR. Hotelling's T2 closely tracks the power of the 5-df test
as well, when the data are completely observed. The small discrepancy in power between
Hotelling's T2 and the 5-df joint test in the case of complete data is attributable to the
correctly specified correlation model (compound symmetry) for the latter. In contrast to the
5-df test, the 1-df joint test has deflated power for the two settings in which the 5-df
performs best; however, as expected, when the treatment effect is uniform on all the
outcomes then the 1-df test produces the greatest power among the testing procedures
considered here.

When the treatment has effect on one outcome (for example, β(1) = 0.6 in the first row of
Figure 1), the power of the Bonferroni procedure does not change with the strength of the
correlation of the outcomes; that is, there appears to be no loss of power for the Bonferroni
procedure when correlation increases. A basic explanation of this result is that the
Bonferroni procedure likely depends on the test for β(1) and not on the tests for the other
outcomes, which do not exhibit a treatment effect under the alternative. However, when the
treatment has an effect on more than one outcome, the Bonferroni procedure loses power as
the correlation among the outcomes increases. This reinforces the earlier point made in §3.1
about the power characteristics of the Bonferroni procedure that depend on specification of
the alternative hypothesis.

In the presence of data that are MCAR, similar patterns emerge for the relative power of the
joint and univariate test procedures, with the exception of Hotelling's T2. A subject who is
missing one or more outcomes is not included in calculating the test statistic of Hotelling's
T2; thus, the Hotelling's T2, based on a much smaller effective sample size, suffers a
considerable loss of power when outcomes are missing. On the other hand, the univariate
Bonferroni procedure uses all the observed information in constructing the separate t-tests;
the joint tests based on maximum likelihood estimates from the LMM also maintain good
power when data are MCAR (in fact, the power of the 5-df test approaches unity with
increasing correlation). These joint tests capitalize on the correct specification of the model
that generate the multivariate outcomes, and thus should yield the most powerful and also
unbiased tests.

Further analysis (not shown here) of the relative power between situations in which data are
missing and completely observed shows that relative power increases with correlation ρ; that
is, if Powerm is the power of a given test when data are missing and Powerc is the power of

the same test when data are completely observed, then the plot of  versus ρ has a
positive slope. In other words, when data are missing, the test procedures suffer the most
loss of power when the outcomes are weakly correlated, but lose little power under high
correlation. For example, although the 5-df test loses considerable power when data are
missing under low correlation, it loses less power under high correlation; in fact, under
MCAR data the power of the 5-df test approaches unity with increasing ρ in two of the
scenarios in Figure 1. We provide a basic explanation for this in the setting of two outcomes:

let  be the observed kth outcome, for k = 1, 2, for the ith subject, and let the indicator

 is observed and  if missing, with . Let  be the sample
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mean of the complete observations for the kth outcome and  for the

incomplete observations. The covariance between sample means Cov  is a

function of the covariances Cov ; likewise, the covariance between sample means

from incomplete data Cov  is a function of the covariance given by

The covariance of  and  is proportional to the covariance of the  and  by the
factor (1 − π)2; in the side-by-side plots of Figure 1, this means that the plots in the right
column (missing data) can be viewed as rescaled, along the horizontal axis (ρ), versions of
the plots on the left (complete data). Under no missing data and non-uniform treatment
effects, correlation increases the power of some tests. Under data that are missing
completely at random, an increase in correlation accounts for missing information; the
benefit is particularly noticeable for the joint tests. However, the Bonferroni and Hotelling's
procedures do not generally capitalize on the correlation when data are missing.

To summarize the results, the average power of the test procedures over the three
configurations of the treatment effect is presented in the fourth row of Figure 1; in a sense,
this plot of the average power is itself a scenario in which the treatment has a non-uniform
effect on all the outcomes. It can be argued that this is the most likely situation in a real
study, as opposed to a study which might believe the treatment has an effect on just one
outcome or a uniform effect on all outcomes. The plots of the average power show that
under mild correlation, the Bonferroni procedure maintains adequate power (as claimed in
Sankoh et al. [10]), compared to joint tests that were expected to capitalize on the correctly
specified joint distribution of the multiple outcomes. It is rather clear, however, that when
correlation is moderately large (ρ ≥ 0.4), one should consider the use of joint tests in order
to maximize power. Notably, when data are missing, Hotelling's T2 test should be avoided,
because of the drastic loss of power.

When data are MAR according to the model (2), our attention turns to the type I error
characteristics of the test procedures. The plot of the type I error rate versus correlation
among the outcomes is shown in Figure 2; in these plots, the parameters of the MAR model
(2) are set such that in the comparison group (X = 0) the data are MCAR with π ≈ 0.2, while
in the treated group (X = 1) the odds ratio of missingness for outcomes Y(k), k ≠ 1, under a
unit increase in Y(1) is exp(δ12). In general the joint tests based on the LMM (1) are unbiased
for all levels of correlation, while Hotelling's T2 is the most sensitive to MAR conditions,
particularly when the odds ratio of missingness exp(δ12) is large. The Bonferroni procedure
is relatively unbiased for small exp(δ12); however, when exp(δ12) is large, the type I error of
the Bonferroni procedure becomes inflated with increasing correlation. Both the Hotelling's
T2 and Bonferroni procedures tend to exclude observations with large values of Y(1), such
that the resulting estimates of the treatment effect are biased. While bias is of general
concern for Hotelling's T2 procedure, the Bonferroni procedure is relatively unbiased under
weakly correlated outcomes (ρ ≤ 0.2); however, high correlation induces greater bias for the
Bonferroni procedure when the degree of missingness due to Y(1) is large, that is, for large
exp(δ12).
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5 Application
The discussion in §1 introduced the CATIE study for schizophrenia and briefly outlined our
plan for analysis of five clinical outcomes to evaluate the efficacy and safety of the
conventional antipsychotic, perphenazine, and one of the atypicals, quetiapine. The five
outcomes included PANSS, which measures the overall severity of schizophrenic
symptoms, and four outcomes that characterize the metabolic side effects of the
medications. With the exception of HDL cholesterol, an increase from baseline in an
outcome reflects an adverse event; for example, weight gain is an undesirable symptom of
metabolic syndrome, as discussed in Meyer et al. [7]. In the ensuing discussion in §2 and §3,
we proposed joint models and tests of treatment effects that would be able to capitalize on
the correlations among the outcomes and provide more powerful tests of the effects. In the
simulation study of §4 we showed that joint tests are able to capitalize on the correlation
between outcomes and yield more powerful tests of treatment effects. In this section we
implement joint tests to evaluate the efficacy and safety effects of perphenazine and
quetiapine from the CATIE Schizophrenia Trial. Boxplots of the individual 3-month
changes in the five outcomes are shown in Figure 3, and correlations are shown in Figure 4.

The linear mixed model (1) for multiple outcomes was fit using PROC NLMIXED in SAS,

so that there were K + 1 variance-covariance parameters, as opposed to  for joint
model with a general correlation structure. To compare inferences with different
assumptions about the correlation matrix, the latter model was also fit with PROC MIXED
in SAS with an unstructured correlation. With these models, the treatment effect was
evaluated using both a global 5-df test and 1-df test as specified in §2.1; for comparison to
standard univariate procedures, we also tested the individual treatment effects with
maximum likelihood estimates from the model. In addition to the estimates produced by the
model, standard univariate t-tests were conducted which formed the basis of the Bonferroni
procedure.

The estimates from univariate models and the joint LME and corresponding test results are
shown in Table 4. In the first set on the left under “Univariate t-tests” the crude estimates
and corresponding tests are shown; the Bonferroni procedure finds a treatment effect

through the outcome “Weight” which has p-value less than , the Bonferroni-adjusted
p-value. The estimates for the joint model do not differ significantly from the crude
estimates of differences in sample means, and likewise, the Bonferroni procedure based on
these estimates detects a treatment effect through “Weight,” but barely with p-value = 0.008
< 0.01 Both Hotelling's T2 and the 5-df test from the joint model find at the α = 0.05 level a
significant effect of the treatment through the 5 outcomes, while the 1-df test does not. The
latter result is not surprising, given the lack of a common effect on the outcomes; in the 1-df
test the outcomes were equally weighted, so the four outcomes that yield insignificant
results have influence on the overall 1-df test result. However, if the effect on the outcome
“Weight” is weighted, say, by wk = 0.6, and the rest by wj = 0.1, j ≠ k, then the resulting p-
value is 0.027, yielding a significant result. Of course, one could use different weights to
yield other significant results, so long as these weights (and corresponding assumptions) are
set in advance as part of study protocol. As an alternative for a more powerful 1-df test of
the treatment effect, Roy, Lin, and Ryan provide a scaled marginal model and relevant tests
for a common effect [3]. In one related approach (not shown here), we scaled the outcomes
by their estimated standard deviations, changed the sign of the cholesterol outcomes, and
estimated the effects through the joint model based on the scaled data; the 1-df test did not
yield a significant result.
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Table 4 also shows that, across the estimates, the standard errors from the LMM (1) are very
similar to each other, except for the estimated treatment effect on triglyceride levels. This is
likely a feature of our model which restricts the number of parameters in the variance-

covariance matrix at K + 1, rather than a full  parameters for a general structure.
We emphasize, as in §2.2, that the LMM is suited for the analysis of outcomes that are
correlated in the same direction; see Figure 4. As a partial check on this assumption, we also
fit a joint model with an unstructured variance-covariance matrix, results for which are
presented in Table 5. Qualitatively, the results from this model do not differ from the
conclusions made by the LMM. The corresponding 5-df test concludes with a significant
effect of quetiapine over perphenazine on the five outcomes, while the 1-df test does not.
One difference is that the corresponding standard errors from the general covariance model
in Table 5 are more similar to those of the univariate estimates in Table 4. This suggests that
a general covariance structure may be more appropriate for the analysis of the CATIE trial
here, although the conclusions from the tests based on the more restrictive LMM do not
differ.

6 Discussion
In this paper we proposed the use of joint tests to evaluate treatment effects that are
characterized by multiple outcomes; such settings occur frequently in mental health
research. Standard approaches for multiplicity in testing, such as Bonferroni-based
procedures, are effective when the outcomes are small in number and weakly correlated;
however, as our simulated results show, the Bonferroni procedure becomes overly
conservative under moderate to high correlation. We note that our simulation results depend
on the correct specification of the linear mixed effects model (1), specifically under
compound symmetry for the correlation structure, γ(k) = 1, ∀k. In the application to the
CATIE trial we fit both the linear mixed model (1) and the model with a general correlation
structure and find that the qualitative results do not change. As a general check of our
results, the standard Hotelling's T2 test does not make any restrictive assumption about the
correlation structure and closely tracked the joint K-df tests in our simulation study.
Nonetheless, further investigation about the impact of an incorrectly specified correlation
structure may be warranted.

An alternative approach is to use composite outcomes, which summarize multiple outcomes
into a single measure. The advantage is that standard univariate procedures can be
implemented without the need to adjust for multiplicity. However, when the outcomes are
measured on different scales or represent different underlying mechanisms of a treatment
effect, a composite outcome might not capture the true underlying effect. The use of joint
models offers a flexible way to test multiple outcomes on equal footing; in particular, joint
tests based on such models can capture the correlation of the outcomes and thus are more
powerful in settings with moderate to large correlation, compared to standard Bonferroni
procedures. In particular, when a model for the outcomes is correctly specified, the joint
tests are very robust when data are missing at random, as shown in our simulation results.

Despite the availability of methods and software to fit joint models for multiple continuous
outcomes, this approach is infrequently used in practice. The primary aim of our work was
to show that joint tests are able to capitalize on the associations among outcomes, yielding
more powerful tests under high correlation and unbiased tests when data are missing at
random. Specification of a joint model to estimate effects of treatment on multiple outcomes
is straightforward, namely through the linear mixed model (1), and available software can
easily fit these models.
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While the simulation study presented in this paper assumes multivariate normal outcomes,
this assumption is less tenable in many studies. In particular, multiple outcomes are typically
measured on difference scales or are non-commensurate, meaning that the multiple
outcomes are a mixture of discrete and continuous outcomes. Further work needs to be done
in this setting; the major challenge is the specification of a joint model for the non-
commensurate outcomes.
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Figure 1.
Power of univariate and joint tests with data that are complete and missing completely at
random (MCAR). Outcomes were generated by the LMM (1) and estimated by the same
model to construct joint 5-df and 1-df tests of the treatment effect. The first configuration of
the treatment effect (first row) is given by β = (0.6, 0, 0, 0, 0)′. In the second row, a smaller
uniform effect is placed on all the outcomes by setting β = (0.3, 0.3, 0.3, 0.3, 0.3)′. In the
third row, a non-uniform treatment effect is placed on the K = 5 outcomes by setting β =
(0.6, 0.45, 0.3, 0.15, 0)′. The fourth row shows the average power over the three scenarios.
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Figure 2.
Type I error when data are missing at random, at different odds of missingness. Data for the
comparison (X = 0) group are missing completely at random with constant probability ≈ 0.2.
The odds ratio (OR) of missingness between the treated (X = 1) and comparison group is
given by exp(δ12) according to the model (2). Univariate Bonferroni tests were conducted by
estimating the treatment effects separately by outcome (dotted line) and jointly by the LMM
(1) (long-dashed line).
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Figure 3.
Distributions of individual outcomes between treated and comparison groups. Each
individual outcome represents the change from baseline to follow-up at 3 months.
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Figure 4.
Correlations among the CATIE outcomes.
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Table 1

CATIE outcomes: change from baseline to follow-up visit at 3 months. Sample means and standard deviations
were computed with the available data, that is, missing values were ignored. With the exception of HDL
cholesterol, an increase from baseline indicates an adverse effect for the outcomes.

Perphenazine n = 261 Quetiapine n = 337

Outcome x
‒

 (s) %miss. x
‒

 (s) %miss.

PANSS −6.2 (14.9) 34 −6.7 (14.4) 39

Weight, lb −2.1 (10.3) 33 3.3 (10.8) 40

Glucose, mg/dL 0.8 (28.8) 37 6.0 (41.5) 42

HDL Cholesterol, mg/dL 0.2 (7.5) 37 −1.0 (9.0) 42

Triglycerides, mg/dL −3.9 (177) 37 15.3 (199) 42
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Table 2

Examples of the standard Bonferroni procedure and its variants, Hochberg's and Holm's procedures for testing
of K = 3 outcomes at level α = 0.05. Hypotheses are sorted H01,H02,H03 according to the sorted p-values.

Sorted p-values Bonferroni Hochberg's step-up Holm's step-down

(0.01,0.02,0.05) Step 1 Reject H01 Accept H03 Reject H01

Step 2 Reject H01,H02, stop Reject H02

Step 3 Stop

(0.02,0.02,0.04) Step 1 No rejection Reject H01,H02, H03 No rejection

Step 2

Step 3

(0.03,0.03,0.03) Step 1 No rejection Reject H01,H02,H03 No rejection

Step 2

Step 3
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Table 3

Power (%, based on 1,000 repetitions) of univariate tests with Bonferroni adjustment compared with varying
number K of outcomes and treatment effects: (a) for a treatment effect on one outcome, β = (0.6,0,…, 0)′; and
(b) for a smaller uniform effect on all outcomes, β = (0.3,…, 0.3)′.

K Correlation, ρ

0.0 0.3 0.9

(a) Treatment effect on one outcome 5 56 53 58

10 46 44 44

20 37 39 36

(b) Smaller uniform effect on all outcomes 5 44 33 18

10 49 42 18

20 56 39 12
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