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Abstract
Purpose of review—Corneal allografts are routinely performed without HLA typing or
systemic immunosuppressive drugs. However, certain conditions create high risks for immune
rejection. This review discusses recent insights into the mechanisms that rob the corneal allograft
of its immune privilege.

Recent findings—Studies in mice have revealed that stimuli that induce new blood vessel
growth in the cornea also elicit proliferation of lymph vessels. Lymph vessels facilitate migration
of antigen presenting cells to regional lymph nodes where they induce alloimmune responses. The
presence of blood vessels in the corneal graft bed creates a unique chemokine milieu that
stimulates recruitment of sensitized lymphocytes into the corneal allograft. Other data indicate that
corneal allograft survival is closely associated with Foxp3 expression in CD4+CD25+Foxp3+ T
regulatory cells (Tregs), while reduced expression of Foxp3 in T regs creates a high risk for graft
rejection. Recent evidence indicates that allergic diseases have a profound impact on the immune
response and produce a dramatic increase in corneal allograft rejection.

Summary—Understanding the underlying mechanisms that create “high risk” hosts may provide
important therapeutic targets for restoring immune privilege of corneal allografts and enhancing
their survival.

Keywords
Allergy; angiogenesis; corneal transplantation; immune privilege

Introduction
Cornea grafting has been performed on humans for over 100 years and remains the most
common and arguably, the most successful form of organ transplantation [1–4]. First-time
corneal transplants are routinely performed without HLA matching or systemic
immunosuppressive drugs. Patients who require transplants because of corneal
developmental anomalies, such as keratoconus, do not have inflamed or vascularized corneal
graft beds and have an exceptionally high acceptance rate that often exceeds 90%. In these
patients topical application of corticosteroids is usually all that is needed to keep the
immune system at bay [5].
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Immune privilege of corneal allografts
lmmune privilege of the eye was recognized over 50 years ago by Billingham and Medawar
who noted the prolonged survival of skin allografts placed into the anterior chamber of the
eye and the acceptance of orthotopic corneal allografts placed onto the eyes of rabbits [6,7].
Medawar understood the significance of these observations and coined the term “immune
privilege” to reflect the cornea’s apparent exemption from the laws of transplantation [7].

Tangible evidence of immune privilege is shown in rodents in which long-term survival of
fully allogeneic corneal allografts often exceeds 50% even in the absence of topical
corticosteroids [2–4]. By contrast, other categories of allografts, such as skin transplants,
experience a 100% incidence of immune rejection.

Although corneal transplantation has been performed on experimental animals since 1837
[8], it was not until the development of rodent models of penetrating keratoplasty that the
immunological basis of corneal allograft rejection was fully appreciated [9,10]. The past 20
years of animal research have provided keen insights into the processes that provide corneal
allografts with immune privilege [1–3,11–13]. Immune privilege of corneal allografts is the
product of three fundamental adaptations that: a) block the induction of destructive
alloimmune responses; b) deviate alloimmune responses toward a tolerogenic pathway; and
c) block expression of immune effector elements at the graft/host interface (Table 1).

Role of immune deviation and T regulatory cells in corneal allograft
survival

Antigens placed into the anterior chamber (AC) elicit a form of systemic immune tolerance
called anterior chamber-associated immune deviation (ACAID), which is characterized by
the antigen-specific down-regulation of delayed-type hypersensitivity (DTH) responses and
a shifting of the antibody response from complement-fixing to non-complement fixing
isotypes [13–16]. Orthotopic corneal allografts are in direct contact with the AC and it has
been suggested that corneal antigens are sloughed into the AC during corneal transplantation
and induce ACAID [13]. In support of this is the observation that long-term corneal allograft
survival in mice closely correlates with the presence of antigen-specific suppression of DTH
responses to donor alloantigens that closely resembles ACAID [13,16,17]. Likewise,
manipulations that block the induction of ACAID result in a significant increase in corneal
allograft rejection [13,18–21].

Recent findings have shed light on the role of T regulatory cells in maintaining immune
privilege of corneal allografts. Examination of the draining lymph nodes in mice that had
either rejected or accepted orthotopic corneal allografts revealed that both categories of mice
expressed equal numbers of CD4+CD25+Foxp3+ T regulatory cells (T regs) [22]. However,
T regs isolated from mice with accepted corneal allografts (= acceptors) displayed ~50%
higher levels of Foxp3 than T regs in rejector mice. Moreover, Tregs from acceptors were
significantly more effective in suppressing T cell proliferation and produced up to 3-fold
more suppressive cytokines compared to T regs from rejectors. Adoptively transferring T
regs from acceptors into naïve recipients resulted in 67% long-term corneal allograft
survival compared to 33% graft survival in mice that received T regs from graft rejectors.
Thus, long-term survival of corneal allografts rests on the development of
CD4+CD25+Foxp3+ and the level of Foxp3 expression in those T regs.
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Effect of lymph and blood vessels on the immune privilege of corneal
allografts

One of the most recognizable properties of the cornea is the conspicuous absence of blood
vessels. Less apparent, but equally important, is the exclusion of lymph vessels in the
corneal graft bed [23–26]. It was widely believed that the presence of blood vessels
increased the risk for immune rejection by providing conduits for egression of alloantigens
to the peripheral immune apparatus and by also facilitating the migration of circulating
effector immune elements into the corneal allograft. However, recent findings indicate that
many of the stimuli that induce new blood vessels in the graft bed coincidentally stimulate
migration and penetration of lymph vessels along with the blood vessels.

Inserting sutures into the cornea is a powerful stimulus for inducing new blood and lymph
vessels. However, administration of an antagonist of α5β1 integrin selectively inhibits the
induction of lymphangiogenesis while preserving hemangiogenesis in response to
intracorneal sutures [26]. Importantly, blocking lymphangiogenesis reduces the incidence of
corneal allograft rejection to levels found in mice with avascular corneal graft beds, even
though the corneal allografts in the former experiment were placed in graft beds containing
blood vessels.

VEGF-C and VEGF-D bind to VEGF receptor 3 (VEGFR3) and induce blood and lymph
vessel formation in the cornea [24,27]. Soluble VEGF receptors suppress both
hemangiogenesis and lymphangiogenesis [25]. It has recently been shown that corneal
epithelial and stromal cells secrete a soluble form of VEGFR2, which blocks VEGF-C and
prevents lymphangiogenesis in the cornea without affecting hemangiogenesis [23]. Local
production of VEGFR2 by the corneal epithelium and stroma preserves the avascularity of
the cornea. The importance of the soluble form of VEGFR2 in preventing lymph vessel
invasion of the cornea was demonstrated in studies in which tissue-specific expression of
soluble VEGFR2 was ablated in the cornea using Cre-loxP technology. Mice unable to
express soluble VEGFR2 at birth developed corneas that were densely supplied with
lymphatic vessels but were devoid of blood vessels [23]. Moreover, administration of
soluble VEGFR2 inhibited lymph vessel formation in normal mice and enhanced corneal
allograft survival even if the corneal graft beds had a dense network of blood vessels that
were induced by the sutures [23].

Lymph vessels rob the corneal allograft of its immune privilege by providing conduits for
antigen presenting cells to traffic from the graft bed to the regional lymph node where they
induce the activation and clonal expansion of alloantigen-specific T cells. Activated T cells
subsequently migrate to the graft bed and initiate graft rejection. Recruitment of allospecific
effector T cells to the allograft is a crucial step in the rejection of vascularized organ
allografts and is influenced by the chemokines that emanate from the allograft [28–34].
Amescua and coworkers hypothesized that a similar condition might occur in “high-risk”
corneal allografts in which the insertion of sutures induced a luxuriant growth of blood
vessels [35]. They found that “high-risk” vascularized corneal allografts produced the T cell
chemokine, CXCL1/KC, which in turn stimulated the production of other T cell
chemokines, CXCL9/Mig and CXCL10/IP10, which are intimately involved in recruitment
of allospecific T cells into vascularized grafts [28–34]. Moreover, increased levels of
CXCL-1/KC that were found in vascularized “high risk” corneal allografts were not present
in non-vascularized, normal-risk corneal allografts. “High-risk” hosts treated with
neutralizing anti-CXCL-1/KC antibody behaved like normal risk hosts with avascular graft
beds. Likewise, administration of CXCL-1/KC into the corneal allograft converted low-risk
hosts to a high-risk phenotype resulting in 100% corneal allograft rejection, thereby
confirming the important effect of the chemokine milieu in abrogating the immune privilege
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of corneal allografts. Thus, the presence of blood and lymph vessels in “high-risk” hosts also
ablates immune privilege of corneal allografts by promoting migration, recruitment, and
infiltration of immune effector elements into the corneal allograft and thus, enhances the
efferent arm of the immune response.

Allergic diseases as newly recognized risk factors for corneal allograft
rejection

It was previously believed that the rejection of corneal transplants, was solely mediated by
CD4+ Th1 cells and that tilting the immune response toward a Th2 pathway would promote
graft survival. However, recent evidence not only refutes this proposition, but suggests that
the opposite may occur. Deviating the alloimmune response to a Th2 immune response by
elimination of the Th1 cytokine, interferon-γ (IFN-γ), or by inducing allergic diseases,
denies the corneal allograft its immune privilege and promotes corneal allograft rejection
[36–40]. IFN-γ knockout (KO) mice or wild-type mice treated with anti-IFN-γ antibody
reject 90–100% of their corneal allografts compared to a 50% incidence of rejection in
normal mice [38].

Clinicians have noted that patients with severe ocular allergies have an elevated risk for
corneal graft rejection [41–43]. It was thought that the increased rejection of corneal
allograft that was associated with conjunctivitis was due to the effects of a “hot eye” and
inflammation produced by local allergic responses. However, studies in mice indicate that
allergic diseases do in fact exacerbate corneal allograft rejection, but the mechanism is
through perturbation in the systemic alloimmune response and not to local effect as
previously suspected [36,37,39]. Mice with allergic conjunctivitis that was intentionally
limited to one eye, experienced a >90% incidence of corneal allograft rejection when a
corneal allograft was placed into the contralateral eye that was not expressing allergic
conjunctivitis [36]. Moreover, mice with airway hyperreactivity (AHR), which is a model of
allergic asthma, reject 90–100% of the corneal allografts compared to a 50% incidence of
rejection in non-allergic mice [40]. The increased corneal allograft rejection in mice with
allergic diseases in different organs (i.e., lungs or contralateral eye) is further evidence that
allergic diseases exert a systemic, rather than a local effect in corneal allograft rejection.

Recent investigations have shown that the increased rejection of corneal allografts in mice
with allergic conjunctivitis and AHR is limited to allergic diseases of mucosal tissues, as it
does not occur in mice with cutaneous immediate hypersensitivity [39]. The notion that
classical Th2 immune responses, such as allergic disease, are monolithic and occur in the
absence of the Th1 cytokine, IFN-γ, is losing favor and there is mounting evidence that IFN-
γ is necessary for full expression of Th2 diseases [44–46]. The exacerbation of corneal
allograft rejection that occurs in allergic conjunctivitis appears to also require Th1 cells.
Adoptively transferring unfractionated CD4+ T cells from allergic mice to T cell-deficient
nude mice induced 100% corneal allograft rejection compared to 0% rejection in nude mice
that did not receive CD4+ T cells [39]. However, adoptive transfer of CD4+ Th1 cells alone
or CD4+ Th2 cells alone resulted in 70% and 20% rejection respectively, while combining
Th1 and Th2 cells produced 100% graft rejection. Interestingly, administration of exogenous
IFN-γ could substitute for Th1 cells and produced 100% corneal allograft rejection when
combined with CD4+ Th2 cells. Thus, allergic diseases of mucosal surfaces exacerbate
corneal allograft rejection by activating both Th1 and Th2 alloimmune responses and
represent a new risk factor for corneal allograft rejection (Table 2). The mechanisms
responsible for the increased incidence and tempo of rejection remain to be elucidated, but
once understood, could provide important clues for restoring the immune privilege of
corneal allografts in atopic patients.
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Conclusions
Mouse studies have provided a wealth of information regarding the immunobiology and
immune privilege of corneal allografts. The association between vascularized graft beds and
increased corneal allograft rejection has been recognized for over a half century. However, it
was only recently that the role of lymph vessels was demonstrated. Lymph vessels enhance
the induction of immune responses, while the presence of blood vessels facilitates
recruitment and migration of sensitized immune effector cells into the graft. Recognition of
this dichotomy opens the door for targeted therapy for enhancing corneal allograft survival.

The role of CD4+CD25+Foxp3+ T regs in preventing corneal allograft rejection has been
recently demonstrated. However, the mere expression of Foxp3 alone is not sufficient for
promoting corneal allograft survival; instead it is the intensity of Foxp3 expression and the
functional properties of T regs that correlate with corneal allograft survival. These insights
may provide clues for developing new strategies for restoring immune privilege in the high-
risk host.

The last 2–3 years have witnessed the characterization of allergic diseases as a new risk
factor for corneal allograft rejection. These studies have revealed that Th2-based immune
responses in mucosal tissues dramatically increase the risk for corneal graft rejection. It will
be important to determine the underlying mechanisms that are responsible for the increased
tempo and incidence of corneal allograft rejection that occurs in hosts with mucosal allergic
diseases.
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