
Unraveling the distributed neural code of facial
identity through spatiotemporal pattern analysis
Adrian Nestor1, David C. Plaut, and Marlene Behrmann

Department of Psychology, Carnegie Mellon University, and Center for the Neural Basis of Cognition, Pittsburgh, PA 15213

Edited by Charles G. Gross, Princeton University, Princeton, NJ, and approved May 12, 2011 (received for review February 13, 2011)

Face individuation is one of the most impressive achievements of
our visual system, and yet uncovering the neural mechanisms
subserving this feat appears to elude traditional approaches to
functional brain data analysis. The present study investigates the
neural code of facial identity perception with the aim of ascertain-
ing its distributed nature and informational basis. To this end,
we use a sequence of multivariate pattern analyses applied to
functional magnetic resonance imaging (fMRI) data. First, we
combine information-based brain mapping and dynamic discrimi-
nation analysis to locate spatiotemporal patterns that support face
classification at the individual level. This analysis reveals a network
of fusiform and anterior temporal areas that carry information
about facial identity and provides evidence that the fusiform face
area responds with distinct patterns of activation to different face
identities. Second, we assess the information structure of the
network using recursive feature elimination. We find that diagnos-
tic information is distributed evenly among anterior regions of the
mapped network and that a right anterior region of the fusiform
gyrus plays a central role within the information network mediat-
ing face individuation. These findings serve to map out and
characterize a cortical system responsible for individuation. More
generally, in the context of functionally defined networks, they
provide an account of distributed processing grounded in
information-based architectures.

The neural basis of face perception is the focus of extensive re-
search as it provides key insights both into the computational

architecture of visual recognition (1, 2) and into the functional
organization of the brain (3). A central theme of this research
emphasizes the distribution of face processing across a network of
spatially segregated areas (4–10). However, there remains consid-
erable disagreement about how information is represented and
processedwithin this network to support tasks such as individuation,
expression analysis, or high-level semantic processing.
One influential view proposes an architecture that maps dif-

ferent tasks to distinct, unique cortical regions (6) and, as such,
draws attention to the specificity of this mapping (11–20). As
a case in point, face individuation (e.g., differentiating Steve Jobs
from Bill Gates across changes in expression) is commonly map-
ped onto the fusiform face area (FFA) (6, 21). Although recent
studies have questioned this role of the FFA (14, 15), overall they
agree with this task-based architecture as they single out other
areas supporting individuation.
However, various distributed accounts have also been consid-

ered. One such account ascribes facial identity processing to
multiple, independent regions. Along these lines, the FFA’s sen-
sitivity to individuation has been variedly extended to areas of
the inferior occipital gyrus (5), the superior temporal sulcus (12),
and the temporal pole (22). An alternative scenario is that identity
is encoded by a network of regions rather than by any of its separate
components—such a systemwas recently described for subordinate-
level face discrimination (23). Still another distributed account
attributes individuation to an extensive ventral cortical area rather
than to a network of smaller separate regions (24). Clearly, the
degree of distribution of the information supporting face individ-
uation remains to be determined.

Furthermore, insofar as face individuation is mediated by a
network, it is important to determine how information is distrib-
uted across the system. Some interesting clues come from the fact
that right fusiform areas are sensitive to both low-level properties
of faces (16, 25) and high-level factors (26, 27), suggesting that
these areas may mediate between image-based and conceptual
representations. If true, such an organization should be reflected in
the pattern of information sharing among different regions.
The current work investigates the nature and the extent of

identity-specific neural patterns in the human ventral cortex. We
examined functional MRI (fMRI) data acquired during face
individuation and assessed the discriminability of activation
patterns evoked by different facial identities across variation in
expression. To uncover the neural correlate of identity recogni-
tion, we performed dynamic multivariate mapping by combining
information-based mapping (28) and dynamic discrimination
analysis (29). The results revealed a network of fusiform and
anterior temporal regions that respond with distinct spatiotem-
poral patterns to different identities. To elucidate the distribu-
tion of information, we examined the distribution of diagnostic
information across these regions using recursive feature elimi-
nation (RFE) (30) and related the information content of dif-
ferent regions to each other. We found that information is evenly
distributed among anterior regions and that a right fusiform
region plays a central role within this network.

Results
Participants performed an individuation task with faces (Fig. 1)
and orthographic forms (OFs) (Fig. S1). Specifically, they recog-
nized stimuli at the individual level across image changes in-
troduced by expression (for faces) or font (for OFs). Response
accuracy was at ceiling (>95%) as expected given the familiar-
ization with the stimuli before scanning and the slow rate of
stimulus presentation. Thus, behavior exhibits the expected invari-
ance to image changes, and the current investigation focuses on
the neural codes subserving this invariance.

Dynamic Multivariate Mapping. The analysis used a searchlight (SL)
with a 5-voxel radius and a 3-TR (Time to Repeat) temporal
envelope to constrain spatiotemporal patterns locally. These
patterns were submitted to multivariate classification on the basis
of facial identity (Methods and SI Text). The outcome of the
analysis is a group information-based map (28) revealing the
strength of discrimination (Fig. 2). Each voxel in this map rep-
resents an entire region of neighboring voxels defined by the
SL mask.
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Ourmapping revealed four areas sensitive to individuation: two
located bilaterally in the anterior fusiform gyrus (aFG), one in the
right anterior medial temporal gyrus (aMTG), and one in the left
posterior fusiform gyrus (pFG). The largest of these areas cor-
responded to the right (r)aFG whereas the smallest corresponded
to its left homolog (Table 1).
To test the robustness of our mapping, the same cortical volume

(Fig. S2A) was examined with SL masks of different sizes. These
alternative explorations produced qualitatively similar results
(Fig. S3 A–C). In contrast, a univariate version of the mapping (SI
Text) failed to uncover any significant regions, even at a liberal
threshold (q < 0.10), attesting to the strength of multivariate;
mapping.
To further evaluate these results, we projected the four areas

from the groupmap back into the native space of each subject and
expanded each voxel to the entire SL region centered on it. The
resulting SL clusters (Fig. S3D) mark entire regions able to sup-
port above-chance classification. Examination of subject-specific
maps revealed that the bilateral aFG clusters were consistently
located anterior to the FFA [rFFA peak coordinates, 39, −46,
and −16; left (l)FFA, −36, −47, and −18]. However, we also
found they consistently overlapped with the FFA (mean ± SD:
24 ± 14% of raFG volume and 35 ± 20% of laFG).
Finally, multivariate mapping was applied to other types of

discrimination: expression classification (across identities) and
category-level classification (faces versus OFs). Whereas the
former analysis did not produce any significant results, the latter
found reliable effects extensively throughout the cortical volume
analyzed (Fig. S2B). In contrast, a univariate version of the latter
analysis revealed considerably less sensitivity than its multivariate
counterpart (Fig. S2C).

The results above suggest that identity coding relies on a dis-
tributed cortical system. Clarifying the specificity of this system
to face individuation is addressed by our region-of-interest
(ROI) analyses.

ROI Analyses. First, we examined whether the FFA supports reli-
able face individuation as tested with pattern classification. Bi-
lateral FFAs were identified in each subject using a standard face
localizer, and discrimination was computed across all features in
a region—given the use of spatiotemporal patterns, our features
are voxel X time-point pairings rather than voxels alone. The
analysis revealed above-chance performance for rFFA (Fig. 3).
To reduce overfitting, we repeated the analysis above using

subsets of diagnostic features identified by multivariate feature
selection, specifically RFE. The method works by systematically
removing features, one at a time, on the basis of their impact on
classification (SI Text). Following this procedure, we found above-
chance performance bilaterally in the FFA (Fig. 3). In contrast,
early visual cortex (EVC) did not exhibit significant sensitivity
either before or after feature selection.
Second, we reversed our approach by using multivariate map-

ping to localize clusters and univariate analysis to assess face se-

Fig. 1. Experimental face stimuli (4 identities × 4 expressions). Stimuli were
matched with respect to low-level properties (e.g., mean luminance), ex-
ternal features (hair), and high-level characteristics (e.g., sex). Face images
courtesy of the Face-Place Face Database Project (http://www.face-place.org/)
Copyright 2008, Michael J. Tarr. Funding provided by NSF Award 0339122.

Fig. 2. Group information-based map of face individuation. The map is
computed using a searchlight (SL) approach and estimates the discrimina-
bility of facial identities across expression (q < 0.05). Each voxel in the map
represents the center of an SL-defined region supporting identity discrimi-
nation. The four slices show the sensitivity peaks of the four clusters revealed
by this analysis.

Table 1. Areas sensitive to face individuation

Coordinates (peak)

Region x y z SL centers (voxels) Peak t value

raFG 33 −39 −9 16 11.31
raMTG 19 6 −26 8 9.90
lpFG −26 −69 −14 2 7.11
laFG −29 −39 −14 1 7.24
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lectivity. Concretely, we examined the face selectivity of the SL
clusters using the data from our functional localizers. No reliable
face selectivity was detected for any cluster.
Third, SL clusters alongwith theFFAwere tested for their ability

to discriminate expressions across changes in identity. Above-
chance discrimination was found in rFFA and raMTG (P < 0.05).
Finally, we tested our clusters for OF individuation across

variation in font. The analysis found sensitivity in two regions:
rFFA and lpFG.
These findings are important in several respects. They suggest

conventionally defined face selectivity, although informative, may
not be enough to localize areas involved in fine-level face rep-
resentation. Also, they show that the identified network is not

exclusively dedicated to individuation or even to face processing
per se. One hypothesis, examined below, may explain this in-
volvement in multiple types of perceptual discrimination simply
by appeal to low-level image properties.

Impact of Low-Level Image Similarity on Individuation. To deter-
mine the engagement of the network in low-level perceptual
processing, image similarity was computed across images of
different individuals using an L2 metric (Table S1). For each pair
of face identities, the average distance was correlated with the
corresponding discrimination score produced by every ROI (in-
cluding the FFA). The only ROI susceptible to low-level image
sensitivity was laFG (P < 0.05 uncorrected) (Fig. S4).
These results, along with the inability of the EVC to support

individuation, suggest that low-level similarity is unlikely to be
the main source of the individuation effects observed here.

Feature Ranking and Mapping.Having located a network of regions
sensitive to face identity, we set out to determine the spatial and
temporal distribution of the features diagnostic of face individ-
uation. Specifically, we performed RFE analysis jointly across all
SL clusters and recorded the ranking of the features within
each subject. To eliminate any spatial bias within the initial fea-
ture set, we started with an equally large number of features for
each cluster: the 1,000 top-ranked ones based on single-cluster
RFE computation.
Fig. 4A shows the average ranking of the 400 most informative

features across subjects and Fig. 4B summarizes their distribution
across clusters and time points. We found a significant effect of
cluster (two-way analysis of variance, P < 0.05) but no effect of
time point and no interaction. Further comparisons revealed that
lpFG contains fewer features than other clusters (P < 0.05), which
did not differ among each other. The time course of feature
elimination revealed that lpFG features were consistently elimi-
nated at a higher rate than features from other clusters (Fig. 4C). A

Fig. 3. Sensitivity estimates in three ROIs. Facial identity discrimination was
computed using both the entire set of features in an ROI and a subset of di-
agnostic features identified by multivariate feature selection (i.e., RFE), the
two types of classification are labeled as pre- and post-RFE. The average
number of features involved in classification is superimposed on each bar. The
results indicate that the bilateral FFA, in contrast to an early visual area, con-
tains sufficient information to discriminate identities above chance (P < 0.05).

Fig. 4. Spatiotemporal distribution of information diagnostic for face individuation. (A) Group map of average feature ranking for the top 400 features—
rows show different slices and columns different time points. Color codes the ranking of the features across space (the four regions identified by our SL
analysis) and time (4–8 s poststimulus onset). The map shows a lower concentration of features in the lpFG relative to other regions but a comparable number
of features across time. (B) Average feature distribution across subjects by cluster and time point (the bar graph quantifies the results illustrated in A). (C)
Time course of feature elimination by ROI for 4,000 features (top 1,000 features for each ROI). This analysis confirms that lpFG features are eliminated at
a higher rate, indicative of their reduced diagnosticity (shaded areas show ±1 SE across subjects).
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similar analysis across time points showed no substantial differ-
ences across time (Fig. S5).
Feature mapping provides a bird’s eye view of information

distribution across regions. In our case, it reveals a relatively even
division of diagnostic information among anterior regions. Fur-
ther pairwise comparisons of SL clusters were deployed to ex-
amine how areas share information with each other.

Information-Based Pairwise Cluster Analysis. Whereas activation
patterns in different areas are not directly comparable with each
other (e.g., because they have different dimensionalities, there is
no obvious mapping between them, etc.), the classification results
they produce serve as convenient proxies (Methods). Here, we
compared classification patterns for pairs of regions while con-
trolling for the pattern of correct labels. Thus, the analysis focuses
on common biases in misclassification.
First, we computed the partial correlation between classification

patterns corresponding to different clusters. Group results are
displayed as a graph in Fig. 5. Similarity scores for all pairs of
regions tested above chance (one-sample t test, P < 0.01). Simi-
larity scores within the network were not homogeneous (one-way
analysis of variance, P< 0.05) mainly because raFG evinced higher
similarity estimates than the rest (P < 0.01). In addition, we
computed similarity scores between the four clusters and the EVC.
Average similarity scores within the network were significantly
higher than scores with the EVC (paired-sample t test, P < 0.01).
Second, to verify our findings using an information-theoretic
measure, we computed the conditional mutual information be-
tween classification patterns produced by different clusters (Fig.
5). Examination of information estimates revealed a relational
structure qualitatively similar to that obtained using correlation.
We interpret the results above as evidence for the central role of

the right FG in face individuation. More generally, they support
the idea of redundant information encoding within the network.

Discussion
The present study investigates the encoding of facial identity in
the human ventral cortex. Our investigation follows a multivariate
approach that exploits multivoxel information at multiple stages
frommapping to feature selection and network analysis. We favor
this approach because multivariate methods are more successful
at category discrimination than univariate tests (31) and possibly
more sensitive to “subvoxel” information than adaptation tech-
niques (32). In addition, we extend our investigation to take ad-
vantage of spatiotemporal information (29) and, thus, optimize

the discovery of small fine-grained pattern differences underlying
the perception of same-category exemplars.

Multiple Cortical Areas Support Face Individuation. Multivariate
mapping located four clusters in the bilateral FG and the right
aMTG encoding facial identity information. These results in-
dicate that individuation relies on a network of ventral regions
that exhibit sensitivity to individuation independently of each
other. This account should be distinguished both from local ones
(6, 21) and from other versions of distributed processing (23, 24).
With regard to the specific clusters identified, previous work

uncovered face-selective areas in the vicinity of the FFA, both
posterior (9) and anterior (33) to it. Our clusters did not exhibit
face selectivity when assessed with a univariate test. However, this
lack of selectivity may reflect the variability of these areas (9, 33)
and/or the limitations of univariate analysis (34). Alternatively, it
is possible that face processing does not necessarily entail face
selectivity (35). More relevantly here, face individuation, rather
than face selectivity, was previously mapped to an area in the
anterior vicinity of the FFA (14). Overall, our present results
confirm the involvement of these areas in face processing and
establish their role in individuation.
On a related note, the proximity of these fusiform clusters to

the FFA may raise questions as to whether they are independent
clusters or rather extensions of the FFA (7, 9). On the basis of
differences in peak location and the lack of face selectivity, we
treat them here as distinct from the FFA although further in-
vestigation is needed to fully understand their relationship with
this area.
Unlike the FG areas discussed above, an anterior region of the

right middle temporal cortex (36, 37) or temporal pole (22) was
consistently associated with identity coding. Due to its sensitivity
to higher-level factors, such as familiarity (22), and its involve-
ment in conceptual processing (38, 39), the anterior temporal
cortex is thought to encode biographical information (6). Whereas
our ability to localize this region validates our mapping method-
ology, the fact that our stimuli were not explicitly associated with
any biographical information suggests that the computations hos-
ted by this area also involve a perceptual component. Consistent
with this, another mapping attempt, based on perceptual dis-
crimination (15), traced face individuation to a right anterior
temporal area. Also, primate research revealed encoding of face–
space dimensions in the macaque anterior temporal cortex (40) as
well as different sensitivity to perceptual and semantic processing
of facial identity (41). In light of these findings, we argue that this
area is part of the network for perceptual face individuation al-
though the representations it hosts are likely to also comprise a
conceptual component.
In sum, our mapping results argue for a distributed account of

face individuation that accommodates a multitude of experi-
mental findings. Previous imaging research may have failed to
identify this network due to limits in the sensitivity of the methods
used in relation with the size of the effect. Inability to find sen-
sitivity in more than one region can easily lead to a local in-
terpretation. At the same time, combining information from
multiple regions may counter the limitations of one method but
overestimate the extent of distributed processing. Our use of dy-
namic multivariate mapping builds upon these previous findings
and is a direct attempt to increase the sensitivity of these mapping
methods at the cost of computational complexity.
Importantly, the regions uncovered by our analysis may rep-

resent only a subset of the full network of regions involved in
identity processing. We allow for this possibility given our limited
coverage (intended to boost imaging resolution in the ventral
cortex) as well as the lower sensitivity associated with the imaging
of the inferior temporal cortex. In particular, regions of the su-
perior temporal sulcus and prefrontal cortex (4, 10) are plausible
additions to the network uncovered here.

Fig. 5. Pairwise ROI relations. The pattern of identity (mis)classifications is
separately compared for each pair of regions using correlation-based scores
(red) and mutual information (brown). Specifically, we relate classification
results across regions while controlling for the pattern of true labels. These
measures are used as a proxy for assessing similarity in the encoding of facial
identity across regions. Of the four ROIs, the raFG produced the highest
scores in its relationship with the other regions (connector width is pro-
portional to z values).
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Individuation Effects Are Not Reducible to Low-Level Image Processing.
To distinguish identity representations from low-level image dif-
ferences, we appealed to a common source of intraindividual im-
age variations: emotional expressions. Also, identity was not
predictable in our case by prominent external features, such as
hair, or by image properties associated with higher-level charac-
teristics (e.g., sex or age). Furthermore, we assessed the contri-
bution of interindividual low-level similarity to discrimination
performance. Of all regions examined, only laFG showed potential
reliance on low-level properties. Finally, an examination of an
early visual area did not produce any evidence for identity
encoding. Taken together, these results render unlikely an expla-
nation of individuation effects based primarily on low-level
image properties.

The Face Individuation System Does Not Support General-Purpose
Individuation. To address the domain specificity of the system
identified, we examined whether “abstract”OFs (i.e., independent
of font) can be individuated within the regions mapped for faces.
Although highly dissimilar from faces, OFs share an important
attribute with them, by requiring fine-grained perceptual dis-
crimination at the individual level. In addition, they appear to
compete with face representations (42) and to rely on similar visual
processing mechanisms (43). Thus, they may represent a more
suitable contrast category for faces than other familiar categories,
such as houses. Our attempt to classify OF identities revealed that
two regions, the lpFG and the rFFA, exhibited sensitivity to this
kind of OF information.
Furthermore, to examine the task specificity of the network,

we evaluated the ability of its regions to support expression
discrimination and found that the rFFA, along with the aMTG,
was able to perform this type of discrimination.
Thus, it appears that the mapped network does not support

general object individuation, although it may share resources with
the processing of other tasks as well as of other visual categories.

FFA Responds to Different Face Identities with Different Patterns.
The FFA (44, 45) is one of the most intensely studied functional
areas of the ventral stream. However, surprisingly, its role in face
processing is far from clear. At one extreme, its involvement in
face individuation (6, 18, 21) has been called into question (14–
16); at the other, it has been extended beyond the face domain to
visual expertise (17) and even to general object individuation (13).
Previous studies of the FFAusingmultivariate analysis have not

been successful in discovering identity information (15, 24) or
even subordinate-level information (23) about faces. The study of
patient populations is also not definitive. FG lesions associated
with acquired prosopagnosia (46) adversely impact face individ-
uation, confirming the critical role of the FFA. However, indi-
viduals with congenital prosopagnosia appear to exhibit normal
FFA activation profiles (47) in the presence of compromised
fiber tracts connecting the FG to anterior areas (48). Thus, the
question is more pertinent than ever: Does the FFA encode
identity information?
Our results provide evidence that the FFA responds consistently

across different images of the same individual, but distinctly to
different individuals. In addition, we show that the right FFA can
individuate OFs and decode emotional expressions, consistent
with its role in expression recognition (12).
Thus, we confirm the FFA’s sensitivity to face identity using

pattern analysis. Moreover, we show that it extends beyond both
a specific task, i.e., individuation, and a specific domain, i.e., faces.
Further research is needed to determine how far its individuation
capabilities extend and how they relate with each other.

Informative Features Are Evenly Distributed Across Anterior Regions.
How uniformly is information distributed across multiple regions?
At one extreme, the system may favor robustness as a strategy and

assign information evenly across regions. At the other, its structure
may be shaped by the feed-forward flow of information and display
a clear hierarchy of regions from the least to the most diagnostic.
The latter alternative is consistent, for instance, with a posterior-
to-anterior accumulation of information culminating in the re-
cruitment of the aMTG as the endpoint of identity processing.
Our results fall in between these two alternatives. Anterior

regions appear to be at an advantage compared with the left pFG.
At the same time, there was no clear differentiation among an-
terior regions in terms of the amount of information represented,
suggesting that information is evenly distributed across them.

The Right aFG May Be a Hub in the Facial Identity Network. As dif-
ferent regions are not directly comparable as activation patterns,
we used their classification results as a proxy for their comparison.
Using this approach, we found that different regions do share in-
formation with each other, consistent with redundancy in identity
encoding. Furthermore, we found that pairwise similarities are
more prominent in relation with the right aFG than among other
network regions, suggesting that the raFG plays a central role
within the face individuation network. Thus, the raFG mirrors the
role played by the right FFA among face-selective regions as
revealed by functional connectivity (4). One explanation of this
role is that a right middle/anterior FG area serves as an interface
between low- and high-level information.
Two lines of evidence support this hypothesis. Recent results

show, surprisingly, that the FFA exhibits sensitivity to low-level
face properties (16, 25). Additionally, the right FG is subject to
notable top–down effects (26, 27). Maintaining a robust interface
between low-level image properties and high-level factors is
likely a key requirement for fast, reliable face processing. Critical
for our argument, this requirement would lead to the formation
of an FG activation/information hub. Future combinations of
information and activation-based connectivity analyses might be
able to assess such hypotheses and provide full-fledged accounts
of the flow of information in cortical networks.

Summary.A broad body of research suggests that face perception
relies on an extensive network of cortical areas. Our results show
that a single face-processing task, individuation, is supported by
a network of cortical regions that share resources with the pro-
cessing of other visual categories (OFs) as well as other face-
related (expression discrimination) tasks. Detailed investigation
of this network revealed an information structure dominated by
anterior cortical regions, and the right FG in particular, con-
firming its central role in face processing. Finally, we suggest that
a full understanding of the operation of this system requires a com-
bination of conventional connectivity analyses and information-
based explorations of network structure.

Methods
An extended version of this section is available in SI Text.

Design. Eight subjects were scanned across multiple sessions using a slow
event-related design (10-s trials). Subjects were presented with a single face
or OF stimulus for 400 ms and were asked to identify the stimulus at the
individual level using a pair of response gloves. We imaged 27 oblique slices
covering the ventral cortex at 3T (2.5-mm isotropic voxels, 2-s TR).

Dynamic Information-Based Brain Mapping. The SL was walked voxel-by-voxel
across a subject-specific cortical mask. The mask covered the ventral cortex
(Fig. S2) and was temporally centered on 6-s poststimulus onset. At each
location within the mask, spatiotemporal patterns (29) were extracted for
each stimulus presentation. To boost their signal, these patterns were av-
eraged within runs on the basis of stimulus identity. Pattern classification
was performed using linear support vector machines (SVM) with a trainable
c term followed by leave-one-run-out cross-validation. Classification was
separately applied to each pair of identities (six pairs based on four identi-
ties). Discrimination performance for each pair was encoded using d′ and an

10002 | www.pnas.org/cgi/doi/10.1073/pnas.1102433108 Nestor et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1102433108/-/DCSupplemental/pnas.201102433SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1102433108/-/DCSupplemental/pnas.201102433SI.pdf?targetid=nameddest=SF2
www.pnas.org/cgi/doi/10.1073/pnas.1102433108


average information map (28) was computed across all pairs. For the pur-
pose of group analysis, these maps were normalized into Talairach space and
examined for above-chance sensitivity (d′ > 0), using voxelwise t tests across
subjects [false discovery rate (FDR) corrected]. Expression discrimination
followed a similar procedure.

Analyses were carried out in Matlab with the Parallel Processing Toolbox
running on a ROCKS+ multiserver environment.

ROI Localization. Three types of ROIs were localized as follows: (i) We iden-
tified locations of the group information map displaying above-chance dis-
criminability and projected their coordinates in the native space of each
subject. ROIs were constructed by placing spherical masks at each of these
locations—a set of overlapping masks gave rise to a single ROI. (ii) Bilateral
FFAs were identified for each subject by standard face–object contrasts. ROIs
were constructed by applying a spherical mask centered on the FG face-
selective peak. (iii) Anatomical masks were manually drawn around the
calcarine sulcus of each subject and a mask was placed at the center of these
areas. The results serve as a rough approximation of EVC. All masks used for
ROI localization had a 5-voxel radius.

RFE-Based Analysis. SVM-based RFE (30) was used for feature selection and
ranking—the order of feature elimination provides an estimate of feature
diagnosticity for a given type of discrimination. To obtain unbiased estimates

of performance, we executed two types of cross-validation. We performed
cross-validation, first, at each RFE iteration step tomeasure performance and,
second, across iteration steps tofind the best number of features. RFE analysis
was applied to all types of ROIs described above.

Pairwise ROI Analysis. We computed the similarity of classification patterns
produced by each pair of ROIs, namely the patterns of classification labels
obtained with test instances during cross-validation. However, patterns are
likely correlated across regions by virtue of the ability of SVM models to
approximate true labels. Therefore, we measured pattern similarity with
partial correlation while controlling for the pattern of true labels. Correla-
tions were computed for each pair of facial identities, transformed using
Fisher’s z, and averaged within subjects. Critically, to eliminate common
biases based on spatial proximity between regions (because of spatially
correlated noise) all activation patterns were z-scored before classification.
To obtain estimates of the information shared between ROIs we also com-
puted the conditional mutual information between ROI-specific classifica-
tion patterns given the pattern of true labels.
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