Skip to main content
. 2011 May 13;12(5):3148–3161. doi: 10.3390/ijms12053148

Table 1.

Summary of the partial least square regression models using amino acid compositions (AA), groups of amino acids (gAA) and sums of 3-z amino acid scales (Σzi) of the food protein hydrolysates. The multiple correlation coefficient (R2) estimates the model fit whereas the cross-validated correlation coefficient (Q2cv) indicates the models’ predictive powers.

Antioxidant Property Na Xb Ac R2d Q2cve Permutation Testf
Int.R2cum Int. Q2cv
DPPH-scavenging 16 AA + gAA+ Σzi 1 0.407 0.327 0.241 −0.096
AA 1 0.448 0.358 0.288 −0.108
gAA 1 0.405 0.231 0.149 −0.043
Σzi 1 0.304 0.288 0.006 −0.127
Ferric reducing 16 AA + gAA + Σzi 1 0.647 0.604 0.166 −0.208
AA 1 0.728 0.668 0.223 −0.219
gAA 1 0.536 0.531 0.073 −0.169
H2O2-scavenging 11 AA + gAA+ Σzi 1 0.400 0.137 0.261 −0.122
AA 1 0.467 0.136 0.314 −0.109
Σzi 1 0.340 0.232 0.088 −0.008
O2-scavenging 16 AA + gAA + Σzi 1 0.394 0.179 0.212 −0.063
gAA 2 0.602 0.142 0.166 −0.223
a

N, number of observations used for PLS analysis;

b

X, X-variables (descriptors) in the validated PLS models;

c

A, number of significant components used in PLS modeling;

d

R2, multiple correlation coefficients;

e

Q2cv, cross-validation correlation coefficients;

f

Permutation test, R2cum and Q2cv intercepts were calculated by SIMCA-P software during model validation.