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Abstract
Computational models of the neuromuscular system hold the potential to allow us to reach a
deeper understanding of neuromuscular function and clinical rehabilitation by complementing
experimentation. By serving as a means to distill and explore specific hypotheses, computational
models emerge from prior experimental data and motivate future experimental work. Here we
review computational tools used to understand neuromuscular function including musculoskeletal
modeling, machine learning, control theory, and statistical model analysis. We conclude that these
tools, when used in combination, have the potential to further our understanding of neuromuscular
function by serving as a rigorous means to test scientific hypotheses in ways that complement and
leverage experimental data.

Index Terms
Biomechanics; computational methods; modeling; neuromuscular control

I. Introduction: Why is Neuromuscular Modeling So Difficult?
For the purposes of this review, we define computational models of neuromuscular function
to be algorithmic representations of the coupling among three elements: the physics of the
world and skeletal anatomy, the physiological mechanisms that produce muscle force, and
the neural processes that issue commands to muscles based on sensory information,
intention, and a control law. Some of the difficulties and challenges of neuromuscular
modeling arise from differences in the engineering approach to modeling versus the
scientific approach to hypothesis testing. From the engineering perspective, computational
modeling is a proven tool because we are able to use modeling to design and build very
complex systems. For example, airliners, skyscrapers, and microprocessors are three
examples of systems that are almost entirely developed using computational modeling. The
obvious extension of these successes is to expect neuromuscular modeling to have already
yielded deeper understanding of brain–body interactions in vertebrates, and revolutionized
rehabilitation medicine.

To explain why this is not a reasonable extrapolation, we point out that engineers tend to
apply an inductive approach and build models from the bottom-up, where the constitutive
parts are computational implementations of laws of physics and mechanics known to be
valid for a particular regime (e.g., turbulent versus laminar flow, continuum versus rigid
body mechanics, etc.) that we understand well, or have at least been validated against
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experimental data in those regimes. The behavior of the model that emerges from the
interactions among constitutive elements is carefully compared against the engineers'
intuition and further experimental data before it is accepted as valid.

Neuromuscular modeling, on the other hand, tends to be used for scientific inquiry via a
deductive approach to proceed from observed behavior in a particular regime that is
measured accurately (e.g., gait, flight, manipulation), to building models that are
computational implementations of hypotheses about the constitutive parts and the overall
behavior. This deductive top-to-bottom approach makes the emergent behavior of the model
difficult to compare against intuition, or even other models, because the differences that
invariably emerge between model predictions and experimental data can be attributed to a
variety of sources ranging from the validity of the scientific hypothesis being tested, to the
choice of each constitutive element, or even their numerical implementation. Even when
models are carefully built from the bottom-up, the modeler is confronted with choices that
often affect the predictions of the model in counterintuitive ways. Some examples of choices
are the types of models for joints (e.g., a hinge versus articulating surfaces), muscles (e.g.,
Hill-type versus populations of motor units), controllers (e.g., proportional-derivative versus
linear quadratic regulator), and solution methods (e.g., forward versus inverse).

Therefore, we have structured this review in a way that first presents a critical overview of
different modeling choices, and then describes methods by which the set of feasible
predictions of a neuromuscular model can be used to test hypotheses.

II. Overview of Musculoskeletal Modeling
Computational models of the musculoskeletal system (i.e., the physics of the world and
skeletal anatomy, and the physiological mechanisms that produce muscle force) are a
necessary foundation when building models of neuromuscular function. Musculoskeletal
models have been widely used to characterize human movement and understand how
muscles can be coordinated to produce function. While experimental data are the most
reliable source of information about a system, computer models can give access to
parameters that cannot be measured experimentally and give insight on how these internal
variables change during the performance of the task. Such models can be used to simulate
neuromuscular abnormalities, identify injury mechanisms, and plan rehabilitation [1]–[3].
They can be used by surgeons to simulate tendon transfer [4]–[6] and joint replacement
surgeries [7], to analyze the energetics of human movement [8], athletic performance [9],
design prosthetics and biomedical implants [10], and functional electric stimulation
controllers [11]–[13].

Naturally, the type, complexity, and physiological accuracy of the models vary depending
on the purpose of the study. Extremely simple models that are not physiologically realistic
can and do give insight into biological function (e.g., [14]). On the other hand, more
complex models that describe the physiology closely might be necessary to explain some
other phenomenon of interest [15]. Most models used in understanding neuromuscular
function lie in-between, with a combination of physiological reality and modeling
simplicity. While several papers [16]–[23] and books [24]–[26] discuss the importance of
musculoskeletal models and how to build them, we will give a brief overview of the
necessary steps and discuss some commonly performed analyses and limitations using these
models. We will illustrate the procedure for building a musculoskeletal model by
considering the example of the human arm consisting of the forearm and upper arm linked at
the elbow joint as shown in Fig. 1.
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A. Computational Environments
The motivation and advantage of graphical/computational packages like SIMM (Motion
Analysis Corporation), Any-Body (AnyBody Technology), MSMS, etc. [27]–[29], is to
build graphical representations of musculoskeletal systems, and translate them into code that
is readable by multibody dynamics computational packages like SDFast (PTC), Autolev
(Online Dynamics Inc.), ADAMS (MSC Software Corp.), MATLAB (Mathworks Inc.), etc.,
or use their own dynamics solvers. These packages allow users to define musculoskeletal
models, calculate moment arms and musculotendon lengths, etc.

This engineering approach dates back to the use of computer-aided design tools and finite-
element analysis packages to study bone structure and function in the 1960s, which grew to
include rigid body dynamics simulators in the mid 1980s like ADAMS and Autolev. Before
the advent of these programming environments (as in the case of computer-aided design),
engineers had to generate their own equations of motion or Newtonian analysis by hand, and
write their own code to solve the system for the purpose of interest. Available packages for
musculoskeletal modeling have now empowered researchers without training in engineering
mechanics to assemble and simulate complex nonlinear dynamical systems. The risk,
however, is that the lack of engineering intuition about how complex dynamical systems
behave can lead the user to accept results that one otherwise would not. In addition, to our
knowledge, multibody dynamics computational packages have not been cross-validated
against each other, or a common standard, to the extent that finite-elements analysis code
has [30] and the simulation of nonlinear dynamical systems remains an area of study with
improved integrators and collision algorithms developed every year. An exercise the user
can do is to simulate the same planar double or triple pendulum (i.e., a limb) in different
multibody dynamics computational packages and compare results after a few seconds of
simulation. The differences are attributable to the nuances of the computational algorithms
used, which are often beyond the view and control of the user. Whether these shortcomings
in dynamical simulators affect the results of the investigation can only be answered by the
user and reviewers on a case-by-case basis, and experts can also disagree on computational
results in the mainstream of research like gait analysis [31]–[33].

B. Dimensionality and Redundancy
The first decision to be made when assembling a musculoskeletal model is to define
dimensionality of the musculoskeletal model (i.e., number of kinematic degrees-of-freedom
and the number of muscles acting on them). If the number of muscles exceeds the minimal
number required to control a set of kinematic degrees-of-freedom, the musculoskeletal
model will be redundant for some submaximal tasks. The validity and utility of the model to
the research question will be affected by the approach taken to address muscle redundancy.
Most musculoskeletal models have a lower dimensionality than the actual system they are
simulating because it simplifies the mathematical implementation and analysis, or because a
low-dimensional model is thought sufficient to simulate the task being analyzed. Kinematic
dimensionality is often reduced to limit motion to a plane when simulating arm motion at the
level of the shoulder [34]–[36], when simulating fingers flexing and extending [37], or when
simulating leg movements during gait [38]. Similarly, the number of independently
controlled muscles is often reduced [39] for simplicity, or even made equal to the number of
kinematic degrees-of-freedom to avoid muscle redundancy [40]. While reducing the
dimensionality of a model can be valid in many occasions, one needs to be careful to ensure
it is capable of replicating the function being studied. For example, an inappropriate
kinematic model can lead to erroneous predictions [41], [42], or reducing a set of muscles
too severely may not be sufficiently realistic for clinical purposes.
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A subtle but equally important risk is that of assembling a kinematic model with a given
number of degrees-of-freedom, but then not considering the full kinematic output. For
example, a three-joint planar linkage system to simulate a leg or a finger has three kinematic
degrees-of-freedom at the input, and also three kinematic degrees-of-freedom at the output:
the x and y location of the endpoint plus the orientation of the third link. As a rule, the
number of rotational degrees-of-freedom (i.e., joint angles) maps into as many kinematic
degrees-of-freedom at the endpoint [43]. Thus, for example, studying muscle coordination to
study endpoint location without considering the orientation of the terminal link can lead to
variable results. As we have described in the literature [44], [45], the geometric model and
Jacobian of the linkage system need to account for all input and output kinematic degrees-
of-freedom to properly represent the mapping from muscle actions to limb kinematics and
kinetics.

C. Skeletal Mechanics
In neuromuscular function studies, skeletal segments are generally modeled as rigid links
connected to one another by mechanical pin joints with orthogonal axes of rotation. These
assumptions are tenable in most cases, but their validity may depend on the purpose of the
model. Some joints like the thumb carpometacarpal joint, the ankle and shoulder joints are
complex and their rotational axes are not necessarily perpendicular [46]–[48], or necessarily
consistent across subjects [46], [49], [50]. Assuming simplified models may fail to capture
the real kinematics of these systems [51]. While passive moments due to ligaments and other
soft tissues of the joint are often neglected, at times they are modeled as exponential
functions of joint angles [52], [53] at the extremes of range of motion to passively prevent
hyper-rotation. In other cases, passive moments well within the range of motion could be
particularly important in the case of systems like the fingers [54], [55] where skin, fat, and
hydrostatic pressure tend to resist flexion.

Modeling of contact mechanics could be important for joints like the knee and the ankle
where there is significant loading on the articulating surfaces of the bones, and where
muscle force predictions could be affected by contact pressure. Joint mechanics are also of
interest for the design of prostheses, where the knee or hip could be simulated as contact
surfaces rolling and sliding with respect to each other [56]–[58]. Several studies estimate
contact pressures using quasi-static models with deformable contact theory (e.g., [59]–[62]).
But these models fail to predict muscle forces during dynamic loading. Multibody dynamic
models with rigid contact fail to predict contact pressures [7].

For the illustrative example carried throughout this review, we will use the simple two-joint,
six-muscle planar limb shown in Fig. 1. We model the upper arm and the forearm as two
rigid cylindrical links connected to each other by a pin joint representing the elbow and
shoulder joints as hinges. We will neglect the torque due to passive structures and assume
frictionless joints. We will not consider any contact mechanics at the joints. This model will
simulate the movement and force production of the hand (i.e., a fist with a frozen wrist) in a
two-dimensional plane perpendicular to the torso as is commonly done in studies of upper
extremity function [34]–[36].

Commentary 1—Modeling contact mechanics is the first of several elements we will point
out throughout this review where the community of modelers diverge in approach and/or
opinion. The computational approach to use when simulating contact mechanics among
rigid and deformable bodies remains an area of active research and debate, and no definitive
method exists to our knowledge. This affects neuromuscular modeling in two areas.

• Joint mechanics. An anatomical joint is a mechanical system where two or more
rigid bodies make contact at their articular surfaces (e.g., the femoral head and
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acetabulum for the hip, the distal femur, patella and tibial plateau for the knee, or
the eight wrist bones and distal radius for the wrist). Their congruent anatomical
shape, ligaments, synovial capsule, and muscle forces interact to induce kinematic
constraints and produce the function of a kinematic joint. These mechanical
systems are quite complex and their behavior can be load-dependent [63]. Most
modelers correctly assume that the system can be approximated as a system of
well-defined centers of rotation for the purposes of whole-limb kinematics and
kinetics (e.g., [12], [29], [64]). However, including contact mechanics in joints like
the knee and ankle could affect force predictions in muscles crossing these joints.
For example, modeling a joint as deformable surfaces that remain in contact
introduces additional constraints, thereby reducing the solution space when solving
for muscle forces from joint torques [65]. If joint behavior or the specific loading of
the articular surfaces is the purpose of the study as when studying cartilage loading,
osteoarthritis or joint prostheses (e.g., [56], etc., among many), then it is critical to
have detailed models of the multiple constitutive elements of the joint. Recent
studies have combined dynamic multibody modeling in conjunction with
deformable contact theory for articular contact which makes it possible to
simultaneously determine contact pressures and muscle forces during dynamic
loading [65]–[69].

• Body-world interactions. Faithful and accurate simulations of the interactions
among rigid and deformable bodies have been an active area of investigation,
including foot–floor contact, accident simulation, surgical simulation, and hand–
object interactions (e.g., [70]–[72]). Most recently, there have been advances that
have crossed over from the computer animation and gaming world that provide so-
called “dynamics engines” that can rapidly compute multibody contact problems
[70], [73], [74]. Some recent examples of fast algorithms to simulate body–object
interactions include [73] and [75]. While some of these dynamics engines
emphasize speed and a realistic look over mechanical accuracy, some examples of
new techniques can be both accurate and fast [75], [76].

D. Musculotendon Routing
Next, we need to select the routing of the musculotendon unit consisting of a muscle and its
tendon in series [77], [78]. The reason we speak in general about musculotendons (and not
simply tendons) is that in many cases it is the belly of the muscle that wraps around the joint
(e.g., gluteus maximus over the hip, medial deltoid over the shoulder). In other cases,
however, it is only the tendon that crosses any joints as in the case of the patellar tendon of
the knee or the flexors of the wrist. In addition, the properties of long tendons affect the
overall behavior of muscle like by stretching out the force-length curve of the muscle fibers
[77]. Most studies assume correctly that musculotendons insert into bones at single points or
multiple discrete points (if the actual muscle attaches over a long or broad area of bone).
Musculotendon routing defines the direction of travel of the force exerted by a muscle when
it contracts. This defines the moment arm r of a muscle about a particular joint, and
determines both the excursion δs the musculotendon will undergo as the joint rotates an
angle δθ defined by the equation, δs = r * δθ, as well as the joint torque τ at that joint due to
the muscle force fm transmitted by the tendon τ = r * fm, where r is the minimal
perpendicular distance of the musculotendon from the joint center for the planar (scalar)
case [78]. For the three-dimensional (3-D) case, the torque is calculated by the cross product
of the moment arm with the vector of muscle force τ = r × fm.

In today's models, musculotendon paths are modeled and visualized either by straight lines
joining the points of attachment of the muscle; straight lines connecting “via points”
attached to specific points on the bone which are added or removed depending on joint
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configuration [79] or as cubic splines with sliding and surface constraints [80]. Several
advances also allow representing muscles as volumetric entities with data extracted from
imaging studies [81], [82], and defining tendon paths as wrapping in a piecewise linear way
around ellipses defining joint locations [12], [64]. The path of the musculotendon in these
cases is defined based on knowledge of the anatomy. Sometimes, it may not be necessary to
model the musculotendon paths but obtaining a mathematical expression for the moment
arm (r) could suffice. The moment arm is often a function of joint angle and can be obtained
by recording incremental tendon excursions (δs) and corresponding joint angle changes (δθ)
in cadaveric specimens (e.g., [83], [84]).

For the arm model example (Fig. 1), we will model musculotendon paths as straight lines
connecting their points of insertion. We will attach single-joint flexors and extensors at the
shoulder (pectoralis and deltoid) and elbow (biceps long head and triceps lateral head) and
double-joint muscles across both joints (biceps short head and triceps long head). Muscle
origins and points of insertion are estimated from the anatomy. In our model of the arm in
Fig. 1, we shall model musculotendons as simple linear springs. We then assign values to
model parameters like segment inertia, elastic properties of the musculotendons, etc. At this
point the model is complete and ready for dynamical analysis.

Commentary 2—Until recently, tendon routing was defined and computed using via
points along the portions of its path where it crossed a joint. However, the more realistic
extension of this process uses tendon paths that wrap around tessellated arbitrary bone
surfaces, but defined to pass along specific via points, but the tendon path between via
points need not be straight and can be affected by the shape of the bones and the tension in
the tendon [76], [80]. Another approach is to eliminate via points altogether and calculate
the behavior of the tendons as they drape over surfaces. This allows calculating the way
tendon structures slide over complex bones, where tension transmission is affected by finger
posture and tendon loading [80], [85]–[88]. These methods come at a computational cost but
are arguably necessary in some cases, as when simulating the tendinous networks of the
hand [80], [86], [88].

E. Musculotendon Models
The most commonly used computational model of musculotendon force is the one based on
the Hill-type model of muscle[77], largely because of its computational efficiency,
scalability, and because it is included in simulation packages like SIMM (Motion Analysis
Corporation). In Hill-type models, the entire muscle is considered to behave like a large
sarcomere with its length and strength scaled-up, respectively, to the fiber length and
physiological cross-sectional area of the muscle of interest. This model consists of a parallel
elastic element representing passive muscle stiffness, a parallel dashpot representing muscle
viscosity, and a parallel contractile element representing activation-contraction dynamics, all
in series with a series elastic element representing the tendon. The force generated by a
muscle depends on muscle activation, physiological cross-sectional area of the muscle,
pennation angle, and force-length and force-velocity curves for that muscle. These
parameter values are generally based on animal or cadaveric work [89]. Five parameters
define the properties of this musculotendon model. Four of these are specific to the muscle:
the optimal muscle fiber length, the peak isometric force (found by multiplying maximal
muscle stress by physiological cross-sectional area), the maximal muscle shortening
velocity, and the pennation angle. The fifth is the slack length of the tendon (tendon cross-
sectional area is assumed to scale with its muscle's physiological cross-sectional area [90]).
Model activation-contraction dynamics is adjusted to match the properties of slow or fast
muscle fiber types by changing the activation and deactivation time constants of a first order
differential equation [77]. This Hill-type model has undergone several modifications but
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remains a first-order approximation to muscle as a large sarcomere with limited ability to
simulate the full spectrum of muscles, or of fiber types found within a same muscle, or the
properties of muscle that arise from it being composed of populations of motor units such as
signal dependent noise, etc. Several researchers have developed alternative models for
muscle contraction, which were used in specific studies [91]–[94].

The alternative approach has been to model muscles as populations of motor units. While
this is much more computationally expensive, it is done with the purpose of being more
physiologically realistic and enabling explorations of other features of muscle function. A
well-known model is that proposed by Fuglevand and colleagues [95], which has been used
extensively to investigate muscle physiology, electromyography, and force variability.
However, the computational overhead of this model has largely limited it to studies of single
muscles, and is not usually part of neuromuscular models of limbs. In order to develop a
population-based model that could be used easily by researchers, Loeb and colleagues
developed the Virtual Muscle software package [96]. It integrates motor recruitment models
from the literature and extensive experimentation with musculotendon contractile properties
into a software package that can be easily included in multibody dynamic models run in
MATLAB (The Mathworks, Natick, MA).

Commentary 3—Most investigators will agree that defining and implementing more
realistic muscle models is a critical challenge to be overcome in musculoskeletal modeling.
The reasons include the following.

• Muscles are the actuators in musculoskeletal systems, and the neural control and
mechanical performance of the system depend heavily on their properties. There is
abundant experimental evidence that the nonlinear, time-varying, highly
individuated properties of muscles determine much about neuromuscular function
and performance in health and disease. Therefore, before realistic muscle models
are available, testing theories of motor control will remain a challenge.

• Muscle models today fall short of replicating some fundamental physiological and
mechanical features of muscles. In a recent study, for example, Keenan and Valero-
Cuevas [97] showed that the most widely used model of populations of motor units
does not robustly replicate two fundamental tenets of muscle function: the scaling
of EMG and force variability with increasing muscle force. Therefore, there are
some critical neural features of muscle function that are yet to be characterized
experimentally and encoded computationally (for another example, see [98]).

• Is it even desirable or possible to build a “complete” model of muscle function? A
good model is best tailored to a specific question because it can make testable
predictions and/or explain a specific experimental phenomenon. Thus, such models
are more likely to be valid and useful. For example, some researchers focus on
time- and context-sensitive properties like residual force enhancement [98] or force
depression [99], others investigate the complex 3-D architecture of muscles and
muscle fibers [100], and others mentioned above focus on total force production or
populations of motor units. Therefore the challenge is to decide what is the best
combination of mechanistic and phenomenological elements to make the model
valid and useful for the study at hand.

• Muscle energetics is another important aspect of modeling that deserves attention.
An obvious disadvantage of Hill-type muscle models is that they do not capture the
distribution of cross bridge conformations for a given muscle state (length,
velocity, activation, etc.) because the details of energy storage and release in
eccentric and concentric contractions associated with cross bridge state and parallel
elastic elements are vaguely understood [101], [102]. Therefore, muscle energetics
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is a clear case where, in spite of what is said in the above paragraph, it may be
necessary to create models that span multiple “scales” or “levels of complexity.”
Several authors have repeatedly pointed out the need for accurate muscle energetics
to understand real-world motor tasks such as [103] and [104].

• Lastly, modeling and understanding muscle function will require embracing the
fact that muscle contraction is an emergent dynamical phenomenon mediated (or
even governed?) by spinal circuitry. So far most modelers have focused on driving
muscle force with an unadulterated motor command. Motor unit recruitment,
muscle tone, spasticity, clonus, signal dependent noise, to name a few, are features
of muscle function affected to a certain extent by muscle spindles, Golgi tendon
organs, and spinal circuitry. Thus advancing and using models of muscle
proprioceptors and spinal circuitry will become critical to our understanding of
physiological muscle function [105]–[107].

III. Forward and Inverse Simulations
In “forward” models, the behavior of the neuromuscular system is calculated in the natural
order of events: from neural or muscle command to limb forces and movements. In
“inverse” models, the behavior is assumed or measured and the model is used to infer and
predict the time histories of neural, muscle, or torque commands that produced it. The same
biomechanical model governed by Newtonian mechanics is used in either approach, but it is
used differently in each analysis [24], [26].

A. Forward Models
The inputs to a forward musculoskeletal model are usually in the form of muscle activations
(or torque commands if the model is torque driven) and the outputs are the forces and/or
movements generated by the musculoskeletal system. The system dynamics is represented
using the following equation:

(1)

where I is the system mass matrix, θ ̈ the vector of joint accelerations, θ the vector of joint
angles, C the vector of Coriolis and centrifugal forces, G the gravitational torque, M the
instantaneous moment arm matrix, FM the vector of muscle forces, and Fext the vector of
external torques due to ground reaction forces and other environmental forces. This system
of ordinary differential equations is numerically integrated to obtain the time course of all
the states (joint angles θ and joint angle velocities θ ̇) of the system. The input muscle
activations could be derived from measurements of muscle activity (electromyogram) or
from an optimization algorithm that minimizes some cost function, for example, the error in
joint angle trajectory for all joints and energy consumed [108]. Forward dynamics has also
been used in determining internal forces that cannot be experimentally measured like in the
ligaments during activity or contact loads in the joints. It gives insight on energy utilization,
stability and muscle activity during function for example in walking simulations [109]. It
gives the user access to all the parameters of the system and to simulate effects when these
are changed. This makes it a useful tool to study pathological motion and for rehabilitation.
[22] provides a review on many of the applications of forward dynamics modeling.

B. Inverse Models
Inverse dynamics consists of determining joint torque and muscle forces from
experimentally measured movements and external forces. Since the number of muscles
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crossing a joint is higher than the degrees-of-freedom at the joint, multiple sets of muscle
forces could give rise to the same joint torques. This is the load-sharing problem in
biomechanics [110]. A single combination is chosen by introducing constraints such that the
number of unknown variables is reduced and/or based on some optimization criterion, like
minimizing the sum of muscle forces or muscle activations. Several optimization criteria
have been used in the literature [111]–[113]. Muscle forces determined by this analysis are
often corroborated by electromyogram recordings from specific muscles [114], [115]. Since
inverse dynamics consists of using the outputs of the real system as inputs to a mathematical
model whose dynamics do not exactly match with the real system, the predicted behavior of
the model does not necessarily match with the measured behavior of the real system. This is
an important problem in inverse dynamics and is discussed in more detail in [116].

Both forward and inverse models are useful and can be complementary and the choice is
largely driven by the goals of the study. The main challenge with both these analyses is
experimental validation because many of the variables determined using either approach
cannot be measured directly. The reader is directed to articles and textbooks that describe
these methods in detail [12], [24], [64], [117]–[119].

IV. Computational Methods for Model Learning, Analysis, and Control
We have discussed the computational methods used to define and assemble known
musculoskeletal elements of models. However, there exist complementary computational
methods to expand the utility of these models in several ways. For example:

• use experimental data to “learn” the complex patterns or functional relationships,
and thereby create model elements that are not otherwise available (e.g., the inverse
dynamics of a complex limb, mass properties, complex joint kinematics, etc.);

• find families of feasible solutions when problems are high dimensional, nonlinear,
etc. (e.g., characterize kinematic and kinetic redundancy);

• find specific optimized solutions for a specific task;

• establish the consequences of parameter variability and uncertainty;

• explore possible control strategies used by the nervous system;

• predict the consequences of disease, treatment, and other changes in the
neuromusculoskeletal system;

• consider noise in sensors and actuators.

The computational methods that allow such explorations stem from the interface of three
established fields combining engineering, statistics, computer science, and applied
mathematics: machine learning, control theory, and estimation-detection theory. While
these fields are vast, and the subject of active research in their own right, we portray a
categorization of their techniques and interactions as they relate to our topic (Fig. 2). Experts
in these fields will have valid and understandable objections to our specific simplifications
and categorizations. However, we believe that nonspecialists will nevertheless benefit from
it at the onset of their exploration of these areas; and nuance will emerge as they become
proficient.

What is most important to extract from this categorization is that, even though most of these
areas matured decades ago, only a few techniques are commonly used in neuromuscular
modeling (indicated with **) and a few others are beginning to be used (indicated with *).
To be clear, several of these techniques are routinely used, and even overused, in the context
of psychophysics, biomechanical analysis, gait, and EMG analysis, data processing, motor
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control, etc. Therefore, they will not be altogether new to someone familiar with those
fields. However, neuromuscular modeling has not tapped into these available computational
techniques. Our aim here is to succinctly describe them in the context of neuromuscular
modeling and point to useful literature.

Another important idea we wish to convey is that the expertise you may have with one of
these techniques in a different context enables their use for neuromuscular modeling. For
example, you may be familiar with the use of principal components analysis for EMG
analysis, and the same techniques can be used to approximate the main interactions among
the parameters of a model.

Lastly, we wish to invite the community of practitioners and students in machine learning,
control theory, and estimation-detection theory to join forces with our community of
neuromuscular modelers. For example, we can find collaborators in those fields, train
students with backgrounds in those fields, or expand our use of those techniques. This
commitment is particularly necessary to move beyond traditional discipline-based training
where, for example, control theory is taught in the electrical engineering curriculum, and
machine learning in computer science—and each is taught as mutually independent, and
separate from the problems of neuromuscular systems.

V. Machine-Learning Techniques for Neuromuscular Modeling
Machine learning is the general term used for a scientific discipline whose purpose is to
design and develop computational algorithms that allow computers to learn based on
available data (such as from experiments or databases) or on-line during iterative or
exploratory behavior [120]–[122]. For the purposes of this review, we will use the two-link
arm model introduced in Section II to illustrate two main classes of machine-learning
approaches.

• Learning functional relationships. It is often necessary to use experimental data to
arrive at a computational representation of model elements lacking analytical
description. Or even if such analytical representation exists, it may only be an
approximation that needs to be refined due to structural or parameter uncertainty.
Learning functional relationships has been called a “black box” approach.

• Learning solutions to redundant problems (i.e., one-to-many mappings). Machine-
learning techniques can be used to solve the redundancy problem common in
neuromuscular systems when these solutions cannot be found analytically,
particularly, if the problem is nonlinear, nonconvex or high-dimensional.

A. Learning Functional Relationships
In neuromuscular models, a functional relationship may describe, for example, the inertia
tensor, moment arm matrix, Jacobian matrix, or inverse dynamics. Such relationships could
be derived analytically, but often an analytical solution is not available or feasible, e.g., due
to intersubject variability or structural uncertainties, like variability or uncertainty about link
lengths, joint centers of rotation, centers of mass, and inertial properties. For minor
uncertainties, where only a few parameters need to be determined, these parameters could be
inferred by fitting the model to experimental data. For example, limb lengths could be
extracted from motion tracking data using probabilistic-inference methods [123]. Such an
approach, however, becomes increasingly difficult if too many parameters are unknown or
uncertain. Apart from computational problems, the state that fully defines the dynamics of
the neuromuscular system may be unobservable [124]. These shortcomings motivate
methods to learn functional relationships, as described in this section. These methods focus
on the so-called “model-free” approach that does not require an a priori analytical model.
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This model-free approach avoids finding the underlying structure of a system. Examples of
finding the structure, e.g., the number of model elements and their connectivity, can be
found in [87] and [125]–[127]. Typically, the search space for these problems is large and
the fitness landscape is often fragmented and discontinuous: that is, the fitness of a model
can change dramatically when a model element is added or removed [87], [128]. In this
section, however, we focus on the aim of replacing unknown elements of neuromuscular
models by learned functional representations.

We illustrate learning functional relationships using our arm-model example (Section II).
Our task is to track a given trajectory with the hand. Here, we omit finding and
implementing a controller. Instead, we want to find a computational representation of the
inverse dynamics—which in turn may be used by a controller for tracking. For this simple
example, the inverse dynamics can be found analytically, but for illustration purposes, we
assume it is unknown.

In our task, the goal of the machine-learning algorithm is to find a computational function
that maps from desired accelerations of the endpoint onto joint torques. Before learning this
mapping, we need to identify the dependencies across variables so that they can be
measured. That is, the appropriate data need to be collected. Note that this implies that the
modeler has (or will spend time acquiring) an intuitive sense of the underlying causal
interactions at play to properly identify the data to collect. For example, the joint torques τ
will depend on the limb's mass and inertial properties, the state variables of the system (joint
angles, x, and angular velocities, ẋ), and, finally, on the desired hand acceleration, ẍ*; thus,
the torques are τ = f(x, ẋ, ẍ*) if mass and inertia parameters are assumed constant. For ease
of illustration, we assume that the limb is controlled by torque motors (finding muscle
commands is illustrated later in this section) and that the Jacobian of the system is full rank
(i.e., the dynamics is invertible). Problems with noninvertible mappings are illustrated in
Section V-B. We now critically review several techniques to find the target mapping from
measurements.

1) Computational Representation of Functional Relationships—A foundation of
machine-learning methods is to find numerical functions that approximate relationships in
data. These functions can take numerous forms that range from linear and polynomial to
Gaussian and sinusoidal or sum of these. In the machine-learning framework, these
functions are called basis functions [120], [122]. A typical scenario in a machine-learning
problem is for the modeler to prespecify the basis functions to fit to the data. In this case, the
modeler has an a priori opinion of what the underlying structure of the mapping should be.
If the a priori opinion is valid, then these algorithms converge quickly to the desired
mapping and have good performance. However, for many problems in neuromuscular
biomechanics, such intuition or prior knowledge is not available. More advanced machine-
learning algorithms can select from among families of basis functions, as well as estimate
their parameter values [122], [129]. As the basis functions become more complex, however,
the model becomes more opaque and provides less intuition. We now discuss the use of
basis functions in the context of supervised learning.

2) Supervised Learning Methods—In supervised learning, for a given input pattern, we
posit an a priori function to produce the corresponding output pattern. Thus, the problem is
function approximation, which is also known as regression analysis. Generally, the input–
output relationship will be nonlinear. A common approach to nonlinear regression is to
approximate an input–output relationship with a linear combination of basis functions [121].
Popular examples of this approach are neural networks [130], support vector regression
[131], and Gaussian process regression [132]; the latter has been introduced to the machine-
learning community by Williams and Rasmussen [133], but the algorithm is the same as the
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50-year-old “Kriging” interpolation [134], [135] developed by Daniel Krige and Georges
Matheron.

Some supervised learning methods go beyond producing a functional mapping, and also
predict confidence boundaries for each predicted output. Gaussian process regression is an
example of these methods that has a solid probabilistic foundation and therefore enjoys high
academic interest. Unfortunately, however, Gaussian process regression is computationally
expensive: the training time (i.e., computational cost) scales with the cube of the number of
training patterns. Faster variants have been developed, but they essentially rely on choosing
a small enough set of representative data points to make the solution computationally
feasible [132]. If the computation of confidence boundaries is not important, then support
vector regression is a faster alternative because the training time scales with the square of
the number of training patterns.

An alternative for fast computation and with the option to compute confidence boundaries is
locally weighted linear regression [136]–[138]. A challenge with locally weighted regression
is the placement of the basis functions, which are typically Gaussian. An optimal choice for
centering Gaussian functions is often numerically infeasible. A further problem of locally
confined models arises in high-dimensional spaces: the proportional volume of the
neighborhood decreases exponentially with increasing dimensionality; thus, eventually this
volume may not contain enough data points for a meaningful estimation of the regression
coefficients—see the “curse of dimensionality” [139]. Counteracting this problem using
local models with broad Gaussian basis functions is often infeasible, since these may lead to
over-smoothing and loss of detail. Fortunately, many biological data distributions are
confined to low-dimensional manifolds, which can be exploited for supervised learning
[137], [138], [140].

Generally, finding the model parameters to fit a functional relationship is an optimization
problem; therefore, we discuss briefly convergence and local minima. Some of the above-
mentioned techniques, like linear regression and Kriging interpolation, provide analytic
solutions to function approximation and, thus, avoid problems with lack of convergence and
local minima. However, finding a proper family of basis functions and their parameters is
typically a complex optimization problem requiring an iterative solution. Whereas most
established methods have guaranteed convergence [122], they may result in local minima,
which are not globally optimal. This problem has been addressed by using, for example,
annealing schemes [141], [142] and genetic algorithms [143]. The latter are particularly
useful if the parameter domain is discrete, like, e.g., for the topology of neural networks
[144]. As a downside, these optimization methods tend to be computationally complex and
provide no guarantee to find a globally optimal solution; the problem of local minima
remains, therefore, an area of active research.

Commentary 4: Artificial neural networks (ANNs) are perhaps the best-known example of
supervised learning. They are widespread, but their use has also been controversial.

• There are largely two communities who use ANNs. From the perspective of one
community, the network connectivity, parallel processing, and learning rules are
biologically inspired. Therefore, the focus is on understanding computation in
biological neurons, and the fact that certain networks can do function
approximation efficiently is simply an additional benefit [145]. In contrast, the
statistical-machine-learning community sees ANNs as a specific algorithmic
implementation and focuses on the function-approximation problem per-se and,
thus, sees no need to address this problem exclusively with neural networks [121],
[122].
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• The selection of the topology of the network (number of neurons and their
connectivity) is to a large extent heuristic, and unrelated to the a priori knowledge
of the underlying structure of the mapping.

• The more complex the network, the more it will tend to overfit the data and lack
generalization. Heuristics have been developed to mitigate overfitting: for example,
the number of parameters to learn should be less than 1/10 of the training data
[130].

3) Data Collection and Learning Schemes—Having presented the nature of function
approximation, we now describe different strategies for collecting training data necessary to
compute the approximation (Fig. 3). Here, we focus on learning inverse mappings, like the
inverse dynamics of a limb, which pose a challenge for data collection (Fig. 4).

• In direct inverse modeling [146], a sequence of random torques is delivered to the
system to produce and record hand accelerations [Fig. 3(a)]. To assemble input–
output training patterns, we take as input the observed time series of the arm state
(posture, velocity) and acceleration, and as output the corresponding torque time
series. The inverse mapping is then obtained using a supervised learning method
(e.g., locally weighted linear regression with Gaussian basis functions [136]).
Whereas feeding random sequences of torques is the most straightforward way to
collect training patterns, its disadvantage is that it may not produce the desired
accelerations, and therefore, the mapping found may not generalize well to the
desired accelerations—see Fig. 4 and [147].

• To better explore the desired set of accelerations, feedback-error learning [148]
and distal supervised learning [147] directly feed the inverse model with desired
accelerations [Fig. 3(b)]. This method requires a preliminary inverse model, found
perhaps using direct inverse modeling. Since the errors in torque space are not
directly accessible, the resulting errors in acceleration space are mapped back onto
torque space. Feedback-error learning uses a linear mapping, and distal supervised
learning requires the ability to do error-backpropagation (as in ANNs [130])
through an a priori learned forward model (which learns the opposite direction). If
the errors are small and the underlying mapping is locally linear, feedback-error
learning is the method of choice. However, small errors require a well initialized
inverse mapping. Distal supervised learning, to our knowledge, is not often used in
practice today.

• Staged learning [149], [150] also feeds the inverse model with desired
accelerations, but does not require a well initialized model [Fig. 3(c)]. The output
of the inverse model is augmented with noise before applying it as torques to the
arm. If the resulting accelerations show a better performance—based on some
quality criterion—the applied torque is used as training pattern for a new generation
(new stage) of inverse models. Compared to feedback-error learning, this method
can be applied to a broader set of problems (see feedback-error learning above), but
comes at the expense of a longer training time.

• Alternatively, we may learn from demonstration. For example, a proportional-
integral-derivative (PID) controller could be used to demonstrate (i.e., bias and/or
guide) the production of training data to learn the inverse-dynamics mapping close
to the region of interest [Fig. 3(d)] [151]–[153]. If a suitable demonstrator is
available, this last option is the method of choice.
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B. Learning Solutions to Redundant Problems
There is a long history of ways to solve the “muscle redundancy” problem with linear and
nonlinear optimization methods based on specific cost functions [110], [154]. However,
these methods provide single solutions that minimize that specific cost function, which is
often open to debate. An alternative method is to solve for the entire solution space so as to
explore the features of alternative solutions. If the system is linear for a given posture of the
limb [44], [45], [155], the complete solution space can be found, which explicitly identifies
the following:

• the set of feasible control commands, e.g., the feasible activation set for muscles;

• the set of feasible outputs, e.g., the feasible set of accelerations or forces a limb can
produce;

• the set of unique control commands that achieve the limits of performance;

• the nullspace associated with a given submaximal output, e.g., the set of muscle
activations that produce a given submaximal acceleration or force.

By knowing the structure of these bounded regions (i.e., feasible sets of muscle activations,
limb outputs, and nullspaces), the modeler can explore the consequences of different
families of inputs and outputs such as the level of cocontraction, joint loading, metabolic
cost, etc. Methods to find these bounded regions are well known in computational geometry
[44], [45], [156]. However, these methods risk failure if the problem is high dimensional or
nonlinear. In these cases, it is best to first use machine algorithms to “learn” the topology of
the bounded regions, and then use that knowledge to explore specific solutions.

1) Redundancy Poses a Challenge to Learning—We use again our two-link arm
model to illustrate a challenge in redundancy for learning. Note, the redundancy could be
eliminated by providing sufficiently many constraints. Here, however, we focus on problems
where such constraints are missing. In our model, we want to learn the set of muscle
activations that bring the hand to a given equilibrium position. For simplicity, we model
muscles as springs (see Section II); thus, we control spring rest lengths. The mapping from
spring rest lengths onto hand position is unique. However, the inverse mapping is one-to-
many (Fig. 5). Moreover, we map a single hand position onto a nonconvex region.1 For such
a mapping, function approximation fails because it will average over the many possible
solutions, i.e., over the nonconvex region, to obtain a single output [157]. Applying this
output to our arm model, however, does not bring the hand to the desired position (Fig. 5).
Thus, a different approach is needed to learn this mapping. This mapping problem could be
addressed in the following ways.

• Instead of learning a mapping onto a point, we could learn a mapping onto a
probability distribution, and thus, accommodate the above-mentioned nonconvex
nature of the solution space. Diffusion networks address this task [157].

• Recurrent neural networks store training patterns as stable states [158]. In our case,
such a pattern could be a combination of muscle activation and hand position. If
only part of a pattern is specified (e.g, the hand position), the network dynamics
completes this pattern to obtain the complement (here, the muscle activation). For
fully connected symmetric networks, the dynamics converge to a stable pattern
[158]. As an example for such an application, Cruse and Steinkühler showed that
the relaxation in a recurrent neural network can be used to solve the inverse
kinematics of a redundant robot arm [159], [160].

1A convex set contains all line segments between each pair of points in the set. For example, a union of disjoint regions is nonconvex.
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• Finally, analogue to the use of recurrent neural networks, we could—in a first step
—learn a representation of the manifold or distribution of the data points that
contain input and output, and—in a second step—use this learned representation to
compute a suitable mapping. Here, we want to focus on this latter solution.

2) Learning the Structure of Data Sets: Unsupervised Learning Methods—
Unsupervised learning methods are designed to find the structure in data sets and do not
need pairs of input and target patterns. Several methods exist for extracting linear and
nonlinear approximations to the distribution of data points that will represent such a data
structure. In this context, the data set represents a manifold in a multidimensional space, and
learning the structure of this manifold is the goal.

Here, we will only briefly mention various linear and nonlinear methods—see references for
more details. Methods for finding linear subspaces that represent data distributions are
principal components analysis (PCA) [161], probabilistic PCA [162], independent
component analysis [163], and nonnegative matrix factorization [164]. When applied to
nonlinear distributions, these linear methods may give misleading solutions [165], [166].

Several methods exist to find the structure of nonlinear manifolds in data: auto-associative
neural networks [145], [167], point-wise dimension estimation [166], self-organizing maps
(SOMs) [168]–[170], probabilistic SOM [171], [172], semidefinite embedding [173], locally
linear embedding [174], Isomap [175], Laplacian eigenmaps [176], stochastic neighbor
embedding [177], kernel PCA [178], [179], and mixtures of spatially confined linear models
(PCA or probabilistic PCA are commonly used as their linear models) [130], [150], [165],
[180].

3) Going From the Structure of an Input–Output Data Set to Creating a
Functional Mapping—Once a representation has been found, we need to construct a
mapping from a specified input to the corresponding output. This mapping could be
obtained as follows.

• An input pattern specifies a constrained space in the joint space of input and output.
To find output samples, this constrained space can be intersected with the learned
representation of the data distribution/manifold. One possibility is to find the point
on the constrained space that has the smallest Euclidean distance to our manifold
representation [150], [165], [172]. For mixtures of locally linear models, efficient
algorithms exist to find such a solution [150], [165]. If the manifold representation
intersects the constrained space at several or infinitely many points, a solution has
to be chosen out of this set of intersections.

• Alternative to the minimum distance, we could define arbitrary cost functions on
the set of intersections and find a solution accordingly. This path has not been fully
exploited and explored.

VI. Applications of Control Theory for Neuromuscular Modeling
Control theory is a vast field of engineering where information about a dynamical system
(from internal sensors, outputs, or predictions) is used to issue commands (corrective,
anticipatory, or steering) with the goal of achieving a particular performance. We begin by
giving a short overview of the uses of classical and optimal control theories as they are now
used in the context of neuromuscular modeling. We then provide an overview of alternative
approaches such as hierarchical optimal control, model predictive control, and hybrid
optimal control. Our presentation of each of these types of optimal control are motivated by
the characteristics of the dynamical systems found in neuromuscular systems. Hierarchical
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optimal control is motivated by the high dimensionality of neuromuscular dynamics; model
predictive control is motivated by the need to impose state and control constrains such as
uni-directional muscle activation (e.g., muscles can actively pull and resist tension, but
cannot push). Finally, hybrid optimal control is motivated by the need to incorporate
discontinuities and/or changes in the dynamics arising from making and breaking contact
with objects and the environment (e.g., as in locomotion, grasping and object manipulation).

In the context of neuromuscular modeling, a dynamical system is one where differential
equations can describe the evolution of the dynamical variables (called the state vector
denoted by x) and their response to the vector of control signals (denoted by u). The reader
is referred to any introductory text in control theory such as [181] for details. The dynamics
of neuromuscular systems is generally nonlinear and they are formulated by the following
equations:

(2)

For the dynamics of a limb model (Fig. 1), x is the state vector of two angles and two
angular velocity while u are the controls that correspond to the two applied joint torques.
The control of nonlinear systems is a problem with no general solution, and the traditional
approach is to linearize the nonlinear dynamics around an operating point, or a sequence of
operating points in state and control space. In the linearized version of the problem, the
linear dynamics (3) are valid for small deviations from the operating point. For the example
of the limb model, the operating point can be a prespecified arm posture, or a sequence of
prespecified arm postures. The linearized dynamics have the form

(3)

The matrix A is the state transition matrix that defines how the current state x affects the
derivative of the state ẋ (i.e., like when the change in position of a pendulum along its arc
defines its velocity). B is the control transition matrix that defines how the control signals u
affect the state derivatives. The matrix H is the measurement matrix that defines how the
state of the system produces the output y. In some cases, the control signals u can also act
directly on the outputs y via the matrix D, which is called the control output matrix. Control
theory comes into the picture when we apply a control signal u to correct or guide the
evolution of the state variables.

With very few exceptions, the vast majority of neuromuscular modeling attempts to find the
sequence of control gains ut1, ut2, …, uT that will force the neuromuscular system to execute
a task—which in most cases is to track a prespecified kinematic or kinetic trajectory in the
time horizon t1, …, tT. Importantly, a valid sequence of control gains u = u(t) is defined as
meeting the constraints imposed by the prespecified trajectories. The underlying control
strategy is open loop. Obviously, any small disturbance or change in dynamics will cause
the controller to fail drive the system to the desired state since control is open loop and
therefore the controller is “blind” in any state changes. We draw the analogy to inverse
modeling (see Section III) where an inverse Newtonian analysis is used to find the muscle
forces or joint torques that are compatible with the measured kinematics and kinetics.
Inaccuracies, simplifications, and assumptions in the analysis invariably produces solutions
that, when “played forward,” do not produce stable behavior when the solutions are used to
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drive forward simulations. Thus, most of the work in control of neuromuscular systems to
date has two dominant shortcomings:

1. Control problems are formulated as tracking problems and need a prespecified
trajectory in state space. This approach can be very problematic for high-
dimensional systems where part of the state is hidden or only obtained by
approximation. For example, if the model includes muscle activation-contract
dynamics, then muscle activation becomes part of the state vector. Usually, EMG is
used to estimate muscle activation, but it is a poor predictor of the actual activation
state of the muscle (for a brief discussion of limitations of EMG and references to
follow, see [182]). Therefore, even though the part of the state vector obtained from
measured limb kinematics and kinetics is well defined, the part of the state vector
related to muscle activation is effectively hidden and must be approximated.

2. Control policies are open loop u = u(t) and apply only to the time histories used to
calculate them. Therefore, if used to drive a forward simulation, they are
independent of the new time history of the state. In these conditions, the stability of
the neuromuscular system is not guaranteed, even for small disturbances,
inaccuracies or noise in the dynamics.

The remainder of this section is motivated by the need to overcome these two shortcomings.
We attempt to provide an overview of techniques that have the potential to lead to controls
frameworks for high-dimensional nonlinear dynamical systems with hidden states that
produces stable closed-loop feedback control laws.

A. Optimal Control
In the optimal control framework as described by [124], [183], and [184], the goal is to
control a dynamical system while optimizing an objective function. In optimal control
theory, the controller has direct or indirect access to the state variables x (often estimated
from sensors and/or predictions) and output variables y to be able to both implement a
control law and quantify the performance of the system (3). The objective function is an
equation that quantifies how well a specified task is achieved. In mathematical terms, a
general optimal control problem can be formulated as

(4)

subject to

(5)

(6)

where x ∈ ℜn×1 is the state of system (e.g., joint angles, velocities, muscle activations), and
u ∈ ℜm×1 are the control signals (e.g., torques, muscle forces, neural commands). The
quantity y ∈ ℜp×1 corresponds to observations or outputs that are functions of the state. The
stochastic variables w ∈ ℜn×1 and ω ∈ ℜp×1 correspond to process and observation noise.
For neuromuscular systems, the process noise can be signal-dependent while the
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proprioceptive sensory noise plays the role of observation noise. The cost to minimize J(x,
u) consists of three terms. The quantity ϕ(xtN) is the terminal cost that is state-dependent
(e.g., how well a target was reached); the term q(x) is the state-dependent cost accumulated
over the time horizon tN – t0 (e.g., were large velocities needed to perform the task?), and uT

Ru is the control-dependent cost accumulated over the time horizon (e.g., how much control
effort was used to achieve the task). The control cost does not have to be quadratic,
however, quadratic is used mosly for computational convenience. The term J(x, u) is the
standard variable used for the cost function and V(x) is the scalar value representing the
minimal value of the cost function, indicating that the task was performed (locally or
globally) optimally as per this formulation of the problem and choice of cost function.

For the case of deterministic linear systems F(x, u, w) = Ax + Bu, with quadratic state cost
functions and q(x) = xTQx, and full state observation y = H(x, u, v), the solution to the
optimal control problem can be found analytically and is one of the more significant
achievements of engineering theory in the 20th century. The solution provides controls of
the form u = −Kx with feedback gains K ∈ ℜm×n which guarantee stability of the system
while minimizing the objective function J(x, u). This is called the Linear Quadratic
Regulator (LQR) method and it is one of the most well-known and explored control
frameworks in control theory. Some examples of using this approach in neuromuscular
modeling are [185]–[187].

Under certain conditions, optimal control can be applied to stochastic linear and nonlinear
dynamical systems with noise that can be either state- or control-dependent. For linear
stochastic systems F(x, u, w) = Ax + Bu + Γw, under the presence of observation noise y =
Hx + v, optimal stochastic filtering is required (Fig. 2). Kalman filtering (KF) is a stochastic
algorithm to estimate states of dynamical systems under the presence of process and
observation noise. For linear systems with Gaussian process and observation noise, KF is the
optimal estimator since it the minimum variance unbiased estimator (MVUE) [188]. The
intuition behind KF is that, if x̂tk is the current estimate of the state, KF provides the Kalman
gains L that under the update law  guarantee to reduce the
variance E{(x(t) − x̂(t)) (x(t) − x̂(t))T} = E{e(t)e(t)T}, where the term e(t) is the estimation
error defined as e(t) = x(t) − x̂(t).

The full treatment of optimal control and estimation is the so-called Linear Quadratic
Guassian Regulator (LQG) control scheme. The equations for the LQG are summarized
below

(7)

(8)

(9)

(10)
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(11)

Since the very first applications of optimal control, it has been known that the stability of the
estimation and control problem affect the stability of the LQG controller. To see the
connection between stability of estimation and control, and the overall stability we need to
combine both problems under one mathematical formulation. It can been shown that [124],
[184]

(12)

or

(13)

where the matrices F and G are appropriately defined.

The stability of the LQG controller depends on the eigenvalues of the state transition matrix
F. Since F is lower triangular, its eigenvalues are given by the eigenvalues of A − BK and A
− LH. In addition, the control gain K stabilizes the matrix A − BK while the Kalman gain L
stabilizes the matrix A − LH. Therefore, the overall LQG controller is stable if and only if
the state and estimation dynamics are stable.

Another important characteristic of LQG for linear systems is the separation principle. The
separation principle states that the optimal control and estimation problems are separated
and, therefore, the control gains are independent of the Kalman gains. Finding the control
gains requires using the backward control Riccati equation, which does not depend on
Kalman gain L, nor on the mean and covariance of the process and observation noise.
Similarly, computation of the Kaman gain requires the use of the forward estimation Riccati
equation, which is not a function of the control gain K nor of the weight matrices Q, R in the
objective function J(x, u).

Importantly, when multiplicative noise with respect to the control signals is considered, the
separation principle breaks down and the control gains are a function of the estimation gains
(Kalman gains). The stochastic optimal controller for a dynamical system with control-
dependent noise will only be active in those dimensions of the state relevant to the task. If
the controller were active in all dimensions, it would necessarily be suboptimal because
control actions add more noise in the dynamics.

The use of stochastic optimal control theory as a conceptual tool towards understanding
neuromuscular behavior was proposed in, for example, [189]–[191]. In that work, a
stochastic optimal control framework for systems with linear dynamics and control-
dependent noise was used to understand the variability profiles of reaching movements. The
influential work by [191] established the minimal intervention principle in the context of
optimal control. The minimal intervention principle was developed based on the
characteristics of stochastic optimal controllers for systems with multiplicative noise in the
control signals.
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The LQR and LQG optimal control methods have been mostly tested on linear dynamical
systems for modeling sensorimotor behavior; e.g, in reaching tasks, linear models were used
to describe the kinematics of the hand trajectory [190], [192]. In neuromuscular modeling,
however, linear models cannot capture the nonlinear behavior of muscles and multibody
limbs. In [187], an Iterative Linear Quadratic Regulator (ILQR) was first introduced for the
optimal control of nonlinear neuromuscular models. The proposed method is based on
linearization of the dynamics. An interesting component of this work that played an
influential role in the studies on optimal control methods for neuromuscular models was the
fact that there was no need for a prespecified desired trajectory in state space. By contrast,
most approaches for neuromuscular optimization that use classical control theory (see
Section VI) require target time histories of limb kinematics, kinetics, and/or muscle activity.
In [193], the ILQR method was extended for the case of nonlinear stochastic systems with
state- and control-dependent noise. The proposed algorithm is the Iterative Linear Quadratic
Gaussian Regulator (iLQG). This extension allows the use of stochastic nonlinear models
for muscle force as a function of fiber length and fiber velocity. Fig. 6 illustrates the
application of LQG to our arm model (Section II). Further theoretical developments in [194]
and [195] allowed the use of an Extended Kalman Filter (EKF) for the case of sensory
feedback noise. The EKF is an extension of the Kalman filter for nonlinear systems.

1) Hierarchical Control—The hierarchical optimal control approach is motivated by the
redundancy and the hierarchical structure of neuromuscular systems. The hierarchical
optimal control framework is mentioned in, for example [196] and [197] for the case of a
two link muscle driven arm with six muscles. In [198], the complete treatment of the control
of a 7DOF arm with 14 muscles—two for each join—is presented.

In the hierarchical control framework, the dynamics of neuromuscular systems are
distinguished into different levels. For the case of arm [197], the dynamics can be
distinguished in two levels. The higher level dynamics includes the kinematics of end
effector such as position p, velocity v, and force f. The low level dynamics consists of the
join angles θ and θ ̇ velocities and as well as the muscle activation α. The state space model
of the high level dynamics can be represented as

(14)

(15)

(16)

where m is average hand mass, uH is the control in the higher level, and f is the force at the
end effector. The parameters Hf (p, v, m) and Hv(p, v, m) are a function of position velocity
and mass that correspond to some approximation error of the high level dynamics. A cost
function relative to a task is imposed and the optimal control problem in the higher level can
be defined as

Valero-Cuevas et al. Page 20

IEEE Rev Biomed Eng. Author manuscript; available in PMC 2011 June 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(17)

subject to the equations of the kinematics of the end effector. The optimal control in higher
dynamics will provide the required input force—control uH. The low level dynamics are
defined by the forward dynamics of the arm and the muscle dynamics

(18)

(19)

(20)

The matrix I(θ) ∈ ℜn×n is the inertia, C(θ, θ ̇) ∈ ℜn×1 is the vector centipentral and coriolis
force, and G(θ) is the gravitational force. The term T(α, l(θ), l̇(θ, θ ̇)) is the tension of the
muscle that depends on the levels of activation a, the length l and the velocity l̇ of the
corresponding muscle. The low level control is u. The low level dynamics are related to high
level dynamics through the equations p = Φ(θ) and v = J(θ), where J(θ) is the Jacobian. The
end effector forces are related to torques produces by the muscles and the gravity according
to the equation J(θ)T f = τmuscles − G(θ). The analysis is simplified with zero gravity and
therefore the end effector forces are specified by

(21)

Under the assumption that ȧ ≫ θ ̇ differentiation of the end effector force leads to ḟ = J(θ)+ ·
M(θ) · Fvl(l(θ), l̇(θ, θ ̇)) · ȧ. Since ḟ = −c(f − mg) + uH, it can be shown that uH = β2QuL,
where Q is defined as Q = J(θ)+ · M(θ) · Fvl(l(θ), l̇(θ, θ ̇)). The low level optimization is
formulated as

(22)

Subject to 0 < uL < 1 and with H = β2QTQ + rI and b = −βQuH. The choice of cost function
above is such that the control energy of the controller in lower dynamics is minimized.

The main idea in the hierarchical optimal control problem is to split the higher dimensional
optimal control problem into smaller optimization problems. For the case of the arm
movements, the higher optimization problem provides the control forces in end effector
space. These end-effector forces play the role of the desired output for the low-level
dynamics. The goal of the optimization for low level dynamics is to find the optimal muscle
activation profiles that can deliver the desired end-effector. The optimal muscle activation is
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with respect to a minimum energy cost. Thus by starting from the higher level and solving
smaller optimization problems that specify the desired output for the next lower level in the
hierarchy, the hierarchical optimal control approach addresses the high dimensionality in
neuromuscular structures. The dimensionality reduction and the computational efficiency
that are achieved with hierarchical optimal control come with the cost of suboptimality.

A recent development in stochastic optimal control introduces a hierarchical control scheme
applicable to a large family of problems [199], [200]. The low level is a collection of
feedback controllers which are optimal for different instances of the task. The high-level
controller then computes state-dependent activations of these primitive controllers, and in
this way achieves optimal performance for new instances of the task. When the new tasks
belong to a nonlinear manifold spanned by the primitive tasks, the hierarchical controller is
exactly optimal; otherwise, it is an approximation. An appealing feature of this framework is
that, once a controller is optimized for a specific instance of the task, it can be added to the
collection of primitives and thereby extend the manifold of exactly solvable tasks.

2) Hybrid Control—In tasks that involve contact with surfaces such as locomotion,
grasping, and object manipulation, the control problem becomes more difficult. From a
control theoretic standpoint, the challenges are due to changes in the dynamics of the system
when mechanical constraints are added or removed, for example, when transitioning
between the swing and stance phases of gait, or during grasp acquisition. This change in
plant dynamics requires switching control laws (hence the term “hybrid”). From the
neuromuscular control point view, recent experimental findings about muscle coordination
during finger tapping [201], [202] demonstrated a switch between mutually incompatible
control strategies: from the control of finger motion before contact, to the control of well-
directed isometric force after contact. These experimental findings motivated the work by
[203] to extend the ILQR framework for modeling contact transition with the finger tip. For
the motion phase of the tapping task, the objective of the optimal controller is to find the
control law that minimizes the function

(23)

where ϕ(xtN) = (xtN − x*)T QN(xtN − x*) and subject to dynamics

(24)

The state x contains the angles and velocities of the neuromuscular system. For the case of
the index finger, the state x includes the kinematics of the metacarpoplalangeal (MCP),
proximal interphalangeal (PIP), and distal interphalangeal (DIP) joins. Upon contact with
the rigid surface, the optimal control problem is formulated as

(25)

where ϕ(xtN) = (xtN − x*)T QN(xtN − x*) and subject to the constrained dynamics
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(26)

where f is the contact force between the finger tip and the constrain surface. The relation
between the contact forces f and the Lagrange multipliers λ in the cost function is given by f
= ∇Φ(p)λ, where p position vector of the finger tip that satisfies the constraint Φ(p) during
contact. The formulation for hybrid iLQR is rather general and it can be applied to a variety
of tasks that involve contact with surfaces and switching dynamics. It is also an elegant
methodology since it provides the optimal control gains during motion as well as during
contact. The main limitation of the method is that it requires an a priori known switching
time between the two control laws—instead of making the switching time itself a parameter
to optimize. It is an open question whether or not optimal control for nonlinear stochastic
systems can incorporate the time of the switch as a variable to optimize. In addition, further
theoretical developments are required for the hybrid optimal control of stochastic systems
with state and control multiplicative noise.

3) Model Predictive Control—The common characteristic in all types of optimal control
mentioned so far, is that the control and estimation gains are computed off-line. In the model
predictive control framework, or Receding Horizon Control [204], the control gains are
calculated in real time. The objective of the model predictive control framework is to find
the control law that minimizes the cost function

(27)

subject to dynamics: ẋ = F(x, u) and to control and state constrains g(x, u) < 0. In a
predictive control model, the control gains u1, u2, …, uT are computed for the time window
T. The first control u1 is applied to the system and the optimization is executed again to
compute the new control gains u2, u3, …, uT+1 starting now from time t2. At time t = t2,
only the control ut2 is applied and the optimization procedure is executed again to find the
gains u3, u4, …,uT+2.

The online computation of control laws in model predictive control is a very attractive
feature especially for tasks where online decisions regarding the applied control law have to
be made. For the tasks of object manipulation, for example, it is possible that online neural
processing takes place to regulate and adapt the applied forces. Another attractive feature of
model predictive control is that it incorporates state and control constrains. The main
assumption is that the process under control is slow enough such that the optimization
scheme can compute the control laws on-line.

It remains an open question whether model predictive control is applicable to neuromuscular
systems. Recent developments in [205] and [206] allow the application of model predictive
control to linear stochastic systems with state and control multiplicative noise. Further
theoretical developments for nonlinear stochastic systems with control- and state-dependent
noise are required so that the nonlinear stochastic muscle dynamics can be considered.

B. Limitations of Optimal Control: A Step Towards Robust Control
In spite of the recent and upcoming advances in the application of optimal control theory to
neuromuscular systems, additional tools are required. The main limitation of the optimal
control framework is that it assumes almost perfect knowledge of the dynamics of the
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system (the state transition matrix). We use the qualifier “almost perfect” because the
addition of stochastic terms in the state space dynamics can serve as a way to model
unknown dynamics. However, the addition of randomness is an ad hoc and heuristic simple
approach to modeling unknown dynamics, especially in cases where these unknown
dynamics have a deterministic and highly nonlinear nature as is the case in neuromuscular
systems. This limitation of optimal control motivated the birth and fast development of the
general framework of robust control theory in the 1970s (see commentary below).

The influential work by Safonov and Athans [207] was the first to investigate the robustness
of LQG controllers. In addition, a compact and solid proof on the limitations of optimal
control and the lack of stability margins of LQG controllers is the 1978 paper by Doyle
[208]. To understand the reasoning for the the lack of stability margins of LQG controllers
for even single input single output systems (SISO) it helps to rewrite the formulation of the
dynamical system as in (12). Namely, instead of defining the state vector as (x(t)T e(t)T)T, as
in (12), we consider the state vector (x(t)T x̂(t)T)T, where x̂(t) is the estimated state. The
overall dynamics can be written as follows:

(28)

or in more compact form

(29)

where the matrices Φ and Ψ are defined as

(30)

We can now follow the example in John Doyle 1978 for SISO system with state space
dynamics

(31)

and observations

(32)

where w and v are the process and observation noise with zero mean and variance σw > 0 and
σv = 1, respectively. The performance integral weights are R = 1 and
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(33)

It can be shown that the control and the Kalman gains are given by the expressions

(34)

with  and . The control gain K is scaled by a factor m and, therefore,
the actual control gain is K̃ = mK. This scaling factor is motivated by the lack of perfect
knowledge of the dynamics. For the case of perfect knowledge of the dynamics, the actual
control gain K̃ equals the nominal control gain K (m = 1, nominal case). When unknown
dynamics are present, the actual gain K̃ differs from the nominal gain K(m ≠ 1). Only the
nominal control gain is known to the filter. The matrix Φ for the SISO system (31) is
expressed as follows:

(35)

Given the closed-loop state transition matrix Φ, the necessary condition for stability is that d
− f − 4 + 2(m − 1)df > 0 and 1 − (1 − m)df > 0. When these conditions hold, the eigenvalues
of Φ have negative real parts and, therefore, the overall system (29) is stable. It is easy to
see that for sufficient large d and f or (q and σ) small perturbations in m cause violation of
the second stability condition.

Commentary 5—The limitations of optimal control vis-à-vis unknown dynamics are quite
relevant to the study of sensorimotor systems. For example, in psychophysical studies
testing whether optimal control (of the LQR variety) is used by subjects during motor
learning of arm movements [209], the inaccuracies in the dynamics of the arm-world system
are reasonably posited to be “learned” by the nervous system via repeated trials. While such
learning can certainly take place in the neural system, the iterative learning of the unknown
dynamics is done heuristically in the model and does not necessarily have a theoretical
foundation within the mathematics of optimal control (see supplemental material of that
work). Thus a current challenge is to model such neural learning within a controls
framework that seamlessly and rigorously accommodate the “learning” of the unknown
dynamics.

These shortcomings of optimal control are well known, and have been addressed to a certain
extent. Robust control addresses the goal of stability and performance under the presence of
disturbances and unknown dynamics. An introduction to robust control would require an
extensive discussion on control concepts for frequency-based controller design and analysis
of dynamical systems; as well as an introduction to theorems and lemmas critical to the
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development of robust control theory. Space limitations do not allow such an introduction
here, but the reader is referred to [210] for a full treatment of robust control theory.

C. Adaptive Control
Adaptive control is a perspective different from optimal control and robust control used in
cases where the unknown dynamics are due to the existence of unknown parameters of the
plant. In an adaptive control scheme, a parameter estimator (or an adaptive law) is
responsible for identifying the unknown parameters while the control law is derived as if the
parameters were known.

The are two ways to combine the adaptive law and the control law. In the first approach, the
unknown parameters of the plant are estimated online, and the control law is a function of
these estimated parameter values. Thus the control law is modified whenever the estimates
change. This is called indirect adaptive control.

In direct adaptive control, the plant model is parametrized according to the controller
parameters. Therefore, even though the source of uncertainty comes from the plant, the
question remains: what is the structure of the adaptive controller that can control the
uncertain plant under consideration? The structure of the controller is parametrized and the
learning/estimation process of that parametrization does not require any intermediate step of
identifying the parameters of the plant. There have been a variety of applications of adaptive
control in industry. The reader can refer to [211] for an introduction and full treatment of
Adaptive Control schemes.

VII. Monte Carlo Approaches to Feasible Model Predictions and Hypothesis
Testing
A. Background

As mentioned in Section I, neuromuscular models are computational implementations of
hypotheses about the constitutive parts and the overall behavior of neuromuscular systems.
Models for neuromuscular function typically contain multiple elements and their respective
parameter values. As discussed in Section V, some of these model elements and their
parameter values may be difficult to estimate or measure, describe from first principles, and
may vary naturally in the population. Before accepting the result from a simulation, and
therefore, the test of a hypothesis, one must explain to the satisfaction of the research
community the differences that invariably emerge between model predictions and
experimental data and intuition. These differences can be attributed to a variety of sources
ranging from the validity of the scientific hypothesis being tested, to the choice of
representation selected for each constitutive element, parameter variability/uncertainty, or
even numerical implementation. The use of sensitivity analysis (quantifying the effect of
parameter variability on prediction variability) and cross-validation (testing how well a
model replicates data not used during its development) are well-established techniques in
machine learning and in engineering that that should be the standard of practice in
neuromuscular modeling.

More specifically, the conceptual framework of this section revolves around defining the
feasible predictions of a computational model to compare and contrast across models and
against experimental data. The motivation, formulation, use, and validation of a model
invariably hinges on experimental data—and only when experimental data are robustly
replicated by the model should the model be considered valid and reliable. However,
neuromuscular models are often designed and used to produce individual predictions; and
the sensitivity of their predictions to variability and uncertainty in model structure and
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parameters is not usually explored systematically. We consider exploring the range of
feasible predictions by a model to be important for several reasons including:

• The range of feasible predictions of a model should ideally mirror the distribution
of experimental data. That is, predictions should be centered on the distribution of
experimental data (when the data are normally distributed), or exhibit multimodal
predictions (when the data are similarly multimodal).

• Many of the debates in modeling arise from our inability to compare across models
and modeling approaches. That is, “simple” versus “complex”; “forward” versus
“inverse”; “generic” versus “patient specific” models could perhaps be reconciled if
we found that their range of feasible predictions overlap.

• Our community is one that is united by our methods but fragmented by our results.
We all agree on the physics of the world and musculoskeletal system, and the
computational principles to simulate them, but the consequences of our choices
about modeling physiological and neural processes are hard to reconcile if we
cannot compare their resulting ranges of feasible predictions.

• There exist numerous tools and approaches enabling the computation and
comparison of ranges of feasible predictions that, in our opinion, remain
unnecessarily underutilized.

Monte Carlo approaches are a means to quantify the sensitivity of numerical simulations to
parameter variability [212] that have been used in numerous fields. Some of the earlier uses
included Monte Carlo evaluations of orthopedic parameters [56], [213]. More recently, these
methods have also been used in neuromuscular and musculoskeletal modeling for evaluating
models of the shoulder [214], thumb [51], [215], knee [216], [217], and populations of
motor units [97]. A practical impediment to the utility of Monte Carlo methods is
computational power, which until recently proved critical but is increasingly less so.
Achieving convergence of Monte Carlo simulations of complex, high-dimensional models
often requires a large number of model iterations—often in the tens of thousands at times.
Being able to perform a large number of iterations in a reasonable time requires that
individual model iterations be fast and/or exploit the fact that Monte Carlo methods are
“memory-less” and lend themselves to parallel computing. In neuromuscular systems, each
iteration may actually involve a full dynamical simulation of behavior as in [97], or the
solution of an optimization problem as in [51]. Such problems are usually best done with
well-optmized and efficiently compiled computer languages like C. Performing these
simuations in interpreted computer languages or packages such as MATLAB (Mathworks,
Natick, MA), MSMS, or SIMM may be difficult. This problem is partially addressed in
MATLAB with the profile and MEX (MATLAB Executable) functions. The profile function
makes it possible to identify computational bottlenecks in interpreted code that can
compromise performance. The MEX functionality of MATLAB allows bottleneck
operations to be coded in C and compiled for the processor in use, and then be run as
ordinary MATLAB functions. This procedure can maintain most of the researcher's coding
in an interpreted language or package, while not sacrificing the computational performance
required for Monte Carlo simulations. The Monte Carlo method iteratively simulates the
model with stochastic variations in the model parameters within physiologically or
anatomically tenable ranges (Fig. 7).2 This approached is aimed at answering the question:
Is it possible that, given the chosen structure of my model, it can replicate the observed data
using parameter values within reasonable ranges? For example, the ratio of upper to lower
arm lengths or relative strength across muscles in Fig. 1 can and does vary across

2The name Monte Carlo is no accident: it was inspired by the analogy where a gambler repeatedly plays a game of chance to evaluate
their own “fitness” to win money.
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individuals. We and others have done such studies in the context of biomechanical structure
and function [49], [51], [214], [218]. These approaches require experimental work with
enough subjects, or strong intuition about the problem, to set the range of values of those
parameters and the statistical distribution within that range. That is, build a parametric (e.g.,
Gaussian, Gamma distributions) or nonparametric descriptions (e.g., histogram)
representation of the data. Thankfully, Monte Carlo methods work even if the details of
those distributions are non known and must be assumed. In those cases, it is much preferable
to assume a uniform distribution than to assume a Gaussian distribution [212]. Assuming
Gaussian distributions is an overused and often incorrect practice because they have tails to
infinity, which musculoskeletal parameters clearly do not, and truncating a Gaussian
distribution to make it physiologically realistic is not valid because proper statistical
sampling has to be done from a distribution with unit area. If the distribution of the
parameter values is known to be close to Gaussian, then a symmetric Beta distribution can
be used because it has fixed boundaries. Also, there are instances where parameters
distributions are multimodal [51]. After identifying a model output of interest (e.g., force
magnitude, limb kinematics, tendon excursion, etc.), the computer model is coded to iterate
over numerous runs to simulate that output.

How many iterations are enough? Monte Carlo models need to be run to “convergence,”
which is usually defined as the number of iterations after which the mean and standard
deviation of the emerging distribution of the output ceases to change by a given small
percentage. See [49], [51] for examples.

Upon convergence, the details of the distribution of the test statistic (i.e., mean, mode,
dispersion, ranges, etc.) define the set of feasible output predictions as per the specific
design and implementation of the model. This is also the set of feasible outcomes of the
hypothesis implemented by the model. If the experimental data fall within this feasible range
of predictions by the model, then it is possible that the underlying hypothesis is correct. If
the measured values of the test statistic do not overlap with the feasible set of model
predictions, then it is not possible to accept the hypothesis as posed and implemented in the
model [51], [97], [218]. We say that is only “possible” because one must scrutinize the set of
parameter values that produce realistic outputs before reaching any conclusions because of
Monte Carlo methods assemble parameters values at random. This can be unrealistic at least
in some cases where, for example, the upper arm is selected to be longer than the lower arm.
One can, and should, introduce any known covariance among parameters to both reduce the
number of truly independent parameters and enforce realistic relationships among
parameters.

To be fair, most modelers certainly perform “sanity checks” and parameter sensitivity
analyses on their models, which may or may not be reported in the final manuscript. The
concept of safety margins and sanity checks is ingrained in engineering practice. However,
the full description of the feasible set of model predictions is not often reported, which
leaves the reader wondering about the robustness of the hypothesis being tested.

The greatest risk when using the Monte Carlo approach is that the parameter space is
incompletely sampled, causing the distribution of model-generated test statistics to not
represent the complete set of possible model outputs. For large numbers of parameters (i.e.,
>15) Monte Carlo methods, like supervised learning methods, fall prey to the curse of
dimensionality (Section V-A2). There are multiple approaches to mitigate this obstacle.
When the experiment can be modeled as a set of linear inequalities of the form Ax ≤ b,
where A is a given matrix, b is a given vector, and x is the vector to be solved for, the
complete set of possible solutions can be calculated by tools in computational geometry (cdd
software package [156]). This “vertex enumeration” approach is the dual of the simplex
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method [219] and was used to calculate the complete set of muscle activation patterns for a
given fingertip force [44]. If the model cannot be described as linear inequalities, then the
number of samples in parameter space is increased gradually, and a criteria for the
convergence of the model-generated test statistic distribution is applied [97]. In addition, if
the model has a rigorous analytical representation, it may be possible to “map” statistical
distributions through those equations—but if that is possible one would likely not be
recurring to numerical methods in the first place. Alternatively, the state-of-the-art
computational approach is to use the Monte Carlo Markov Chains [218], [220], [221], which
starts random walks (each of which is called a “chain”) from different locations in the search
space. If multiple chains converge to a location in the search space, one has at least some
evidence to assume that the searching the entire parameter space will produce the same
results and the statistics of the converged region are a reasonable representation of the
dispersion of the performance of the system. To see two examples of the use of the Monte
Carlo Markov Chain method, and the reader is referred to [218] and the supplemental
material of [222] for details and uses of the Markov Chain approach applied to
neuromuscular models.

B. Example 1: Biomechanical Model Analysis
Hughes and An performed a Monte Carlo analysis on a planar shoulder model to examine
the effects of varying muscle moment arms on predictions of the muscle forces required to
maintain posture [214]. The authors calculated both the average moment arms, as well as the
moment arm covariance matrix, across a sample of 22 cadaver specimens. The second-order
statistics (mean and standard deviation) of the moment arm data were used to generate
distributions of moment arms for all six muscles examined: subscapularis, infraspinatus,
supraspinatus, anterior deltoid, middle deltoid, and posterior deltoid. Sampling randomly
from these distributions of moment arms, the authors predicted the necessary vector of
muscle forces required to resist gravity and maintain a particular posture by minimizing the
total squared muscle stress. This study found that muscle forces could vary considerably
given the observed moment arm variability. This study highlights the utility of Monte Carlo
methods for rigorously analyzing variability in experimentally driven biomechanical
models. In Fig. 8, we perform a similar Monte Carlo analysis on the planar two-link arm
shown in Fig. 1.

C. Example 2: Neuromuscular Model Analysis
A population-based approach to the study of muscle function was developed by Fuglevand
and colleagues and is based on representing motor unit recruitment and rate coding [95]. The
Fuglevand Model predicts isometric force and corresponding surface EMG given assumed
excitatory drive and properties of the motor unit pool. These properties are encoded as
coupled equations with multiple parameters, and include: the contractile properties of the
motor units; threshold, gain, and saturation levels for motor unit firing; motor unit
conduction velocity; muscle geometry including cross-sectional area, number of fibers,
innervation number, and fiber length; electrical conductivities of bone, muscle,
subcutaneous tissue, and skin; etc. This model of muscle has been used to both evaluate
experimental methods [223]–[225] and to corroborate scientific hypotheses of muscle
function [226]–[229]. Other models of muscle have also been used in these kind of studies
[230]. However, sensitivity analyses in these studies are typically limited to variations in
single parameters, with the other parameters held constant. Keenan and Valero-Cuevas used
a Monte Carlo approach to test whether sets of parameter values exist such that the
Fuglevand Model can replicate the fundamental and well-established experimental
relationships between force and force variability, and between force and electromyograms
[97]. The numerical values for each of nine muscle and neural parameters were drawn at
random from uniform distributions covering physiological ranges. Each forward dynamical
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simulation generated two relations: one between average force and force variability, and the
other between force and EMG (Fig. 9). The outputs of the model were the slopes of those
two relationships. The authors found that very few parameter sets could produce test
statistics approaching the experimental values; typically, parameter sets that produced EMG-
force relations similar to those observed experimentally would also produce unrealistic
relations between average force and force variability (Fig. 9). Using the Monte Carlo
approach allowed a thorough exploration of this parameter space, and the identification of
the key combination of parameters to which the model is most sensitive. More importantly,
that study suggests the Fuglevand Model is able to approximate realistic muscle function (as
per the two slopes) only when parameters are chosen with extreme caution, especially neural
properties. Therefore, the most productive research direction to refine our working
hypotheses about populations of motor units is to improve our understanding of the neural
properties for the recruitment and activation of populations of motor units.

D. Example 3: Hypothesis Testing in Neural Control of Motor Systems
In other cases, a researcher may want to use one model representing a null hypothesis and
another for an alternative hypothesis, to determine if available data provide sufficient
evidence to reject the null hypothesis in favor of the alternative hypothesis. The Monte Carlo
framework described above is also well-suited to this application. The approach is simple:
generate test statistic distributions for the desired output using both models, and determine if
one is implausible while the other is compatible with experimental data. An example of this
approach is provided by Kutch et al., who used Monte Carlo simulation to determine if
multidirectional force variability measurements from the human index finger provided
enough evidence to reject a hypothesis of flexible muscle activation in favor of a hypothesis
of synergistic activation [231]. Models were coded for both hypotheses, which included a
number of unknown parameters including how muscles were grouped into synergies, how
average muscle force translated into muscle force variability, and how muscle-level signal-
dependent noise was correlated. A test statistic was chosen, and called “target-directedness,”
that represented the shape of the endpoint force covariance ellipse in specific directions of
force exerted by the index finger. Target-directedness was simulated to convergence for both
models for randomly chosen parameters. It was found that parameter sets could be found for
the flexible activation hypothesis that could replicate the data, but in general, no parameter
sets could be found for the synergistic activation hypothesis that replicate the data (Fig. 10).
The synergistic hypothesis could only replicate the data if synergy-level noise was made
unrealistically strong, which would in turn induce unrealistic levels of correlation between
muscle forces. This analysis provided rigorous evidence that the flexible activation
hypothesis should not be rejected in favor of the synergistic activation hypothesis. Recent
work at the level of electromyograms during fingertip force production also fails to support
the synergistic activation hypothesis for finger musculature [222].
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Fig. 1.
Simple model of the human arm consisting of two planar joints and six muscles.
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Fig. 2.
Schematic description of the interactions among machine learning, control theory, and
estimation-detection theory.
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Fig. 3.
Block diagram representation of data collection and supervised learning schemes (see text
for detailed description of each case). In every case, data is collected in the real world by
feeding joint torques to the real-world Plant (gray block). These torques can be: (A) selected
at random, (B) based on a preliminary inverse model that may (C) include noise and
selective use of training data, or (D) selected with the benefit of a demonstrator. For
simplicity of illustration, the dependence of the inverse model and controller on state, x, ẋ, is
omitted. (A) Direct inverse modeling. (B) Feedback-error learning. (C) Staged learning. (D)
Learning from demonstration.
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Fig. 4.
Illustration that an exploration in input space (here, torque) may not sample a desired output
(acceleration). Sampling in input space is limited to the range ±0.5—any practical setting
requires limits of exploration.
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Fig. 5.
Mapping from spring resting lengths (si) to hand positions (x, y). Several redundant resting
lengths are solutions for one desired hand position (red). The graph on the left shows a two-
dimensional projection of a cross section of the six-dimensional nullspace of spring resting
lengths: s1 and s2 were set to constant values; s3 and s4 were randomly drawn (within dashed
box), and all values of s5 and s6 were projected onto the displayed plane. The original six-
dimensional nullspace in rest-length space is, therefore, nonconvex. Thus, the average of all
rest-lengths solutions does not map onto the desired hand position.
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Fig. 6.
Simulation results for our two-link arm model using an optimal feedback controller. The
task is to move the two-link arm from the initial configuration of (θ1, θ2) = (0, 0) to (θ1, θ2)
= (60°, 90°) in the time horizon of 1 s and with 0 terminal velocity (ω1(T), ω2(T)) = (0, 0)).
The lower left panel illustrates the reduction of the cost function for every iteration of the
ILQG algorithm. The algorithm convergences quickly (after about 15 iterations), and yields
smooth joint-space trajectories with close to bell-shaped velocity profiles.
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Fig. 7.
Monte Carlo approach to model evaluation and hypothesis testing. An experiment is
performed that produces some data, from which a test statistic is calculated. A computer
model is coded that generates an output comparable to the statistics of the experimental data
(or target test statistic). All parameters are varied stochastically within their feasible range,
and a distribution of possible test statistics are generated for that model. One can then
determine whether there exist sets of parameter values for the model that can replicate the
distribution of the experimental data. If possible predictions of the model cannot replicate
the experimental data, the hypothesis encoded in the model is likely untrue and a new
hypothesis needs to be developed and encoded. In addition, by investigating the sensitivity
of model predictions to specific subsets of parameters, the components of the model of
particular importance can be identified.
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Fig. 8.
Example of Monte Carlo analysis of possible muscle activation patterns for the Planar Arm
Example. 100 000 muscle force vectors that produced 50% maximal force in the forward
direction were calculated, and then histograms were made of the valid solutions in each
muscle for each of two postures. Notice that in both postures, some muscles are necessary
(zero force is not a valid solution). Notice also that some muscles switch from being
necessary in one posture to redundant (zero force is an allowed solution) in other postures
(e.g., muscle 5). A similar example of this approach is presented in [182].
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Fig. 9.
Monte Carlo analysis of the Fuglevand Model. (A) Each line shows the force/force-
variability relation generated by different parameter sets. (B) Each line shows the EMG/
force relation generated by the same parameter sets shown in (A). (C) Relations found in (A)
and (B) are evaluated by test statistics that are regression slopes [log-log in the case of (A)].
Good fits to experimental data are force/force-variability slopes of greater than 0.75 and
EMG/force slopes of less than 1.05; thus, very few parameter sets are able to reproduce
experimental data. Adapted from [97].
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Fig. 10.
Example of Monte Carlo hypothesis testing. (A) Illustration of two hypotheses and sources
of noise. (B)–(D) Monte Carlo distributions of test statistics (target-directedness) generated
by the two models, as compared with the experimentally observed value. The synergistic
hypothesis can only replicate the data under specific conditions, and induces muscle force
correlations that are unrealistic. Adapted from [231]. (A) Hypotheses and noise sources. (B)
Both hypotheses have Sig-Indep. Noise only. (C) Both hypotheses have Muscle SDN only.
(D) Flexible hypothesis has only Muscle SD, synergistic hypothesis has Muscle SDN and
Synergy SDN equally. (E) Flexible hypothesis has only Muscle SDN, synergistic hypothesis
has Synergy SDN ten times Muscle SDN.
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