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Abstract
The combination of Fe(OTf)2 and novel phenanthroline ligands enables the catalytic asymmetric
epoxidation of acyclic β,β-disubstituted enones which have been heretofore inaccessible substrate
classes. The reactions provide highly enantioenriched α,β-epoxyketones (up to 92% ee) which are
further converted to functionalized β-ketoaldehydes with an all-carbon quaternary center.

The catalytic asymmetric epoxidation of olefins presents a powerful strategy for the
synthesis of chiral molecules. Thus, numerous efforts have been dedicated to achieving
more efficiency with less expensive and environmentally benign catalysts and oxidants as
well as the applicability to a variety of substrate classes.1 Among various useful methods,
the development of an iron-catalyzed asymmetric epoxidation should provide us with many
advantages, as iron is the most abundant transition metal on the earth and relatively non-
toxic.2, 3, 4 In addition, understanding the mechanism of iron-catalyzed oxidations, which
play important roles in biological metabolism, may lead to new insights in biocatalysis and a
resulting drug design.5 Actually, the biomimetic asymmetric epoxidation of styrene
derivatives with iron porphyrin complexes was first reported in 1999,6,7 although it has
drawbacks such as the difficult synthesis of the required chiral porphyrin ligands. After
studies to pursue non-heme iron catalysts which could be easily prepared and modified,
Beller and co-workers reported that the best results have been from iron-catalyzed
asymmetric epoxidation of stilbene derivatives with excellent enantioselectivity.4c, d

However, the high selectivity was obtained only for one specific substrate with 10 mol%
catalyst loading. Therefore, it is apparent that iron has yet to be fully introduced in
asymmetric epoxidations.

Obviously, the extension of the accessible substrate classes for catalytic asymmetric
epoxidation has been desirable. To the best of our knowledge, a general method for the
catalytic asymmetric epoxidation of acyclic β,β-disubstituted enones is still lacking,
probably due to the stereocongestion at the β-carbon in the Weitz-Scheffer type epoxidation,
which is commonly employed to access α,β-epoxy carbonyl compounds (Scheme 1, eq
1).1d, 8 In the case of acyclic enones, a β-substituent (R3 group) increases the steric repulsion
not only between the β-carbon and nucleophile but also between the R3 group and the acyl
group, which causes the substrate to break conjugation to avoid repulsion. As a result,
electrophilicity of the double bond in acyclic β,β-disubstituted enones is thought to be lower
than that in cyclic or β-non-substituted enones.9 In contrast, the deconjugation described
above should increase reactivity toward electrophilic epoxidation (eq. 2).9c, i Herein is a
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solution to the catalytic asymmetric epoxidation of acyclic β,β-disubstituted enones with a
newly designed iron complex.

We initially investigated the epoxidation of the readily available (E)-dypnone (1a) as a
model substrate with a variety of complexes consisting of iron metals and phenanthroline
ligands attached to binaphthyl moieties (Table 1). After preliminary screening of reaction
conditions, peracetic acid as a terminal oxidant was recognized as being crucial to afford
epoxides.10 When 1a was reacted with 5 mol % of FeCl2 and monophenanthroline ligand
(L1) in the presence of peracetic acid solution in acetonitrile, the epoxidation resulted in
only low conversion of starting material and low selectivity (entry 1). Replacing FeCl2 with
Fe(OTf)2 led to a significant improvement in terms of reactivity and enantioselectivity
(entry 2). Thus, we turned our attention to the effects of the several monophenanthroline
ligands. Introduction of a methyl group on the 2′-position in binaphthyl group dramatically
diminished reactivity as well as selectivity (entry 3). To our delight, we found that the
introduction of a phenyl group on the 3,8-positions in the phenanthroline moiety, which is
expected to restrict the rotation of the bond between binaphthyl group and phenanthroline
moiety, resulted in increased enantioselectivity significantly (entry 4). After testing various
of ligands bearing aromatic groups on the phenanthroline rings (entry 4–7), we identified L5
as the ligand providing the excellent yield and enantioselectivity (entry 6). Study of the
ligand-metal ratio implied that an iron complex coordinated by two phenanthroline ligands
induces high enantioselectivity (entries 6, 8 and 9). Furthermore, catalyst loading was
successfully lowered to 2.5 mol % with only a slight decrease of yield and selectivity (entry
10). It should be noted that only one diastereomer of epoxide was observed during the
course of this study, while Weitz-Scheffer type epoxidation of trisubstituted α,β-carbonyl
compounds often suffered from low diastereocontrol.9e, g, 11 In addition, this
diastereospecific epoxide formation in our catalytic system implies a concerted pathway
unlike the stepwise mechanism proposed previously.12n

Next, X-ray crystallographic analysis was carried out on single-crystal grown in an
acetonitrile solution of Fe(OTf)2 and two equivalent of rac-L3. As illustrated in Figure 1, an
octahedral, mononuclear [Fe(L3)2(CH3CN)(OTf)](OTf) was identified in which two homo-
chiral phenanthroline ligands coordinate the iron center in a cis topology to construct a
pseudo C2-symmetric iron complex. Although the bidentate phenanthroline ligands can, in
principle, adopt many possible diastereomers on the iron center, including the hetero- or
homo-combination of rac-L3, only the diastereomer shown above was selectively
crystallized.13 This selective complexation can be explained by the π–π interactions between
the naphthyl groups and diphenyl phenanthroline. However the relationship between this
selective formation of iron-ligand complex and enantioselectivities, as well as the actual
structure of the catalyst in the reaction medium, is still unclear.12

With optimized conditions in hand, we next examined the scope of substrates using
Fe(OTf)2-L5 complex (Table 2). The epoxidations of β,β-disubstituted enones having
different electronic characters on the phenacyl groups proceeded smoothly with good yield
and with excellent enantioselectivities (entries 1–5). Sterically different types of aromatic
substituents were also tolerated (entries 6–8). While an electron-deficient aromatic group on
the β-position had no influence on the epoxidation (entry 9), an electron-rich group such as
naphthyl group on the β-position showed the deleterious effect on the yield of the product,
probably due to the instability of the epoxide obtained under the acidic condition, although
the high enantioselectivity was still maintained (entry 10). On the other hand, the substrate
bearing an alkyl substituent on the β-position turned out to have inferior reactivity and
selectivity compared to aromatic substrates (entry 11). The substrate with an ethyl group as
the R3 substituent kept the high enantiomeric excess (entry 12). Notably, a single
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diastereomer was obtained even in employing (Z)-dypnone with poor enantioselectivity.
This fact could further support the reaction proceeds via a concerted pathway (entry 13).

Gratifyingly, we realized this chiral iron-phenanthroline system can also be applied not only
to α,β-enones but also to a non-activated olefin such as trans-α-methyl stilbene with good
enantioselectivity (Scheme 2, eq. 1).14 With this result in hand, we conducted an
intermolecular competition reaction to prove the nature of the active oxidant (eq. 2).15 A
competitive reaction of electron-deficient alkene 1a and electron-rich one 1n shows a 2.4:1
preference for the latter with comparable enantioselectivities, confirming the electrophilic
nature of the active oxidant.

The utility of chiral α,β-epoxyketones was demonstrated as shown in Scheme 3. The
obtained α,β-epoxyketones (2a and 2l) were converted into β-ketoaldehydes (3a and 3l)
bearing all-carbon quaternary centers without significant loss of enantiomeric excess by
utilizing the Lewis acid-mediated rearrangement (Scheme 3, eq. 1).16 Unlike the substrate
having a phenacyl group, the iron-catalyzed epoxidation of alkyl substituted substrate 1o
gave the rearranged product 3o as a major compound concomitant with the corresponding
epoxide (eq. 2). Eventually, the pure rearranged product 3o could be successfully obtained
in 35% yield over two steps by treatment of the mixture with BF3·OEt2 at room temperature.
Furthermore, the chiral α,β-epoxyketones can be transformed to 2-isoxazolidines,17 which
are important intermediates in the preparation of a variety of compounds with 1,3-
difunctional groups such as β-hydroxy ketones18 and γ-amino alcohols.19 The treatment of
2a with hydroxylamine hydrochloride in the presence of pyridine furnished a highly
substituted 2-isoxazoline 4a in optically pure form (eq.3).20

In summary, we have developed the first iron-catalyzed asymmetric epoxidation of acyclic
β,β-disubstituted enones. Essential for success was the use of the iron complex consisting of
Fe(OTf)2 and two equivalents of carefully designed phenanthroline ligand. X-ray
crystallography revealed a pseudo C-2 symmetric iron/ligand complex. Moreover, the
construction of the chiral all-carbon quaternary center was also realized by the Lewis acid
mediated rearrangement of the obtained chiral epoxides. Furthermore, this work provides a
new strategy for designing pseudo C2-symmetric orthophenanthroline ligand-based
catalysts, which should have a vast potential for transition metal catalyzed organic synthesis
in general.
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Figure 1.
X-ray structure of [Fe(L3)2(CH3CN)(OTf)](OTf) is shown as CPK model. Thermal
ellipsoids correspond to 50 % probability. Hydrogen atoms and non-coordinating molecules
are omitted for clarity. Triflate group and CH3CN are replaced by a green atom and a yellow
atoms for clarity, respectively. See supporting information for details. C: gray, N: blue, Fe:
red.
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Scheme 1.
The epoxidation of acyclic β,β-disubstituted carbonyl compounds.
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Scheme 2.
The asymmetric epoxidation with a non-activated olefin and a competitive experiment using
electron-rich and electron-deficient olefins.
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Scheme 3.
The transformations of optically active α,β-epoxyketones.
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